1

72
The z-Transform R.Suresh Babu Asst.Prof/ECE KCET 14-07-2011

Transcript of 1

Page 1: 1

The z-Transform

R.Suresh BabuAsst.Prof/ECEKCET14-07-2011

Page 2: 1

Content

Introduction z-Transform Zeros and Poles Region of Convergence Important z-Transform Pairs Inverse z-Transform z-Transform Theorems and Properties System Function

Page 3: 1

The z-Transform

Introduction

Page 4: 1

Why z-Transform?

A generalization of Fourier transform Why generalize it?

– FT does not converge on all sequence– Notation good for analysis– Bring the power of complex variable theory deal with

the discrete-time signals and systems

Page 5: 1

The z-Transform

z-Transform

Page 6: 1

Definition The z-transform of sequence x(n) is defined by

n

nznxzX )()(

Let z = ej.

( ) ( )j j n

n

X e x n e

Fourier Transform

Page 7: 1

z-Plane

Re

Im

z = ej

n

nznxzX )()(

( ) ( )j j n

n

X e x n e

Fourier Transform is to evaluate z-transform on a unit circle.

Fourier Transform is to evaluate z-transform on a unit circle.

Page 8: 1

z-Plane

Re

Im

X(z)

Re

Im

z = ej

Page 9: 1

Periodic Property of FT

Re

Im

X(z)

X(ej)

Can you say why Fourier Transform is a periodic function with period 2?

Can you say why Fourier Transform is a periodic function with period 2?

Page 10: 1

The z-Transform

Zeros and Poles

Page 11: 1

Definition

Give a sequence, the set of values of z for which the z-transform converges, i.e., |X(z)|<, is called the region of convergence.

n

n

n

n znxznxzX |||)(|)(|)(|

ROC is centered on origin and consists of a set of rings.

ROC is centered on origin and consists of a set of rings.

Page 12: 1

Example: Region of Convergence

Re

Im

n

n

n

n znxznxzX |||)(|)(|)(|

ROC is an annual ring centered on the origin.

ROC is an annual ring centered on the origin.

xx RzR ||

r

}|{ xx

j RrRrezROC

Page 13: 1

Stable Systems

Re

Im

1

A stable system requires that its Fourier transform is uniformly convergent.

Fact: Fourier transform is to evaluate z-transform on a unit circle.

A stable system requires the ROC of z-transform to include the unit circle.

Page 14: 1

Example: A right sided Sequence

)()( nuanx n )()( nuanx n

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8

n

x(n)

. . .

Page 15: 1

Example: A right sided Sequence

)()( nuanx n )()( nuanx n

n

n

n znuazX

)()(

0n

nn za

0

1)(n

naz

For convergence of X(z), we require that

0

1 ||n

az 1|| 1 az

|||| az

az

z

azazzX

n

n

10

1

1

1)()(

|||| az

Page 16: 1

aa

Example: A right sided Sequence ROC for x(n)=anu(n)

|||| ,)( azaz

zzX

|||| ,)( az

az

zzX

Re

Im

1aa

Re

Im

1

Which one is stable?Which one is stable?

Page 17: 1

Example: A left sided Sequence

)1()( nuanx n )1()( nuanx n

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8n

x(n)

. . .

Page 18: 1

Example: A left sided Sequence

)1()( nuanx n )1()( nuanx n

n

n

n znuazX

)1()(

For convergence of X(z), we require that

0

1 ||n

za 1|| 1 za

|||| az

az

z

zazazX

n

n

10

1

1

11)(1)(

|||| az

n

n

n za

1

n

n

n za

1

n

n

n za

0

1

Page 19: 1

aa

Example: A left sided Sequence ROC for x(n)=anu( n1)

|||| ,)( azaz

zzX

|||| ,)( az

az

zzX

Re

Im

1aa

Re

Im

1

Which one is stable?Which one is stable?

Page 20: 1

The z-Transform

Region of Convergence

Page 21: 1

Represent z-transform as a Rational Function

)(

)()(

zQ

zPzX where P(z) and Q(z) are

polynomials in z.

Zeros: The values of z’s such that X(z) = 0

Poles: The values of z’s such that X(z) =

Page 22: 1

Example: A right sided Sequence

)()( nuanx n |||| ,)( azaz

zzX

Re

Im

a

ROC is bounded by the pole and is the exterior of a circle.

Page 23: 1

Example: A left sided Sequence

)1()( nuanx n|||| ,)( az

az

zzX

Re

Im

a

ROC is bounded by the pole and is the interior of a circle.

