13th International Symposium Nanostructures: Physics and ... · P. Voisin andY. Masumoto Direct...

455
Co-Chairs Zh. Alferov L. Esaki St Petersburg, Russia, June 20–25, 2005 13th International Symposium NANOSTRUCTURES: PHYSICS AND TECHNOLOGY Ioffe Institute St Petersburg, 2005

Transcript of 13th International Symposium Nanostructures: Physics and ... · P. Voisin andY. Masumoto Direct...

  • Co-ChairsZh. Alferov

    L. Esaki

    St Petersburg, Russia, June 20–25, 2005

    13th International Symposium

    NA NO ST R UC T U R E S :PHYSICS AND TECHNOLOGY

    Ioffe InstituteSt Petersburg, 2005

  • Published byIoffe Physico-Technical Institute26 Politekhnicheskaya, St Petersburg 194021, Russiahttp://www.ioffe.ru/

    Publishing license �P No 040971 of June 16, 1999.

    Copyright c© 2005 by Ioffe Institute and individual contributors. All rights reserved. No part of this publication may be multiple copied,stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the written permission of the publisher. Single photocopies of single articles may be made for private study or research.

    ISBN 5-93634-017-1

    The International Symposium “Nanostructures: Physics and Technology” is held annually since 1993. The first Symposium wasinitiated by Prof. Zh. Alferov and Prof. L. Esaki who are its permanent co-chairs. More detailed information on the Symposiumis presented on the World Wide Web http://www.ioffe.ru/NANO2005/

    The Proceedings include extended abstracts of invited talks and contributed papers to be presented at the Symposium. Bytradition this book is published before the beginning of the meeting.

    The volume was composed at the Information Services and Publishing Department of St Petersburg Physico-Technical Centreof RAS for Research and Education from electronic files submitted by the authors. When necessary these files were convertedinto the Symposium style without any text revisions. Only minor technical corrections were made by the composers.

    Design and layout: N. VsesvetskiiDesk editor: L. Solovyova

    Information Services and Publishing DepartmentSt Petersburg Physico-Technical Centre of RAS for Research and Education8, bld. 3 Khlopina, St Petersburg 195220, RussiaPhones: (812) 534-58-58Fax: (812) 534-58-50E-mail: [email protected]

    Printed in Russian Federation

  • This book is dedicated to the cherished memoryof Dr. Boris Egorovwho made an invaluable contributionto organization and success of the Symposium

    The Symposium is held under the auspices ofthe Russian Academy of Sciences

    Organizers

    Scientific Engineering Center for Microelectronics at the Ioffe Institute

    Ioffe Physico-Technical Institute

    St Petersburg Physico-Technical Centre of RAS for Research and Education

    in association with

    the institutions of the Russian Academy of Sciences

    Division of Physical Sciences

    St Petersburg Scientific Center

    Acknowledgments

    The Organizers gratefully acknowledge the followingfor their contribution to the success of the Symposium:

    Russian Academy of Sciences

    Russian Foundation for Basic Research

    AIXTRON AG, Germany

    Defense Advanced Research Projects Agency (DARPA)

    European Office of Aerospace Research and Development of the United States Air Force

    Air Force Office of Scientific Research

    United States Air Force Research Laboratory

    Location and Date

    Symposium is held in St Petersburg, June 20–25, 2005.

  • Advisory CommitteeG. Abstreiter (Germany)

    Zh. Alferov (Russia)Y. Arakawa (Japan)A. Aseev (Russia)

    G. Bastard (France)D. Bimberg (Germany)

    L. Eaves (United Kingdom)L. Esaki (Japan)

    S. Gaponov (Russia)E. Gornik (Austria)

    Yu. Gulyaev (Russia)N. Holonyak Jr. (USA)

    L. Keldysh (Russia)G. Landwehr (Germany)

    J. Merz (USA)M. Shur (USA)

    M. Skolnick (United Kingdom)R. Suris (Russia)

    B. Zakharchenya (Russia)

    Programme CommitteeR. Suris, Chair (St Petersburg, Russia)

    V. Evtikhiev, Secretary (St Petersburg, Russia)A. Andronov (Nizhny Novgorod, Russia)

    N. Bert (St Petersburg, Russia)C. Chang-Hasnain (Berkeley, USA)A. Chaplik (Novosibirsk, Russia)V. Dneprovskii (Moscow, Russia)

    V. Dubrovskii (St Petersburg, Russia)Yu. Dubrovskii (Chernogolovka, Russia)

    B. Egorov (St Petersburg, Russia)A. Gippius (Moscow, Russia)

    S. Gurevich (St Petersburg, Russia)S. Ivanov (St Petersburg, Russia)

    Yu. Kopaev (Moscow, Russia)P. Kop’ev (St Petersburg, Russia)

    Z. Krasil’nik (Nizhny Novgorod, Russia)

    V. Kulakovskii (Chernogolovka, Russia)M. Kupriyanov (Moscow, Russia)

    X. Marie (Toulouse, France)I. Merkulov (St Petersburg, Russia)

    V. Panov (Moscow, Russia)O. Pchelyakov (Novosibirsk, Russia)

    E. Poltoratskii (Moscow, Russia)H. Sakaki (Tokyo, Japan)

    N. Sibel’din (Moscow, Russia)M. Stutzmann (Garching, Germany)

    V. Timofeev (Chernogolovka, Russia)V. Volkov (Moscow, Russia)

    L. Vorobjev (St Petersburg, Russia)

    Organizing CommitteeM. Mizerov, Chair (Center for Microelectronics)

    B. Egorov , Secretary (Ioffe Institute)O. Lashkul (St Petersburg Scientific Center)D. Donskoy (St Petersburg Scientific Center)

    G. Mikhailov (St Petersburg)N. Sibel’din (Lebedev Physical Institute)

    E. Solov’eva (Ioffe Institute)V. Zayats (Division of Physical Sciences)

    Award CommitteeZh. Alferov, Chair (Russia)

    Y. Arakawa (Japan)D. Botez (USA)

    G. Eisenstein (Israel)L. Esaki (Japan)

    J. Harris (USA)M. Heuken (Germany)

    L. Keldysh (Russia)R. Suris (Russia)

    V. Timofeev (Russia)

  • Contents

    Quantum Wires and Quantum Dots

    QWR/QD.01i A. Reznitsky, A. Klochikhin, S. Permogorov and C. KlingshirnOptical spectroscopy of 2D nanoislands in quantum wells: lateral island profile and nature of emitting states . . . . . . 1

    QWR/QD.02o S. Raymond, C. Nı̀. Allen, C. Dion, P. J. Poole, P. Barrios, A. Bezinger, G. Ortner, G. Pakulski, W. Render,M. Chicoine, F. Schiettekatte, P. Desjardins and S. FafardInhomogeneous broadening in quantum dot layers: expanding towards broadband sources . . . . . . . . . . . . . . . 4

    QWR/QD.03o A. V. Savelyev, A. S. Shkolnik, S. Pellegrini, L. Ya. Karachinsky, A. I. Tartakovskii and R. P. SeisyanCarrier transfer and radiative recombination in self-organized InAs/GaAs QD array: DC current injectionpump-probe experiment and solvable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    QWR/QD.04o O. A. Tkachenko, V. A. Tkachenko, Z. D. Kvon, D. G. Baksheev, J.-C. Portal and A. L. AseevSteering of electron wave in three-terminal small quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    QWR/QD.05p V. A. Burdov and D. SolenovDynamical control of decoherence in double quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    QWR/QD.06p E. P. Domashevskaya, V. A. Terekhov, V. M. Kashkarov, S. Yu. Turishchev, S. L. Molodtsov, D. V. Vyalikh,I. N. Arsentyev, I. S. Tarasov D. A. Vinokurov and A. L. StankevichElectron structure investigations of InGaP/GaAs(100) heterostructures with InP quantum dots . . . . . . . . . . . . . 12

    QWR/QD.07p A. G. Gladyshev, A. V. Savelyev, N. V. Kryzhanovskaya, S. A. Blokhin, A. P. Vasil’ev, E. S. Semenova,A. E. Zhukov, R. P. Seisyan, M. V. Maximov, N. N. Ledentsov and V. M. UstinovModeling of excitation dependences of the photoluminescence from InAs quantum dots . . . . . . . . . . . . . . . . 14

    QWR/QD.08p N. Vukmirović, D. Indjin, V. D. Jovanović and P. HarrisonApplication of symmetry in k · p calculations of the electronic structure of pyramidal self-assembled InAs/GaAsquantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    QWR/QD.09p N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, A. P. Vasil’ev, E. S. Semenova, A. E. Zhukov,M. V. Maximov, V. M. Ustinov, N. N. Ledentsov and D. BimbergTemperature stability of optical properties of InAs quantum dots overgrown by AlAs/InAlAs layers . . . . . . . . . . 18

    QWR/QD.10p A. M. Monakhov, K. S. Romanov, I. E. Panaiotti and N. S. AverkievSpatial structure of an individual deep acceptor in a cubic crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    QWR/QD.11p N. G. Romanov, A. G. Badalyan, D. O. Tolmachev, V. L. Preobrazhenski and P. G. BaranovRecombination processes in systems based on ionic crystals with embedded self-organized nanocrystals . . . . . . . . 22

    QWR/QD.12p V. A. Sablikov, V. I. Borisov and A. I. Chmil’Rectification in ballistic quantum wires and quantum contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    QWR/QD.13p T. S. Shamirzaev, A. M. Gilinsky, A. K. Kalagin, A. I. Toropov, A. K. Gutakovskii and K. S. ZhuravlevEfficient lateral inter-dots transport in array of InAs/AlAs quantum dots . . . . . . . . . . . . . . . . . . . . . . . . 26

    QWR/QD.14p A. S. Shkolnik, L. Ya. Karachinsky, N. Yu. Gordeev, G. G. Zegrya, K. A. Kupriyanov, V. P. Evtikhiev, S. Pellegriniand G. S. BullerLifetime of non-equilibrium charged carriers in semiconductor InAs/GaAs quantum dots . . . . . . . . . . . . . . . . 28

    QWR/QD.15p N. M. Shmidt, V. N. Petrov, V. V. Ratnikov, A. N. Titkov, A. G. Gladyshev, N. V. Kryzhanovskaya,E. S. Semenova, A. P. Vasil’ev, A. E. Zhukov and V. M. UstinovEffect of strain relaxation on photoluminescence spectra of nanostructures with InAs quantum dots . . . . . . . . . . 30