Page 24: 1

Example: Sum of Two Right Sided Sequences

)()()()()( 31

21 nununx nn

31

21

)(

z

z

z

zzX

Re

Im

1/2

))((

)(2

31

21

121

zz

zz

1/3

1/12

ROC is bounded by poles and is the exterior of a circle.

ROC does not include any pole.

Page 25: 1

Example: A Two Sided Sequence

)1()()()()( 21

31 nununx nn

21

31

)(

z

z

z

zzX

Re

Im

1/2

))((

)(2

21

31

121

zz

zz

1/3

1/12

ROC is bounded by poles and is a ring.

ROC does not include any pole.

Page 26: 1

Properties of ROC

A ring or disk in the z-plane centered at the origin. The Fourier Transform of x(n) is converge absolutely iff the ROC

includes the unit circle. The ROC cannot include any poles Finite Duration Sequences: The ROC is the entire z-plane except

possibly z=0 or z=. Right sided sequences: The ROC extends outward from the outermost

finite pole in X(z) to z=. Left sided sequences: The ROC extends inward from the innermost

nonzero pole in X(z) to z=0.

Page 27: 1

More on Rational z-Transform

Re

Im

a b c

Consider the rational z-transform with the pole pattern:

Find the possible ROC’s

Find the possible ROC’s

Page 28: 1

More on Rational z-Transform

Re

Im

a b c

Consider the rational z-transform with the pole pattern:

Case 1: A right sided Sequence.

Page 29: 1

More on Rational z-Transform

Re

Im

a b c

Consider the rational z-transform with the pole pattern:

Case 2: A left sided Sequence.

Page 30: 1

More on Rational z-Transform

Re

Im

a b c

Consider the rational z-transform with the pole pattern:

Case 3: A two sided Sequence.

Page 31: 1

More on Rational z-Transform

Re

Im

a b c

Consider the rational z-transform with the pole pattern:

Case 4: Another two sided Sequence.

Page 32: 1

The z-Transform

Important

z-Transform Pairs

Page 33: 1

Z-Transform Pairs

Sequence z-Transform ROC

)(n 1 All z

)( mn mz All z except 0 (if m>0)or (if m<0)

)(nu 11

1 z

1|| z

)1( nu 11

1 z

1|| z

)(nuan 11

1 az

|||| az

)1( nuan 11

1 az

|||| az

Page 34: 1

Z-Transform Pairs

Sequence z-Transform ROC

)(][cos 0 nun 210

10

]cos2[1

][cos1

zz

z1|| z

)(][sin 0 nun 210

10

]cos2[1

][sin

zz

z1|| z

)(]cos[ 0 nunr n 2210

10

]cos2[1

]cos[1

zrzr

zrrz ||

)(]sin[ 0 nunr n 2210

10

]cos2[1

]sin[

zrzr

zrrz ||

otherwise0

10 Nnan

11

1

az

za NN

0|| z

Page 35: 1

The z-Transform

Inverse z-Transform

Page 36: 1

The z-Transform

z-Transform Theorems and Properties

Page 37: 1

Linearity

xRzzXnx ),()]([Z

yRzzYny ),()]([Z

yx RRzzbYzaXnbynax ),()()]()([Z

Overlay of the above two

ROC’s

Page 38: 1

Shift

xRzzXnx ),()]([Z

xn RzzXznnx )()]([ 0

0Z

Page 39: 1

Multiplication by an Exponential Sequence

xx- RzRzXnx || ),()]([Z

xn RazzaXnxa || )()]([ 1Z

Page 40: 1

Differentiation of X(z)

xRzzXnx ),()]([Z

xRzdz

zdXznnx

)()]([Z

Page 41: 1

Conjugation

xRzzXnx ),()]([Z

xRzzXnx *)(*)](*[Z

Page 42: 1

Reversal

xRzzXnx ),()]([Z

xRzzXnx /1 )()]([ 1 Z

Page 43: 1

Real and Imaginary Parts

xRzzXnx ),()]([Z

xRzzXzXnxe *)](*)([)]([ 21R

xj RzzXzXnx *)](*)([)]([ 21Im

Page 44: 1

Initial Value Theorem

0for ,0)( nnx

)(lim)0( zXxz

Page 45: 1

Convolution of Sequences

xRzzXnx ),()]([Z

yRzzYny ),()]([Z

yx RRzzYzXnynx )()()](*)([Z

Page 46: 1

Convolution of Sequences

k

knykxnynx )()()(*)(

n

n

k

zknykxnynx )()()](*)([Z

k

n

n

zknykx )()(

k

n

n

k znyzkx )()(

)()( zYzX

Page 47: 1

The z-Transform

System Function

Page 48: 1

Shift-Invariant System

h(n)h(n)

x(n) y(n)=x(n)*h(n)