    Spin Related Phenomena in Nanostructures

    SRPN.01i L. Besombes, J. Cibert, D. Ferrand, Y. Leger, L. Maingault and H. MarietteOptical probing the spin states of a single magnetic ion in an individual quantum dot . . . . . . . . . . . . . . . . . . 32

    SRPN.02i S. TaruchaProbing and manipulating spin effects in quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    SRPN.03o A. V. Larionov and V. B. TimofeevCoherence and spin relaxation of interwell excitons in GaAs/AlGaAs coupled quantum wells . . . . . . . . . . . . . 35

    SRPN.04o L. E. GolubLow-field magnetoresistance and spin splitting in high-mobility heterostructures . . . . . . . . . . . . . . . . . . . . 37

    v

  • vi

    SRPN.06o S. Yu. Verbin, A. Greilich, D. R. Yakovlev and M. BayerLong-lived electron spin polarization in negatively charged InGaAs QDs . . . . . . . . . . . . . . . . . . . . . . . . 39

    SRPN.07o I. A. Yugova, I. V. Ignatiev, A. Greilich, Yu. P. Efimov, Yu. K. Dolgikh, I. Ya. Gerlovin, V. V. Ovsyankin,D. R. Yakovlev and M. BayerSpin quantum beats and hole g-factor in GaAs quantum wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    SRPN.08o A. V. Platonov, A. S. Gurevich, V. P. Kochereshko, A. S. Shkolnik, M. G. Rastegaeva, V. P. Evtikhiev, L. E. Goluband N. S. AverkievIn-plane anisotropy of spin relaxation in asymmetrical quantum wells . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    SRPN.09o P.-F. Braun, X. Marie, L. Lombez, B. Urbaszek, T. Amand, P. Renucci, V. K. Kalevich, K. V. Kavokin, O. Krebs,P. Voisin and Y. MasumotoDirect observation of the electron spin dephasing induced by nuclei in InAs/GaAs quantum dots . . . . . . . . . . . . 45

    SRPN.10o I. V. Ignatiev, I. Ya. Gerlovin, S. Yu. Verbin, W. Maruyama and Y. MasumotoEffect of nuclear spins on the electron spin dynamics in negatively charged InP quantum dots . . . . . . . . . . . . . 47

    SRPN.11o N. S. Averkiev, A. V. Koudinov, Yu. G. Kusrayev, D. Wolverson, G. Karczewski and T. WojtowiczLinearly polarized emission of the quantum wells subject to an in-plane magnetic field . . . . . . . . . . . . . . . . . 49

    SRPN.12i A. A. Toropov, I. V. Sedova, S. V. Sorokin, Ya. V. Terent’ev, E. L. Ivchenko, D. N. Lykov and S. V. IvanovSpin-dependent resonant electron coupling in a III–V/II–VI:Mn heterovalent double quantum well . . . . . . . . . . . 50

    SRPN.13o S. N. Danilov, S. D. Ganichev, P. Schneider, V. V. Bel’kov, L. E. Golub, V. A. Shalygin, S. Giglberger, J. Stahl,W. Wegscheider, D. Weiss and W. PrettlElectric current induced spin orientation in quantum well structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    SRPN.14o S. A. Tarasenko and E. L. IvchenkoPhoto-induced pure spin currents in quantum wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    SRPN.15o A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog and N. S. AverkievIn-plane and out-of-plane spin polarization by a lateral current in nonmagnetic heterojunctions . . . . . . . . . . . . . 57

    SRPN.16p B. A. Aronzon, A. B. Davydov, V. V. Rylkov, Yu. A. Danilov, B. N. Zvonkov and V. V. PodolskiiExtraordinary Hall effect in III-Mn-V thin films and quantum well structures . . . . . . . . . . . . . . . . . . . . . . 59

    SRPN.17p W. Weber, V. V. Bel’kov, S. D. Ganichev, E. L. Ivchenko, S. A. Tarasenko, S. Giglberger, M. Olteanu,H.-P. Tranitz, S. N. Danilov, Petra Schneider, W. Wegscheider, D. Weiss and W. PrettlMagneto-gyrotropic photogalvanic effects in semiconductor quantum wells . . . . . . . . . . . . . . . . . . . . . . . 61

    SRPN.18p I. Ya. Gerlovin, I. V. Ignatiev, B. Pal, S. Yu. Verbin and Y. MasumotoSpin relaxation in magnetic field for InP quantum dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    SRPN.19p S. Giglberger, S. D. Ganichev, V. V. Bel’kov, M. Koch, T. Kleine-Ostmann, K. Pierz, E. L. Ivchenko,L. E. Golub, S. A. Tarasenko and W. PrettlGate voltage controlled spin photocurrents in heterojunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    SRPN.20p M. M. Glazov, N. S. Averkiev and S. A. TarasenkoSuppression of spin beats by magnetic breakdown in 2D systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    SRPN.21p M. V. Entin and L. I. MagarillSuppression of spin-orbit effects in 1D system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    SRPN.22p V. F. Radantsev, V. V. Kruzhaev and G. I. KulaevBichkov–Rashba spin-orbit splitting in kinetic binding regime in HgCdTe accumulation layers . . . . . . . . . . . . . 71

    SRPN.23p I. Rumyantsev and J. E. SipeCoherent control of ac spin currents via excitonic quantum interference in semiconductor quantum wells . . . . . . . . 73

    SRPN.24p Ya. V. Terent’ev, O. G. Lublinskaya, A. A. Toropov, V. A. Solov’ev, S. V. Sorokin and S. V. IvanovSpin splitting of donor-bound electrons in InAs-based heterostructures under electrical injection condition . . . . . . . 75

    SRPN.25p Jong-Chun Woo, In-Taek Jeong, Sungmin Ahn, Tae-Suk Kim and Xing WeiSpin interaction effect in quasi-one-dimensional GaAs-AlGaAs quantum wires array observed in high field Zeeman . . 77

    Lasers and Optoelectronic Devices

    LOED.01o M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, A. R. Kovsh, S. S. Mikhrin, A. V. Kozhukhov, N. N. Ledentsov,C. Schubert, V. M. Ustinov, A. E. Zhukov, Yu. M. Shernyakov, A. Jacob and A. Umbach10 Gb/s data modulation and 50 GHz mode locking using 1.3 µm InGaAs quantum dot lasers . . . . . . . . . . . . . 79

    LOED.02o M. van der Poel, J. Mørk and J. M. HvamSelf-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier . . . . . . . . . . . . 81

    LOED.03o I. M. Gadjiev, A. E. Gubenko, M. S. Buyalo, E. L. Portnoi, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikovand N. N. LedentsovQ-switching and mode-locking in QD lasers at 1.06 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    LOED.04i D. MowbrayThe development and study of 1.3 µm quantum dot lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    LOED.05o T. Kettler, L. Ya. Karachinsky, A. Lochmann, O. Schulz, L. Reissmann, N. Yu. Gordeev, I. I. Novikov, M. V. Maximov,Yu. M. Shernyakov, N. V. Kryzhanovskaya, A. E. Zhukov, A. P. Vasil’ev, E. S. Semenova, V. M. Ustinov, N. N. Ledentsov,A. R. Kovsh, V. A. Shchukin, S. S. Mikhrin and D. Bimberg220 mW single mode CW operation of InAs/InGaAs quantum dot lasers on GaAs substrates emitting at 1.5 µm . . . . 87

  • vii

    LOED.07o M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev,V. P. Kalosha, I. Samid, V. A. Shchukin and N. N. LedentsovHigh power 645 nm lasers with narrow vertical beam divergence (8◦ FWHM) . . . . . . . . . . . . . . . . . . . . . 89

    LOED.08i F. CapassoQuantum cascade lasers: widely tailorable light sources for the mid- and far infrared . . . . . . . . . . . . . . . . . . 91

    LOED.09o I. Savić, V. Milanović, Z. Ikonić, D. Indjin, V. D. Jovanović and P. HarrisonQuantum cascade lasers in magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    LOED.10o Yu. A. Aleshchenko, V. V. Kapaev, Yu. V. Kopaev, P. S. Kop’ev, V. M. Ustinov and A. E. ZhukovControl of the population of the upper laser level in quantum well structures with strongly asymmetric barriersby the electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

    LOED.11o D. Barate, R. Teissier and A. N. BaranovInAs/AlSb quantum cascade structures for short wavelength emission . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    LOED.12p A. AndronovVertically emitted leaking whispering gallery mode semiconductor lasers and laser systems . . . . . . . . . . . . . . . 98

    LOED.13p S. V. Chumak, N. A. Maleev, A. G. Kuzmenkov, A. S. Shulenkov, A. E. Zhukov, A. P. Vasil’ev, S. A. Blokhin,M. M. Kulagina, M. V. Maximov and V. M. UstinovMatrix of vertical-cavity surface-emitting lasers with combined AlGaO/GaAs–AlGaAs/GaAs DBRs . . . . . . . . . . 100

    LOED.14p D. A. Firsov, L. E.Vorobjev, M.A. Barzilovich,V.Yu. Panevin, I.V. Mikhaylov, N. K. Fedosov,V.A. Shalygin,A.A. Tonkikh,N. K. Polyakov, Yu. B. Samsonenko, G. E. Cirlin, A. E. Zhukov, N. A. Pikhtin, I. S. Tarasov, V. M. Ustinov, F. H. Julien,M. Sekowski, S. Hanna and A. SeilmeierLight emission, absorption and amplification in InAs/GaAs quantum dots and GaAs/AlGaAs quantum wells resultingfrom optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    LOED.15p P. K. Kashkarov, O. A. Shalygina, D. M. Zhigunov, S. A. Teterukov, V. Yu. Timoshenko, M. Zacharias, M. Fujiiand Sh. HayashiSilicon quantum dot assemblies with erbium: toward Si-based optical amplifiers and lasers . . . . . . . . . . . . . . . 104

    LOED.16p K. V. Maremyanin, S. M. Nekorkin, A. A. Biryukov, S. V. Morozov, V. Ya. Aleshkin, V. I. Gavrilenkoand Vl. V. KocharovskyGeneration of sum harmonic in two-chips GaAs/InGaAs/InGaP laser with composite resonator . . . . . . . . . . . . . 106

    LOED.17p N. S. Averkiev, V. V. Nikolaev, M. Yu. Poliakov, A. E. Gubenko, I. M. Gadjiev and E. L. PortnoiAnalysis of bistable quantum dot injection laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    LOED.18p E. E. Orlova, D. V. Kozlov, A. V. Antonov, J. N. Hovenier, T. O. Klaassen, A. J. L. Adam, M. S. Kagan,I. V. Altukhov, Q. V. Nguyen, D. A. Carder, P. J. Phillips and B. RedlichPerspectives of acceptor lasing in strained SiGe structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    LOED.20p G. S. Sokolovskii, V. V. Dudelev, I. M. Gadjiev, S. N. Losev, A. G. Deryagin, V. I. Kuchinskii, E. U. Rafailovand W. SibbettFocused output from 100 µm aperture QW laser diode with curved-grating . . . . . . . . . . . . . . . . . . . . . . . 112

    LOED.21p I. P. Kazakov, V. I. Kozlovsky, V. P. Martovitsky, Ya. K. Skasyrsky, M. D. Tiberi, A. O. Zabezhaylov and E. M. DianovMBE grown ZnSSe/ZnMgSSe MQW structure for blue VCSEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    Microcavity and Photonic Crystals

    MPC.01i A. ForchelLight matter interaction effects in quantum dot microcavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    MPC.02o A. V. Nashchekin, E. M. Arakcheeva, S. A. Blokhin, M. V. Maximov, E. M. Tanklevskaya, O. A. Usov,S. A. Gurevich, S. G. Konnikov, N. N. Ledentsov, A. E. Zhukov and V. M. UstinovFabrication and optical properties of 2D PhCs with active area based on InAs/InGaAs QDs . . . . . . . . . . . . . . . 117

    MPC.03o M. N. Makhonin, A. A. Demenev, D. N. Krizhanovskii and V. D. KulakovskiiQuantum beats between quantum well polarization states in semiconductor microcavity in magnetic field . . . . . . . 119

    MPC.04o M. V. Lebedev, A. A. Demenev and V. D. KulakovskiiResonant Rayleigh Scattering of light by semiconductor microcavity . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    MPC.05o A. V. Baryshev, M. Inoue, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, M. V. Rybin, A. K. Samusev,A. V. Sel’kin and H. UchidaOptical polarization-resolved studies of photonic bandgap structure in synthetic opals . . . . . . . . . . . . . . . . . 123

    MPC.06p O. A. Aktsipetrov, T. V. Dolgova, A. A. Fedyanin, R. V. Kapra, T. V. Murzina, M. Inoue, K. Nishimura and H. UchidaNonlinear magneto-optics in garnet magnetophotonic crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    MPC.07p J. A. Pilyugina, E. V. Astrova and T. S. PerovaElectro-optical effect in composite photonic structures based on grooved silicon and liquid crystal . . . . . . . . . . . 127

    MPC.09p V. P. Evtikhiev, A. B. Pevtsov, A. V. Sel’kin, A. S. Shkolnik, E. L. Ivchenko, V. V. Chaldyshev, L. I. Deych,A. A. Lisyansky, D. R. Yakovlev and M. BayerReflection spectroscopy of the exciton-mediated resonant Bragg GaAs/AlGaAs nanoheterostructures . . . . . . . . . 129

    MPC.10p M. G. Martemyanov, D. G. Gusev, I. V. Soboleva, T. V. Dolgova, A. A. Fedyanin, G. Marowsky and O. A. AktsipetrovEnhancement of second- and third-harmonic generation in single and coupled porous silicon microcavities . . . . . . . 131

    MPC.11p R. V. Kapra, E. M. Kim, T. V. Murzina, D. A. Kurdyukov, V. G. Golubev, S. F. Kaplan, M. A. Bader and G. Marowsky3D magneto-photonic crystals: magnetization induced second harmonic generation . . . . . . . . . . . . . . . . . . . 133

  • viii

    MPC.12p V. V. Nikolaev and E. A. AvrutinRecovery dynamics of quantum-well saturable absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    MPC.13p A. B. Pevtsov, A. V. Sel’kin, N. A. Feoktistov, V. G. Golubev, D. R. Yakovlev and M. BayerModification of spontaneous emission at the edge of photonic stop band in Bragg structures based on Er-dopedamorphous silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

    MPC.14p A. V. Sel’kin, A. G. Bazhenova, Yu. A. Pashkov, A. Yu. Bilibin, A. Yu. Menshikova and N. N. ShevchenkoBragg reflection spectroscopy of photonic crystals with high dielectric contrast . . . . . . . . . . . . . . . . . . . . . 139

    MPC.15p I. V. Soboleva, E. M. Murchikova, A. A. Fedyanin and O. A. AktsipetrovSecond-and third-harmonic generation in birefringent silicon photonic crystals and microcavities . . . . . . . . . . . . 141

    MPC.16p V. A. Tolmachev, T. S. Perova, E. V. Astrova, J. A. Pilyugina and R. A. MooreThermo-optical effect in Si-liquid crystal photonic bandgap structures . . . . . . . . . . . . . . . . . . . . . . . . . 143

    MPC.17p M. M. Voronov and E. L. IvchenkoPhotoluminescence of near-Bragg multiple quantum-well structures . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    Metal NanostructuresMN.02p V. S. Vikhnin, H. R. Asatryan, R. I. Zakharchenya, A. B. Kutsenko and S. E. Kapphan

    Magnetic resonance and photoluminescence in PbxNbyOz-ceramics as a system containing chemical nanoclusters . . . 147MN.03p G. A. Medvedkin, V. V. Popov, S. I. Goloshchapov, P. G. Baranov, H. Block, S. B. Orlinskii and J. Schmidt

    Study of magnetic clusters in the system ferromagnetic-nonmagnetic semiconductors (Zn,Mn)GeP2 /ZnGeP2 by meansof hole transport and magnetic resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    MN.04p F. A. Pudonin, J. M. Talmadge, J. Gao, M. P. Riley, R. J. Roth, S.-O. Kim, J. G. Eden and I. V. Mel’nikovKerr effect for FeNi film thickness below ∼ 6 nm and polar magnetization of FeNi-Si system . . . . . . . . . . . . . . 151

    MN.05p V. V. Savkin, A. N. Rubtsov, M. I. Katsnelson and A. I. LichtensteinA continuous time QMC study of the correlated adatom trimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    MN.06p E. F. Sheka, V. A. Zayets and I. Ya. GinzburgNanostructure magnetism of polymerized C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    MN.07p T. V. Teperik, V. V. Popov and F. J. Garcı́a de AbajoInteraction of localized and free plasmons on nanoporous metal surface . . . . . . . . . . . . . . . . . . . . . . . . . 156

    MN.08p V. A. Krupenin, V. O. Zalunin, V. S Vlasenko, D. E. Presnov and A. B. ZorinPossible realization of single-electron trap based on Cr granular film: experimental characterization and numericalsimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    MN.09p A. V. Zavalko and S. V. Zaitsev-ZotovImpurity-induced metal-insulator transition in quasi-one-dimensional metals TaSe3 and NbSe3 . . . . . . . . . . . . . 160

    MN.10p R. J. Elliott, E. M. Epshtein, Yu. V. Gulyaev and P. E. ZilbermanCurrent driven instability in ferromagnetic junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

    Tunnelling Phenomena

    TP.01i V. Ya. Aleshkin and L. ReggianiShot noise in double barrier resonant diodes: a way to distinguish coherent from sequential tunneling . . . . . . . . . 164

    TP.02o M. Scheinert, S. Tsujino, U. Gennser, C. V. Falub, G. Scalari, E. Müller, A. Weber, H. Sigg and D. GrützmacherResonant tunneling in strain compensated Si/SiGe quantum wells and superlattices . . . . . . . . . . . . . . . . . . . 167

    TP.03o E. N. Morozova, V. Renard, Yu. V. Dubrovskii, V. A. Volkov, L. Eaves, J.-C. Portal, O. N. Makarovskii, M. Heniniand G. HillTunnelling between two-dimensional hole layers in GaAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    TP.05p I. N. Kotel’nikov, S. E. Dizhur and N. A. MordovetsDecrease of tunnelling conductance near LO-phonon emission threshold in Al /δ-GaAs junctions . . . . . . . . . . . . 171

    TP.06p E. E. Vdovin, Yu. N. Khanin, I. A. Larkin, Yu. V. Dubrovskii, L. Eaves and M. HeniniMany-body induced enhancement of tunneling through InAs quantum dot in magnetic field . . . . . . . . . . . . . . 173

    TP.07p A. Yu. Serov and G. G. ZegryaIncrease of current via quantum well by in-plane magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    Transport in Nanostructures

    TN.01o K. S. Novoselov, S. V. Morozov, A. K. Geim, D. Jiang, Y. Zhang, S. V. Dubonos and A. A. FirsovElectronic properties of few-layer thin films of graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

    TN.02o E. E. Vdovin, Yu. N. Khanin, S. V. Dubonos, Yu. V. Dubrovskii, L. Eaves and M. HeniniSingle electron transport in split gate structures containing InAs self-assembled quantum dots . . . . . . . . . . . . . 179

    TN.03o A. A. Andronov, D. I. Zinchenko, E. P. Dodin, M. N. Drozdov, Yu. N. Nozdrin, V. I. Shashkin, A. A Marmalyukand A. A. PadalitsaExperimental study of vertical transport in semiconductor superlattices with narrow barriers . . . . . . . . . . . . . . 181

    TN.04o K. Yu. Arutyunov, M. Zgirski, K.-P. Riikonen and V. TouboltsevQuantum phase tunnelling in ultra-narrow superconducting channels . . . . . . . . . . . . . . . . . . . . . . . . . . 183

  • ix

    TN.05o V. T. Trofimov, M. V. Valeiko, N. A. Volchkov, K. S. Zhuravlev, E. V. Kiseleva, M. A. Kitaev, V. A. Kozlov,S. V. Obolenskii and A. I. ToropovLateral quasiballistic transport in nanostructures based on short-period (GaAs)n/(AlAs)m superlattice underhigh electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

    TN.06p L. V. Gavrilenko, V. Ya. Aleshkin and A. A. DubinovThe Monte-Carlo simulation of transport in quantum well GaAs/AlGaAs heterostructure doped with shallow donorsunder impurity breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    TN.07p A. V. Germanenko, I. V. Gornyi, G. M. Minkov and V. A. LarionovaDephasing in presence of a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

    TN.08p I. S. Lyubinskiy and V. Yu. KachorovskiiWeak-localization-induced anomaly in Hanle effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

    TN.09p V. A. Kulbachinski, P. S. Gurin, R. A. Lunin, Yu. A. Danilov, A. V. Kruglov and E. I. MalyshevaTransport and anomalous Hall effect in p-type GaAs〈Mn,Mg〉 layers fabricated by ion implantation . . . . . . . . . . 193

    TN.10p V. E. Minakova and S. V. Zaitsev-ZotovPhotoconduction relaxation in the Peierls conductor TaS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    TN.11p D. V. Nomokonov, A. A. Bykov, A. K. Bakarov, A. K. Kalagin, A. I. Toropov and J. C. PortalTemperature dependence of the Aharonov–Bohm effect in chiral Fermi-system . . . . . . . . . . . . . . . . . . . . . 197