X(z) Y(z)=X(z)H(z)H(z)

Page 49: 1

Shift-Invariant System

H(z)H(z)X(z) Y(z)

)(

)()(

zX

zYzH

)(

)()(

zX

zYzH

Page 50: 1

Nth-Order Difference Equation

M

rr

N

kk rnxbknya

00

)()(

M

rr

N

kk rnxbknya

00

)()(

M

r

rr

N

k

kk zbzXzazY

00

)()(

N

k

kk

M

r

rr zazbzH

00)(

N

k

kk

M

r

rr zazbzH

00)(

Page 51: 1

Representation in Factored Form

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()(

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()(

Contributes poles at 0 and zeros at cr

Contributes zeros at 0 and poles at dr

Page 52: 1

Stable and Causal Systems

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()(

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()( Re

Im

Causal Systems : ROC extends outward from the outermost pole.

Page 53: 1

Stable and Causal Systems

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()(

N

kr

M

rr

zd

zcAzH

1

1

1

1

)1(

)1()( Re

ImStable Systems : ROC includes the unit circle.

1

Page 54: 1

Example

Consider the causal system characterized by

)()1()( nxnayny

11

1)(

azzH 11

1)(

azzH

Re

Im

1

a

)()( nuanh n

Page 55: 1

Determination of Frequency Response from pole-zero pattern

A LTI system is completely characterized by its pole-zero pattern.

))(()(

21

1

pzpz

zzzH

))(()(

21

1

pzpz

zzzH

Example:

))(()(

21

1

00

0

0

pepe

zeeH jj

jj

))(()(

21

1

00

0

0

pepe

zeeH jj

jj

0je

Re

Im

z1

p1

p2

Page 56: 1

Determination of Frequency Response from pole-zero pattern

A LTI system is completely characterized by its pole-zero pattern.

))(()(

21

1

pzpz

zzzH

))(()(

21

1

pzpz

zzzH

Example:

))(()(

21

1

00

0

0

pepe

zeeH jj

jj

))(()(

21

1

00

0

0

pepe

zeeH jj

jj

0je

Re

Im

z1

p1

p2

|H(ej)|=?|H(ej)|=? H(ej)=?H(ej)=?

Page 57: 1

Determination of Frequency Response from pole-zero pattern

A LTI system is completely characterized by its pole-zero pattern.

Example:

0je

Re

Im

z1

p1

p2

|H(ej)|=?|H(ej)|=? H(ej)=?H(ej)=?

|H(ej)| =| |

| | | | 1

2

3

H(ej) = 1(2+ 3 )

Page 58: 1

Example

11

1)(

azzH 11

1)(

azzH

Re

Im

a

0 2 4 6 8-10

0

10

20

0 2 4 6 8-2

-1

0

1

2d

B

Page 59: 1

Digital Signal Processing

Applications

DSP1-59

Page 60: 1

Image ProcessingApollo

DSP1-60

Page 61: 1

Magnetic Resonance Imaging (MRI)

DSP1-61

Page 62: 1

Speech Processing“Speak & Spell”

DSP1-62

Memory Card

•Texas Instrument Speech/ Voice synthesizer •linear predictive coding (LPC)

Page 63: 1

Towed array sensor

DSP1-63

SONAR (Sound navigation and ranging)

Page 64: 1

DSP1-64

Page 65: 1

DSP1-65

(Hearing aids)

Page 66: 1

DSP1-66

Page 67: 1

DSP1-67

Digital filter

4

0

][][

]4[]4[]3[]3[]2[]2[]1[]1[][]0[][

i

ikxih

kxhkxhkxhkxhkxhky

Page 68: 1

Echo Canceller

DSP1-68

Page 69: 1

Acoustic Echo Canceller

DSP1-69

Near-field

ระบบกำ��จั�ด เอคโค�

เคร�อข่��ยโทรศั�พท�

ไมโครโฟน

ลำ��โพงระบบแฮนด�ฟร�

ผน�งห้"องโดยส�ร

Far-field

Page 70: 1

Wireless Communication

DSP1-70

Page 71: 1

Equaliser

DSP1-71

Page 72: 1

Training bits for GSM

DSP1-72