    TN.12p J. Y. Romanova and Y. A. RomanovDynamic localization and electromagnetic transparency of semiconductor superlattice in biharmonic electric fields . . 199

    TN.13p A. I. Bezuglyj and S. I. ShevchenkoSuperfluidity in the quantum Hall bilayers: the low-density limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    TN.14p B. Szafran and F. M. PeetersTime dependent picture of electron transport through semiconductor quantum rings . . . . . . . . . . . . . . . . . . . 203

    TN.15p O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheev and J.-C. PortalMesoscopical behavior of Aharonov–Bohm effect in small ring interferometer . . . . . . . . . . . . . . . . . . . . . 205

    TN.16p V. A. Gergel, V. A. Kurbatov and M. N. YakupovQuasi-hydrodynamic simulation of electroconductivity of nano-dimensional multilayered semiconductor structuresunder high electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

    TN.17p E. B. Olshanetsky, V. T. Renard, Z. D. Kvon, J. C. Portal and J. M. HartmannElectron transport through antidot superlatices in Si/Si0.7Ge0.3 heterostructures: new lattice-inducedmagnetoresistance oscillations at low magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Nanostructure DevicesND.01o V. L. Gurtovoi, R. V. Kholin, N. N. Osipov and V. A. Tulin

    Investigation of rectification effects in asymmetric single and double superconducting Al rings . . . . . . . . . . . . . 211ND.02o Yu. A. Mamaev, A. V. Subashiev, Yu. P. Yashin, L. G. Gerchikov, T. Maruyama, D.-A. Luh, J. E. Clendenin,

    V. M. Ustinov and A. E. ZhukovInAlGaAs/AlGaAs superlattices for polarized electron photocathodes . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    ND.03o S. Muto, S. Adachi, T. Yokoi, H. Sasakura and I. SuemunePhoton-spin qubit-conversion based on Overhauser shift of Zeeman energies in quantum dots . . . . . . . . . . . . . 215

    ND.04i I. V. Kukushkin, S. A. Mikhailov, J. H. Smet and K. von KlitzingMicrowave detector-spectrometer based on edge-magnetoplasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    ND.05p G. V. Benemanskaya, V. P. Evtikhiev and G. E. Frank-KamenetskayaPhotoinduced 2D plasmon modes in Cs nanoclusters on the GaAs(100) Ga-rich surface . . . . . . . . . . . . . . . . 220

    ND.06p O. V. Kibis and M. E. PortnoiCarbon nanotubes as terahertz emitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

    ND.07p G. P. Pokhil, V. B. Fridman, V. P. Popov and N. G. ChecheninPossible influence of bistable hydrogen defects on FET-leakage in DRAM cells . . . . . . . . . . . . . . . . . . . . . 223

    ND.08p V. V. Popov, O. V. Polischuk, T. V. Pakhomova and M. S. ShurTerahertz plasmon response of sub-100-nm gate field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . 225

    ND.09p T. J. Slight, C. N. Ironside, C. R. Stanley and M. HopkinsonIntegration of a resonant tunnelling diode and a semiconductor laser . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    Infrared and Microwave Phenomena in NanostructuresIRMP.02i J. H. Smet, M. Griebel, F. Ospald, D. Maryenko, D. C. Driscoll, C. Kadow, A. C. Gossard, J. Kuhl and K. von Klitzing

    The generation of terahertz electrical pulses in superlattices of self-assembled ErAs-islands . . . . . . . . . . . . . . 228IRMP.03o F. Teppe, D. Veksler, V. Yu. Kachorovskii, A. P. Dmitriev, S. Rumyantsev, W. Knap and M. S. Shur

    Plasma waves resonant detection of sub-Terahertz radiation by field effect transistor at 300 K . . . . . . . . . . . . . . 229IRMP.04p M. Carras and A. De Rossi

    Localized surface modes for intersubband coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231IRMP.05p N. V. Demarina

    Amplification of terahertz field harmonics due to the dynamic interaction of miniband electronswith high-frequency radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

  • x

    IRMP.06p A. A. Dubinov, A. A. Afonenko and V. Ya. AleshkinParametric generation of a mid infrared radiation in semiconductor waveguide with surface metallic diffraction grating 234

    IRMP.07p I. P. Kazakov, S. B. Mirov, V. V. Fedorov, A. Gallian, J. Kernal, J. Allman, A. O. Zabezhaylov and E. M. DianovMBE growth and study of Cr2+:ZnSe layers for mid-IR lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

    IRMP.08p V. Ya. Aleshkin, A. A. Afonenko, A. A. Belyanin, A. A. Biryukov, A. A. Dubinov, V. V. Kocharovsky, Vl. V. Kocharovsky,S. V. Morozov, S. M. Nekorkin, M. O. Scully, B. N. Zvonkov and N. B. ZvonkovNew designs and recent experiments on intracavity mode mixing in semiconductor lasers for mid/far-IR generation . . 238

    IRMP.10p K. D. Moiseev, V. A. Berezovets, M. P. Mikhailova, Yu. P. Yakovlev, R. V. Parfeniev, K. Korolev, C. Meinningand B. McCombeInterface-related magneto-photoluminescence on a type II broken-gap single GaInAsSb/InAs heterojunction . . . . . . 240

    Si-Ge Based NanostructuresSGBNS.01o M. S. Kagan, I. V. Altukhov, E. G. Chirkova, S. K. Paprotskiy, V. P. Sinis, I. N. Yassievich and J. Kolodzey

    Transient characteristics of SiGe/Si QW structures at THz lasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242SGBNS.02o A. V. Dvurechenskii, A. I. Yakimov, V. A. Volodin, E. I. Gatskevich, M. D. Efremov, G. D. Ivlev and A. I. Nikiforov

    Effects of pulsed laser action on Ge/Si quantum dot array to tune homogeneity . . . . . . . . . . . . . . . . . . . . . 244SGBNS.03o A. V. Ikonnikov, K. E. Spirin, O. A. Kuznetsov, V. Ya. Aleshkin and V. I. Gavrilenko

    Differential shallow impurity absorption in Ge/GeSi QW heterostructures in THz range at pulsed bandgapphotoexcitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    SGBNS.04o I. L. Drichko, A. M. Diakonov, I. Yu. Smirnov, Y. M. Galperin, A. V. Suslov, A. I. Yakimov and A. I. NikiforovMechanisms of low-temperature conductance in systems with dense array of Ge0.7Si0.3 quantum dots in Si . . . . . . 248

    SGBNS.05p M. D. Efremov, V. A. Volodin, D. V. Marin, S. A. Arzannikova, S. V. Gorajnov, A. I. Korchagin,V. V. Cherepkov, A. V. Lavrukhin, S. N. Fadeev, R. A. Salimov and S. P. BardakhanovQuantum features of silicon nanopowder, detected at room temperature . . . . . . . . . . . . . . . . . . . . . . . . . 250

    SGBNS.06p A. Fonseca, E. Alves, J. P. Leitão, N. A. Sobolev, M. C. Carmo and A. I. NikiforovOptical and structural analysis of Ge/Si quantum dots grown on a Si(001) surface covered with a SiO2 sub-monolayer . 252

    SGBNS.07p E. Kasper, M. Oehme, K. Lyutovich, J. Werner, M. Konuma, N. Sobolev and J. LeitãoGrowth and characterisation of Ge/Si multilayer systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

    SGBNS.08p V. A. Gergel, T. M. Burbaev, V. A. Kurbatov, A. O. Pogosov, M. M. Rzaev, N. N. Sibeldin and M. N. YakupovPeculiarities of lateral electroconductivity of p-type doped Si/Ge island structures . . . . . . . . . . . . . . . . . . . 256

    SGBNS.11p A. I. Nikiforov, V. V. Ulyanov, R. A. Shaiduk and O. P. PchelyakovVariation of in plane lattices constant of Si/Ge/Si heterostructures with Ge quantum dots . . . . . . . . . . . . . . . . 258

    SGBNS.12p D. A. Orekhov, V. A. Volodin, M. D. Efremov, A. I. Nikiforov, V. V. Ulyanov and O. P. PchelyakovInfluence of lateral size of Ge nanoislands on confined optical phonons: Raman study and numerical modelling . . . . 260

    SGBNS.13p I. G. Neizvestny, K. N. Romanyuk, N. L. Shwartz, S. A. Teys, A. V. Vershinin, Z. Sh. Yanovitskaya and A. V. ZverevStable Ge and Si nanoclusters within half-unit cells of Si(111)-7×7 surface . . . . . . . . . . . . . . . . . . . . . . . 262

    SGBNS.14p N. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov and U. GöseleFormation of Si/Ge multilayer nanostructures in Si whiskers by MBE . . . . . . . . . . . . . . . . . . . . . . . . . . 264

    Wide Band Gap Nanostructures

    WBGN.01o B. Schineller, O. Schoen, A. Alam, M. Luenenbuerger, J. Kaeppeler and M. HeukenImportant aspects for the growth of GaN-based (opto)electronic devices on 4 inch sapphire . . . . . . . . . . . . . . . 266

    WBGN.02o T. V. Shubina, D. S. Plotnikov, Ya. V. Terent’ev, D. A. Vinokurov, N. A. Pihtin, I. S. Tarasov, S. V. Ivanov,J. Leymarie, A. Kavokin, A, Vasson, B. Monemar, H. Lu, W. J. Schaff and P. S. Kop’evSurface-plasmon-related enhancement of luminescence in InN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

    WBGN.03p V. Yu. Davydov, A. A. Klochikhin, I. N. Goncharuk, A. V. Sakharov, A. P. Skvortsov, M. A. Yagovkina, V. M. Lebedev,H. Lu and W. J. SchaffResonant Raman scattering in InGaN alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

    WBGN.04p G. V. Benemanskaya, G. E. Frank-Kamenetskaya, V. S. Vikhnin and N. M. ShmidtCharge accumulation layer on GaN(0001) n-type surface induced by Cs and Ba overlayers . . . . . . . . . . . . . . . 272

    WBGN.05p V. V. Bryzgalov, Yu. S. Gordeev, V. Yu. Davydov and V. M. MikoushkinIon induced segregation of indium in InN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

    WBGN.06p A. S. Gurevich, V. P. Kochereshko, A. V. Platonov, B. A. Zyakin, A. Waag and G. LandwehrTamm-like interface states in periodical ZnSe/BeTe heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . 276

    WBGN.07p A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, Hai Luand W. J. SchaffTemperature dependence of photoluminescence and absorption spectra of n-InN . . . . . . . . . . . . . . . . . . . . 278

    WBGN.08p A. A. Lebedev, A. M. Strel’chuk, A. N. Kuznetsov and A. N. SmirnovGrowth and investigation of the heterojunctions between silicon carbide (SiC) polytypes . . . . . . . . . . . . . . . . 280

    WBGN.09p A. V. Sakharov, V. Yu. Davydov, A. A. Klochikhin, H. Lu and W. J. SchaffBand-edge and impurity-related photoluminescence of InN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

  • xi

    WBGN.10p V. I. Sankin and P. P. ShkrebiyDepression of atom ionisation in 6H-SiC natural superlattice at Wannier-Stark localisation condition . . . . . . . . . . 284

    WBGN.11p V. Yu. Bondarev, V. I. Kozlovsky, D. A. Sannikov, P. I. Kuznetsov, V. A. Jitov, G. G. Yakushcheva, L. Yu. Zakharovand M. D. TiberiElectron-beam pumped green VCSEL on MOVPE-grown ZnCdSe/ZnSSe MQW structure . . . . . . . . . . . . . . . 286

    WBGN.12p S. Shapoval, A. Kovalchuk and V. GorbunovFormation of GaN cubic or hexagonal structure layers deposited by electron cyclotron resonance plasma . . . . . . . . 288

    WBGN.13p A. V. Kamanin, A. G. Kolmakov, P. S. Kop’ev, V. N. Mdivani, A. V. Sakharov, N. M. Shmidt, A. A. Sitnikova,A. L. Zakgeim and R. V. ZolotarevaDegradation mechanism in blue light emitting diodes associated with nanostructural arrangement . . . . . . . . . . . 290

    WBGN.14p T. V. Shubina and M. M. GlazovFundamental parameters of InN versus non-stoichoimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

    WBGN.15p D. S. Sizov, V. S. Sizov, G. E. Onushkin, V. V. Lundin, E. E. Zavarin, A. F. Tsatsul’nikov and N. N. LedentsovInvestigations of the optical properties of InGaN/AlGaN structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

    WBGN.16p D. S. Sizov, V. S. Sizov, V. V. Lundin, E. E. Zavarin, A. F. Tsatsul’nikov, A. S. Vlasov, N. N. Ledentsov,A. M. Mintairov, K. Sun and J. MerzOptical study of InGaN/GaN and InGaN/InGaN QDs grown in a wide pressure range MOCVD reactor . . . . . . . . 296

    WBGN.17p A. N. Smirnov, I. N. Goncharuk, M. A. Yagovkina, M. P. Scheglov, E. E. Zavarin and W. V. LundinStrains in hexagonal GaN/Al(Ga)N superlattices: Raman spectroscopic studies . . . . . . . . . . . . . . . . . . . . . 298

    WBGN.18p N. M. Shmidt and E. B. YakimovDiffusion length and effective carrier lifetime in III-nitrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

    WBGN.19p N. L. Yakovlev, A. Balanev, A. K. Kaveev, B. B. Krichevtsov, N. S. Sokolov, J. Camarero and R. MirandaMagneto-optical studies of epitaxial cobalt films on CaF2/Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

    Nanostructure Technology

    NT.02o J. Motohisa, J. Noborisaka, M. Akabori, P. Mohan, S. Hara, T. Fukui, F. Zwanenburg, S. De Franceschiand L. P. KouwenhovenGrowth and characterization of InGaAs nanowires by selective area MOVPE . . . . . . . . . . . . . . . . . . . . . . 304

    NT.03o V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko and V. M. UstinovMBE growth of GaAs nanowhiskers stimulated by the ad-atom diffusion . . . . . . . . . . . . . . . . . . . . . . . . 306

    NT.04o M. B. Lifshits, V. A. Shchukin, D. Bimberg and D. E. JessonNovel mechanism of strained island growth:multimodal closed-shell distribution of quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

    NT.05o H. Lichtenberger, Z. Zhong, G. Chen, J. Mysliveček, G. Bauer and F. SchäfflerEpitaxial growth on vicinal and nanostructured Si(001): from basic growth instabilities to perfectly ordered dot arrays . 310

    NT.06p S. A. Blokhin, A. N. Smirnov, A. G. Gladyshev, N. V. Kryzhanovskaya, N. A. Maleev, A. A. Zhukov, A. G. Kuzmenkov,A. P. Vasil’ev, E. S. Semenova, E. V. Nikitina, M. V. Maximov, N. N. Ledentsov and V. I. UstinovMechanical stress in selective oxidized GaAs/(AlGa)xOy structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

    NT.07p M. V. Dorokhin, B. N. Zvonkov, Yu. A. Danilov, V. V. Podolskii, P. B. Demina and O. V. VikhrovaFormation of magnetic GaAs:Mn layers for InGaAs/GaAs light emitting quantum-size structures . . . . . . . . . . . 314

    NT.08p O. V. Elyukhina, G. S. Sokolovskii, V. I. Kuchinskii and V. A. ElyukhinSelf-assembling in AlxGa1−xNyBV1−y alloys (B

    V = P, As, Sb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

    NT.09p O. N. Gorshkov, D. O. Filatov, G. A. Maximov, V. A. Novikov and S. Yu. ZubkovThe self-assembled growth and properties of Pd oxide based field emitter arrays . . . . . . . . . . . . . . . . . . . . 318

    NT.11p S. N. Filimonov and Yu. Yu. HervieuKinetics of adatom incorporation and step crossing at the edges of nanoislands . . . . . . . . . . . . . . . . . . . . . 320

    NT.12p R. S. Hsiao, J. S. Wang, G. Lin, C. Y. Liang, H. Y. Liu, T. W. Chi, J. F. Chen and J. Y. ChiMBE growth of high quality vertically coupled InAs/GaAs quantum dots laser emitting around 1.3 µm . . . . . . . . 322

    NT.13p A. K. Kaveev, R. N. Kyutt, N. S. Sokolov, M. Tabuchi and Y. TakedaMBE growth and structural characterization of MnF2-CaF2 short-period superlattices on Si(111) . . . . . . . . . . . . 324

    NT.14p D. Lugovyy, G. Springholz, A. Raab, R. T. Lechner, S. G. Konnikov, O. V. Rykhova and A. A. SitnikovaVertical and lateral ordering in PbSe/PbEuTe quantum dot superlattices as a function of Eu concentrationin the spacer layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

    NT.15p I. P. Ipatova and V. G. MalyshkinKinetic instabilities during crystal growth of III–V semiconductor alloys . . . . . . . . . . . . . . . . . . . . . . . . 328

    NT.16p K. M. Pavlov, Ya. I. Nesterets, C. M. Kewish, J. R. Hester, A. K. Kaveev, N. S. Sokolov, H. Ofuchi, M. Tabuchiand Y. TakedaCobalt nanostructures grown by MBE on CaF2: RHEED, X-ray diffraction and EXAFS studies . . . . . . . . . . . . 330

    NT.17p I. V. Sedova, O. G. Lyublinskaya, S. V. Sorokin, D. D. Solnyshkov, D. N. Lykov, A. A. Toropov and S. V. IvanovInfluence of CdTe sub-monolayer stressor on CdSe quantum dot self-organization in a ZnSe matrix . . . . . . . . . . 332

  • xii

    NT.18p A. N. Semenov, V. A. Solov’ev, B. Ya. Meltser, O. G. Lyublinskaya, Ya. V. Terent’ev, A. A. Toropov, A. A. Sitnikovaand S. V. IvanovMolecular beam epitaxy of InSb extra-monolayers inserted in an InAs matrix . . . . . . . . . . . . . . . . . . . . . . 334

    NT.19p D. D. Solnyshkov, S. V. Sorokin, I. V. Sedova, A. A. Toropov, S. V. Ivanov and P. S. Kop’evGrowth of (ZnSe/MgS)/ZnCdSe DBR using ZnS as a sulphur source . . . . . . . . . . . . . . . . . . . . . . . . . . 336

    NT.20p A. A. Tonkikh, G. E. Cirlin, V. G. Dubrovskii, N. K. Polyakov, Yu. B. Samsonenko, Yu. G. Musikhin, P. Wernerand V. M. UstinovFormation of semiconductor quantum dots in the subcritical thickness range . . . . . . . . . . . . . . . . . . . . . . 338

    NT.21p E. Tranvouez, M. Gendry, P. Regreny, A. Descamps and G. BremondIII–V semiconductor surface nanopatterning using atomic force microscopy for InAs quantum dot localization . . 340

    NT.22p A. A. Ukhanov, G. Boishin, A. S. Bracker, D. Gammon and J. C. CulbertsonSelf-assembly of AlInAs/InP quantum dashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

    Excitons in NanostructuresEN.01o D. K. Loginov, E. V. Ubyivovk, I. V. Ignatiev, Yu. P. Efimov, V. V. Petrov, S. A. Eliseev, Yu. K. Dolgikh,

    V. V. Ovsiankin, V. P. Kochereshko and A. V. SelkinPolariton quantization in wide GaAs quantum wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

    EN.02o V. P. Kochereshko, A. V. Platonov, R. T. Cox, J. J. Davies, D. Wolverson, E. V. Ubyivovk, Yu. P. Efimov,Yu. K. Dolgikh and S. A. EliseevIncreasing of the exciton Zeeman splitting due to its movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

    EN.03o M. M. Glazov, E. L. Ivchenko, R. v. Baltz and E. G. TsitsishviliFine structure of excited excitonic states in quantum disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

    EN.04p I. S. Gagis, K. V. Kavokin and A. V. KoudinovExcitonic Hanle effect in nanostructures with strong exchange interaction . . . . . . . . . . . . . . . . . . . . . . . . 350

    EN.05p V. A. Gaisin, B. V. Novikov, V. G. Talalaev, A. S. Sokolov, I. V. Shtrom, V. A. Chugunov, G. E. Cirlin,Yu. B. Samsonenko and A. A. TonkikhInfluence of hydrostatic pressure on exciton photoluminescence spectrum of quantum dot molecules InAs/GaAs . . . . 352

    EN.06p E. P. Pokatilov, D. L. Nika, V. M. Fomin and J. T. DevreeseTheoretical modeling of excitons in semiconductor nanoscale heterostructures AlGaN/GaN/AlGaN . . . . . . . . . . 354

    EN.07p R. A. Sergeev, R. A. Suris, G. V. Astakhov, W. Ossau and D. R. YakovlevSimple estimation of X− trion binding energy in semiconductor quantum wells . . . . . . . . . . . . . . . . . . . . . 356

    EN.08p M. A. Semina, R. A. Sergeev and R. A. SurisExcitons localized on quantum well interface roughnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

    EN.09p J. Fürst, H. Pascher, V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. A. Tonkikh, N. K. Polyakov,Yu. B. Samsonenko, G. E. Cirlin and V. M. UstinovPolarized photoluminescence of excitons in n-, p- and undoped InAs/GaAs quantum dots . . . . . . . . . . . . . . . 360

    EN.10p B. V. Novikov, M. B. Smirnov, V. G. Talalaev, G. E. Cirlin and V. M. UstinovTemperature dynamics of excitons in InAs quantum dots array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

    EN.11p B. Szafran, T. Chwiej, F. M. Peeters, S. Bednarek and J. AdamowskiOrder of the trion lines in photoluminescence spectrum of semiconductor quantum wires . . . . . . . . . . . . . . . . 364

    EN.12p V. G. Talalaev, J. W. Tomm, B. V. Novikov, N. D. Zakharov, P. Werner, G. E. Cirlin, Yu. B. Samsonenko, A. A. Tonkikhand V. M. UstinovExciton lifetime in InAs quantum dot molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

    EN.13p S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, V. D. Kulakovskii, M. K. Welsch and G. BacherAsymmetric double quantum wells as exciton spin separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

    Nanostructure Characterization and Novel Atomic-scale Probing Techniques

    NC.01i A. Patanè, J. Endicott, L. Eaves and M. HopkinsonDilute nitride Ga(AsN) alloys: an unusual band structure probed by magneto-tunnelling . . . . . . . . . . . . . . . . 370

    NC.02o P. I. Arseev, N. S. Maslova, V. I. Panov, S. V. Savinov, C. Van HaesendonckDirect observation of 1D surface screening and domain boundary structure on Ge(111) surface by LT STM . . . . . . 373

    NC.03o A. A. Ezhov, S. A. Magnitskii, N. S. Maslova, D. A. Muzychenko, A. A. Nikulin and V. I. PanovNear-field optical vortexes at nanostructured metallic films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

    NC.04p V. Ya. Aleshkin, A. V. Antonov, V. I. Gavrilenko, L. V. Gavrilenko and B. N. ZvonkovPhonon-induced photocurrent response in Si doped GaAs/InGaAsP quantum well heterostructures . . . . . . . . . . . 378

    NC.05p T. Matsumoto, M. Kondo and O. Chikalova-LuzinaSize evaluation of free-standing nanocrystaline Si films by using small angle x-ray scattering and Raman spectroscopy 380

    NC.06p P. A. Dementyev, M. S. Dunaevskii, A. V. Ankudinov, I. V. Makarenko, V. N. Petrov, A. N. Baranov, D. A. Yarekhaand A. N. TitkovGiant oxidation related relief at the openings of Al-rich layers on mirrors of GaSb/Ga0.1Al0.9SbAs/GaInAsSblaser structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

    NC.07p O. G. Lyublinskaya, I. V. Sedova, S. V. Sorokin, O. V. Nekrutkina, A. A. Toropov and S. V. IvanovPhotoluminescence studies of the energy distribution of photoexcited carriers in CdSe/ZnSe nanostructures . . . . . . 384

  • xiii

    NC.08p G. A. Maximov, D. E. Nikolitchev, D. O. Filatov and A. V. NovikovLocal analysis of self-assembled GeSi clusters by scanning Auger microscopy . . . . . . . . . . . . . . . . . . . . . 386

    NC.09p J. T. Sadowski, A. I. Oreshkin, T. Nagao, M. Saito, S. Yaginuma, Y. Fujikawa, T. Ohno and T. SakuraiSTM/STS studies of the initial stage of growth of ultra-thin Bi films on Si(111) . . . . . . . . . . . . . . . . . . . . . 388

    NC.10p A. A. Sherstobitov, G. M. Minkov, A. V. Germanenko, O. E. Rut and B. N. ZvonkovNonohmic conductivity as a test of the transition from diffusion to hopping . . . . . . . . . . . . . . . . . . . . . . . 390

    NC.11p T. V. Torchynska, M. Dybiec and P. G. EliseevMulti excited state photoluminescence mapping on InAs/InGaAs quantum dot structures . . . . . . . . . . . . . . . . 392

    NC.12p A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov and A. A. BloshkinCapacitance spectroscopy of electronic states in Ge/Si quantum dots with a type-II band alignment . . . . . . . . . . . 394

    2D Electron Gas

    2DEG.01i V. I. Gavrilenko, A. V. Ikonnikov, K. V. Marem’yanin, S. V. Morozov, K. E. Spirin, Yu. G. Sadofyev, S. R. Johnsonand Y.-H. ZhangPositive and negative persistent photoconductivity in InAs/AlSb QW heterostructures: control of 2DEG concentrationand built-in electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

    2DEG.02o E. E. Takhtamirov and V. A. VolkovConductivity magnetooscillations in 2D electron-impurity system under microwave irradiation: role ofmagnetoplasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

    2DEG.03o V. T. Renard, O. A. Tkachenko, Z. D. Kvon, E. B. Olshanetsky, A. I. Toropov, J.-C. Portal and I. V. GornyiObservation of quantum corrections to the transport coefficients of a 2DEG up to 110 K . . . . . . . . . . . . . . . . 401

    2DEG.04p Yu. G. Arapov, S. V. Gudina, G. I. Harus, V. N. Neverov, N. G. Shelushinina, M. V. Yakunin, S. M. Podgornyh,E. A. Uskova and B. N. ZvonkovTransport properties of 2D-electron gas in the InGaAs/GaAs DQW in a vicinity of the Hall insulator–quantum Hallliquid transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

    2DEG.05p N. S. Averkiev and K. S. Romanov2D anomalous magnetoresistance in the presence of spin-orbit scattering . . . . . . . . . . . . . . . . . . . . . . . . 405

    2DEG.06p A. V. Goran, A. A. Bykov, A. K. Bakarov, A. K. Kalagin, A. V. Latyshev, A. I. Toropov and J. C. PortalAnisotropy of transport of 2D electron gas in parallel magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 407

    2DEG.07p E. M. Dizhur, A. N. Voronovsky, A. V. Fedorov, I. N. Kotel’nikov and S. E. DizhurPressure induced transition of 2DEG in δ-doped GaAs to insulating state . . . . . . . . . . . . . . . . . . . . . . . . 409

    2DEG.08p P. KleinertOptical excitation of space-charge waves in quantum wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

    2DEG.09p E. V. Konenkova, S. A. Kukushkin, O. Kronenwerth, D. Grundler, M. Morgenstern and R. WiesendangerMetal-insulator transition in graphite: magnetotransport and STS-investigations . . . . . . . . . . . . . . . . . . . . 413

    2DEG.10p G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, V. A. Larionova and B. N. ZvonkovHole-hole interaction in strained InGaAs two dimensional system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

    2DEG.11p S. T. Pavlov, I. G. Lang and L. I. KorovinWave functions and energies of magnetopolarons in semiconductor quantum wells . . . . . . . . . . . . . . . . . . . 416

    2DEG.12p E. V. Sokolov, V. Renard, D. Yu. Ivanov, Yu. V. Dubrovskii, J.-C. Portal, L. Eaves, E. E. Vdovin, M. Henini and G. HillMetal-insulator type transition in tunnelling between 2D electron systems induced by in-plane magnetic field . . . . . 418

    Nanostructures and Life Sciences

    NSL.01i A. Aksimentiev, K. Schulten and G. TimpUsing a silicon nanopore to detect a single DNA molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

    NSL.02o A. Meister, S. Krishnamoorthy, R. Pugin, C. Hinderling and H. HeinzelmannNanostructuring for life science and materials applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    NSL.03o V. Kislov, B. Medvedev, Yu. Gulyaev, I. Taranov, V. Kashin, G. Khomutov, M. Artemiev and S. GurevichOrganized superstructures at nanoscale and new functional nanomaterials . . . . . . . . . . . . . . . . . . . . . . . . 425

    NSL.04o B. Bairamov, V. Toporov, F. Bayramov, M. Petukhov, E. A. Glazunov, B. Shchegolev, Yang Li, D. Ramadurai,Peng Shi, M. Dutta and M. A. StroscioIntegrating semiconductor quantum dots with biological structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    Closing Plenary Session

    CPS.01pl Dan BotezIntersubband quantum-box semiconductor lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

    CPS.02pl G. Eisenstein, H. Dery, D. Hadass, R. Alizon, A. Somers, S. Deubert, W. Kaiser, J. P. Reithmaier, A. Forchel,M. Calligaro, S. Bansropun and M. KrakowskiLimitations of the dynamical properties of nano structure lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

    Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

  • xiv

    Unprinted Papers

    The papers listed below are included in the Symposium Programme, but not printed in the Proceedings, as the authors hadnot submitted electronic files in due time.

    OPS.01pl Zh. AlferovFrom molecular generators to quantum dot lasers

    OPS.02pl E. GornikGeneration of a plasma instability in semiconductor quantum structures

    OPS.03pl Y. ArakawaAdvances in nanophotonic devices with quantum dots and photonic crystal

    OPS.04pl E. KaponSite-controlled quantum wires and dots grown on nonplanar substrates: physics and applications

    QWR/QD.16p K. S. Zhuravlev, D. D. Ree, V. G. Mansurov, A. Yu. Nikitin, A. K. Gutakovskiy and Ph. VenneguesGrowth and photoluminescence of wurtzite gan quantum dots in AlN matrix

    SRPN.05i R. FereiraEnergy and spin relaxation in semiconductor quantum dots

    LOED.06o D. L. Huffaker, G. Balakrishnan, S. H. Huang, A. Kosakhlagh, P. Rotella, A. Amtout, S. Krishna, L. R. Dawson and C. P. Hains2 µm laser on Si(100) using AlSb quantum dot nucleation

    LOED.19p O. Smolski, E. Johnson, L. Vaissie and J. O. DanielSemiconductor lasers with monolithically integrated diffractive optical elements

    MPC.08p A. V. Baryshev, K. Nishimura, H. Uchida, and M. InoueLight propagation in the conjugate opal photonic crystal

    TP.04p P. I. Arseev and N. S. MaslovaEffects of electron-phonon interaction in tunneling processes in heterostructures

    IRMP.01i K. HirakawaDispersive terahertz gain of non-classical oscillator: Bloch oscillation in semiconductor superlattices

    IRMP.09p O. P. Pchelyakov, V. V. Preobrazhenskii, M. A. Putyato, A. A. Kovalyov, N. N. Rubtsova, E. Sorokin, and I. T. SorokinaGaSb/InGaAsSb/GaSb single and multiple quantum wells: optical properties engineering and application

    WBGN.20p Hsiang-Chen Wang, Yen-Cheng Lu, Cheng-Yen Chen, Fang-Yi Jen and C. C. YangUltrafast carrier dynamics in InGaN with nano-clustered structures

    NT.01i J. Harris(GaIn)(NasSb) MBE growth and heterostructures devices

    NT.10p A. W. Hassel, B. B. Rodriguez, S. Milenkovic and A. SchneiderDirectionally solidified eutectics as a route for the formation of self organised nanostructures

  • xv

    AIXTRON Young Scientist Award

    In 1999, the Symposium Programme Committee and the Board of AIXTRON AG (Germany) established a special award tohonour a young scientist who will present at the Symposium the best paper in the field of solid state nanostructures. The awardcomprises a diploma and since 2004 a $1000 reward sponsored by AIXTRON.

    The AIXTRON Young Scientist Award recipients are:1999 Alexey R. Kovsh, Ioffe Institute, St Petersburg, Russia2000 Thomas Gruber, Physikalisches Institut, Universität Würzburg, Würzburg, Germany2001 Ivan Shorubalko, Department of Solid State Physics, Lund University, Lund, Sweden2002 Scott Kennedy, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada2003 Sergey A. Tarasenko, Ioffe Institute, St Petersburg, Russia2004 Ivan A. Dmitriev, Ioffe Institute, St Petersburg, Russia1

    Dr. Ivan Dmitrievbecame the recipient of AIXTRON Award for the presentationof the paper:Quantum cascade laser based on quantum dot superlatticeCo-author: R. A. Suris.

    Ivan Dmitriev was born February 6, 1975, in St Petersburg.1989–1991 Lyceum “Physical-Technical School”. 1997 MSdegree in Solid State Physics from Physics and TechnologyDepartment of St Petersburg State Polytechnical University.2003 PhD in Semiconductor Physics from Ioffe Institute;PhD thesis: Electrical properties of quantum dot superlattices.2000–present Research fellow at the Department of TheoreticalBases of Microelectronics at the Ioffe Institute, St Petersburg,Russia.Current research interests:Quantum transport in low-dimensional nanostructures out ofequilibrium. Transport properties of regular arrays of quantumdots in a strong electric field: electronic spectrum/Stark local-ization; Bloch oscillations; resonance intersubband tunneling;possibility of cascade lasing; electronic relaxation mechanismsin quantum dots, including polaronic effects, multi-phononprocesses and anharmonic decay; combined influence of dis-order and interaction on transport properties of quantum dotsuperlattices.Quantum/quasiclassical magnetotransport in a 2D electrongas irradiated by microwaves: magnetooscillations in photo/dynamical conductivity and compressibility; transport in‘zero-resistance states’ emerging under certain conditions athigher microwave power; relativistic effects near the cyclotronresonance.

    Awards:2002 Prize for the Best Research on the International WorkshopFrontiers in Electronics, USA, 6–11 January 20022001 Ioffe Institute Prize for Junior Scientists for the Best Re-search of a Year1999 Prize for the Best Research on the Russian National Con-ference on Physics of Semiconductors and Semiconductor Opto-and Nanoelectronics for Junior Scientists, St Petersburg, 1999

    1Current affiliation: Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Germany

  • 13th Int. Symp. “Nanostructures: Physics and Technology” QWR/QD.01iSt Petersburg, Russia, June 20–25, 2005© 2005 Ioffe Institute

    Optical spectroscopy of 2D nanoislands in quantum wells:lateral island profile and nature of emitting statesA. Reznitsky1, A. Klochikhin1,2, S. Permogorov1 and C. Klingshirn31 Ioffe Physico-Technical Institute, St Petersburg, Russia2 Nuclear Physics Institute, 188350, St Petersburg, Russia,3 Institut für Angewandte Physik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

    Abstract. Results of experimental study of photoluminescence (PL) and PL excitation (PLE) spectra of MBE grown singlequantum wells (QWs) formed by insertion of few CdSe monolayers in ZnSe matrix are reviewed. PL spectra of suchquantum objects originate from the luminescence of CdSe-rich nano-islands. Two types of island emitting states, namely,ground and metastable ones contribute to the low- and high-energy parts of the PL band, respectively. An interplay betweenthese contributions is responsible for the anomalous temperature dependence of the PL band maximum position. PLEspectra of ground and metastable states have strongly differing character at excitation below some characteristic energyEME. This energy is identified as the exciton percolation threshold. The optical orientation and optical alignmentexperiments at resonant excitations allow to elucidate the nature of the two types of the emitting states. Theoretical model ofthe absorption spectra of emitting island states is presented and practical application of the model for the characterization ofthe island lateral concentration profiles is reported.

    1. Introduction

    At present it is well known that at epitaxial growth of QWsformed by the solid solutions a strong mismatch of the latticeconstants of solution components acts as a driving force leadingto inhomogeneous distribution of solvent atoms over the QWplane. As a result, the regions of nanometer size appear in QW,in which the content of the narrow-gap solution component es-sentially exceeds the average QW value. Depending on thegrowth conditions and/or post–growth treatment these regionscan have a form of planar islands (called also 2D discs) [1–4],or 3D dot-like structures (see, for example, [5]) or include bothkinds. Nowadays, the most reliable and comprehensive struc-ture characterization of these objects can be obtained with ahigh-resolution transmission electron microscopy (HRTEM).In this talk we review the recent applications of optical spec-troscopy for the characterization of the electronic states of is-lands forming the emission spectra of these quantum objects.As we shall see, the optical spectroscopy of island states inQWs gives an important information on the nature of elec-tronic states and its relaxation properties and opens a way forsimple and non-destructive characterization of the ensemble ofislands in such quantum objects.

    In what follows we summarize the results obtained for QWswith planar nanoislands. We shall illustrate the model de-scription of exciton localization in such objects by experimen-tal results obtained for ZnSe/ZnCdSe/ZnSe heterostructures,since these systems are most developed technologically andmost studied experimentally. The main experimental resultsfor these systems obtained by different research groups are infairly good agreement [1–5].

    Since all epitaxial growth techniques are essentially non-equilibrium, the structural characteristics of QWs in particularcases strongly depend on the growth conditions. We studiedthe epitaxial samples grown by (i) MBE technique with CdS-compound as a Cd source and elemental Se source [1], (ii) con-ventional MBE [2], and (iii) by multi-cycle migration enhancedepitaxy deposition of CdSe (below 0.5 ML per cycle) in ZnSematrices with the different growth interruption times after each

    Cd and Se pulses [3, 6]. The structure of most samples usedin experiments or samples grown in similar conditions werecharacterized by HRTEM and the corresponding data can befound in Refs. [1, 2, 6].

    2. PLE spectra of QWs with islands: two types of the emit-ting states

    In Fig. 1 the PLE spectra for different detection energies withinthe PL band are presented. Being normalized at excitation en-ergies slightly below the barrier exciton, they are divergingbelow the energy EME identified as exciton mobility edge inthe QW with nano-islands [7]. Similar behavior of the PLEspectra was also detected for other samples with Cd-enrichedislands in QWs. The depth of potential well of a quantumisland, which is the difference between the emission energyand threshold energy EME, has an order of 0.1–0.3 eV in thesamples under study. Obtained potential well depths and theisland sizes estimated from HRTEM allow to calculate the ex-citon wave-functions. The extension of wave functions outsidethe islands is much smaller than the mean inter-island distance,thus it can be concluded that the most part of islands is spatiallyisolated.

    The behavior of the PLE spectra shown in Fig. 1 allows toconclude that two different types of emitting states with essen-tially different relaxation rates contribute the PL band. Thecharacteristic feature of PLE spectra of the states on the high-energy side of PL band is the strong dependence on the detec-tion energy. The oscillating structure with the period close tothe optical phonon energy is detected for these states (Fig. 1).Such behavior indicates that the corresponding part of PL bandis due to the emission of excited states of the islands which aresubjected to further energy relaxation to ground states. Relax-ation rates of these states strongly depend on the temperature,and at low temperatures they are metastable [9]. On the otherhand, the PLE spectra of the states forming the low energy partof the PL band do not depend on the detection energy, whichindicates that these states have no ways for further relaxationand, therefore, are the ground states of islands. Lifetimes of

    1

  • 2 Quantum Wires and Quantum Dots

    1

    10

    100

    2.25 2.40 2.55 2.70 2.850

    0.2

    0.4

    0.6

    0.8

    1.0

    b

    a

    PLEPL

    2.64 eV

    Photon energy (eV)

    Nor

    mal

    ized

    PL

    E in

    tens

    ity

    PL in

    tens

    ity (

    arb.

    uni

    ts)

    Fig. 1. PL spectrum at above ZnSe barrier excitation (solid linewith symbols) and normalized PLE spectra for different detectionpositions inside the PL band separated by 10 meV: six spectra fordetection in spectral range 2.34–2.39 eV (solid lines) and six spectrafor the range 2.40–2.45 eV (dashed-dotted lines). All spectra areobtained at T = 5 K. Exciton mobility threshold EME at 2.64 eV isindicated by vertical solid line.

    these states are governed by the inter band recombination pro-cesses. The fast increase of relaxation rate of the metastablestates with temperature leads to depopulation of these statesand to the low-energy shift of PL band (see insert to Fig. 2).With further increase of temperature the establishment of theequilibrium between metastable and ground states of the is-lands occurs, which results in high-energy shift of the PL bandmaximum. This explains the anomalous (“S-shape”) behaviorof the PL band maximum.

    The low-temperature PL spectrum (curve 1 in Fig. 2) is asuperposition of emission of ground and metastable states av-eraged over the island ensemble. Taking into account that theprocesses responsible for the red-shift of the band maximum

    0.2

    0.4

    0.6

    0.8

    2.40 2.45 2.50

    3

    2

    1

    Photon energy (eV)

    PL in

    tens

    ity (

    arb.

    uni

    ts)

    −0.08

    −0.06

    −0.04

    −0.02

    0

    0 100 200PL

    and

    PL

    E b

    ands

    max

    imum

    (eV

    )

    Temperature (K)

    Fig. 2. PL spectra at above ZnSe barrier excitation at T = 2 Kand 100 K (solid line 1 and dashed line 2, respectively). Line 3 withsymbols is the difference between bands 1 and 2. Insert: temperaturedependence of the PL band maximum (solid line with symbols) andthat of PLE maximum (solid line) for the same sample. Spectralposition of low energy PLE band maximum at T = 2 K is used as apoint of reference.

    0

    0.2

    0.4

    0.6

    2.35 2.40 2.45 2.50

    (a)

    32

    1

    Pola

    riza

    tion

    degr

    ee0

    0.2

    0.4

    0.6 (b)

    2.35 2.40 2.45 2.50Photon energy (eV)

    32

    1

    Pola

    riza

    tion

    degr

    ee

    Fig. 3. Solid lines: Spectra of optical alignment rat resonantexcitations for differentenergies (shown by solid vertical lines):2.471 eV (a) and 2.409 eV (b). Dashed lines: PL band at aboveZnSe band gap excitation (curve 1). Subbands due to recombinationthrough ground (curve 2) and metastable (curve 3) states are shownfor convenience.

    occur in the temperature range where the equilibrium popula-tion of the excited states is negligible, the PL spectrum corre-sponding to the minimum of the S-shape dependence (curve 2in Fig. 2) can be considered as the spectrum of the ground is-land states and the difference between these two spectra (curve3 in Fig. 2) as the spectrum of the metastable states.

    3. Polarization of resonantly excited PL spectra as a clueto the nature of emitting states

    In order to elucidate the nature of metastable and ground statesof the islands, the optical orientation and optical alignment ex-periments at resonant excitation at low temperature were per-formed. It was found that at resonant excitation of the islandstates by linear polarized light the resulting emission of themetastable states shows a considerable degree of correspond-ing polarization (optical alignment, see Fig. 3a). This indicatesthat the metastable states have an exciton nature and are pop-ulated as a result of cascade energy relaxation of localizedexcitons originally excited within the island. In distinction, atresonant linearly polarized excitation of the ground states thelinear polarization of the emission is not observed (Fig. 3b). Atthe same time, the circular polarization at circularly polarizedexcitation (optical orientation) was observed in both cases (notshown here).

    The obtained polarization characteristics of the emissioncan be explained if we assume that a considerable part ofCdSe islands in ZnSe matrix contains extra electrons (bothcompounds are unintentionally weakly n-doped) and that the

  • QWR/QD.01i 3

    deepest island states represent mostly the ground states of tri-ons. This assumption is in agree with the results of magneto-optical study of single narrow lines detected in µ-PL measure-ments [8]. In turn, the metastable states in the charged islandcorrespond to the exciton states in local potential island min-ima spatially separated from the absolute minimum occupiedby excess electron.

    4. Lateral concentration shape and exciton absorptionspectra of islands

    The PLE spectra of the states forming the low energy part ofthe PL band do not depend on the detector position. This factindicates that the PLE spectra of these states can be consideredas the absorption spectrum of the ensemble of island statesparticipating in the emission spectrum. Two maxima a and bclearly seen in Fig. 1 are a common feature of the spectra of allsamples under study. However, its relative intensity dependson the growth conditions and post-growth treatment (Fig. 4).For these reasons they cannot be attributed to the heavy andlight hole excitons. An island arises as a result of in QW planedeviation of the Cd distribution from the average valueC( �ρ) =C+δC( �ρ). Taking now the valueE(C) as the point of referencefor the energy, we introduce the deviation δE( �ρ) = E(C( �ρ))−E(C) ,which describes the lateral potential configuration of theisland.

    In order to simulate the experimental absorption spectra ofthe island states we have considered [9] the model island po-tential δE(ρ = | �ρ|) corresponding to the following deviationsof the Cd concentration δC(ρ) in (x,y) plane of QW

    δCbas(ρ) = δCmax{�(R1−ρ)+ �(ρ−R1)

    cosh2[(ρ−R1)/R2]}

    (1)

    where�(X) is the theta-function. In Eq. (1) the ratio betweenR2 and R1 defines the “basin”-like form of potential. Insert inFig. 4 presents the radial shapes of the island potentials givenby Eq. (1).

    The characteristic two maxima of spectral DOS correspond-ing to both deepest and shallowest states appear for the basin-like potential if the values of R1 and R2 parameters are of thesame order. Two others limiting cases (R2/R1 � or� 1) pro-duce only one maximum corresponding to the deepest or theshallowest states, respectively. Lateral potential shapes ob-tained by the best fit of their absorption spectra for islands indifferent samples are in qualitative agreement with the lateralisland profiles obtained by HRTEM technique.

    5. Summary

    We have shown that the coexistence of ground and metastablestates within particular island is a characteristic property ofMBE grown QWs with islands and reflects nonequlibrium char-acter of epitaxial growth. The existence of metastable featuresof the emitting states in islands can be proved by the very factof anomalous (“S-shape”) temperature behavior of PL bandmaximum, which was observed in different QWs based notonly on II–VI, but also on III–V compounds. It seems veryprobable that even for nominally undoped barriers, QWs andquantum dots an appreciable part of islands contains an extracharge due to background doping of the heterostructure con-stituents. As a result, the deepest states of the islands representsmostly the ground state of trions, while the metastable states in

    0

    1

    2

    3

    4

    2.3 2.4 2.5 2.6 2.7 2.8

    C

    B

    A

    Photon energy (eV)

    PL a

    nd P

    LE

    spe

    ctra

    (ar

    b. u

    nits

    )

    −1.0

    −0.5

    0

    0 0.5 1.0 1.5 2.0 2.5

    B

    C

    A

    Distance (ρ/ )R1

    δρ

    |δ|

    EE

    () /

    min

    Fig. 4. PL (dashed lines) and absorption spectra (dotted lines) of thethree samplesA,B, andC with different CdSe content, grown by thedifferent MBE techniques. Absorption spectra of the island emittingstates were obtained by PLE technique (see text). Short vertical linesindicate the EME positions. Spectra are shifted in vertical directionfor clarity. Crosses show the fit of the absorption spectra calculatedwith the model basin-like potential with the following values ofthe ratio R2/R1: 0.04 (sample A), 0.18 (B), and 0.25 (C). Insert:normalized shapes of the model in-plane potentials δE(ρ)/δEminfor typical islands in samples A,B, and C.

    such charged islands correspond to the exciton states spatiallyisolated from an extra localized charges. We have shown thatthe absorption spectra of excitons localized in islands stronglydepend on the very general characteristics of the island poten-tial well such as its size, its depth, and its profile and can beused for the nondestructive characterization of such quantumobjects.

    Acknowledgements

    Part of the experimental data presented here was obtained as aresult of multinational cooperation of several research groupsin different countries. We thank with pleasure H. Kalt, D. Litvi-nov and D. Gerthsen (Karlsruhe, Germany) for encouragementand valuable discussions. We thank also E. Kurtz, H. Preis,S. Sorokin, I. V. Sedova and S. Ivanov for the samples used inthe experiments. This work was partly supported by DeutscheForschungsgemeinschaft, by RFBR (projects No.03-02-17562and No.03-02-17565), and by the Programs of RAS (“Physicsof Solid State Nanostructures” and “Low-dimensional quan-tum structures”).

    References

    [1] E. Kurtz et al., Appl. Phys. Lett. 79, 1118 (2001).[2] D. Litvinov et al., phys. stat. sol. (b) 224, 147 (2001)[3] S. Sorokin et al., J. Cryst. Growth 201/202, 461 (1999).[4] K. Leonardi et al., J. Cryst. Growth 201/202, 1222 (1999).[5] M. Rabe et al., J. Cryst. Growth 184/185, 248 (1998).[6] N. Peranio et al., Phys. Rev. B 61, 16015 (2000).[7] A. Reznitsky et al., phys. stat. sol.(b) 229, 509 (2002)[8] I. A. Akimov et al., Appl. Phys. Lett. 81, 4730 (2002).[9] A. Klochikhin et al., Phys. Rev. B 69, 085308 (2004).

  • 13th Int. Symp. “Nanostructures: Physics and Technology” QWR/QD.02oSt Petersburg, Russia, June 20–25, 2005© 2005 Ioffe Institute

    Inhomogeneous broadening in quantum dot layers:expanding towards broadband sourcesS. Raymond1, C. Nı̀. Allen1,2, C. Dion3, P. J. Poole1, P. Barrios1, A. Bezinger1, G. Ortner1, G. Pakulski1,W. Render1, M. Chicoine5, F. Schiettekatte5, P. Desjardins3 and S. Fafard41 Institute for Microstructural Sciences, National Research Council of Canada, Ontario, Canada, K1A 0R62 Physics Department, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N53 Département de Génie Physique, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-Ville,Montréal, Québec, Canada, H3C 3A74 Cyrium Technologies Inc., Ottawa, Ontario, Canada5 Département de physique, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec,Canada, H3C 3J7

    Abstract. Inhomogeneous broadening inherent to self-assembled Quantum Dot layers is often viewed as an adverse effectpreventing the building of a device in which all the elements contribute to, for example, the same lasing mode. On the otherhand, this natural ’tunability’ of the atomic-like properties of Quantum Dots can be seen as an asset one can use. Todemonstrate this, an external cavity laser is built using an InAs/InGaAsP/InP QD laser diode as the active element. Thetypical linewidth of the electroluminescence of the QD layers is of the order of 80 nm around 1.59µm, giving a lasingtuning range of 110 nm in the external cavity Littrow configuration. To broaden the scope of potential applications, one alsoneeds to find methods to control the inhomogeneous broadening in a layer of QDs. Here we show the initial steps towards aspatially selective intermixing method which provides the possibility to tune the inhomogeneous broadening of a QD layer.Two methods are exemplified, one using ion implantation and one using grown-in defects, providing peak emissiontunability in excess of 375 nm in both cases.

    Introduction

    Tunable and broadband light sources are continuously findingnew applications in various scientific fields, especially in biol-ogy and medical treatment [1]. These sources are continuouslyimproving and Quantum Dot (QD) tunable lasers are anotherstep in the quest to get more efficient light emitters with a largerbandwidth. The zero-dimensionality of QDs, which leads torapid filling of the energy levels with injected current can beviewed as a benefit in this regard, for at least two reasons. First,the excited state (higher energy) emission contributes to enlarg-ing the gain bandwidth and second, once the QDs are filled,their absorption is quenched [2]. Thus, an inhomogeneous en-semble of QDs used as the active region of a tunable laser canprovide efficient, tunable single wavelength emission even atlow injection currents. Moreover, the bandwidth can be ex-tended if one learns to modify the gain spectrum in a spatiallyselective way.

    In this paper, we investigate the tuning properties of an ex-ternal cavity laser driven by an InAs/InGaAsP/InP QD laserdiode to obtain tunable stimulated emission at telecom wave-lengths. Moreover, we investigate methods to increase thedevice bandwidth even further by means of spatially selectivebandgap shifting. To this effect, two material intermixing testmethods are investigated: ion implantation QD intermixing(IIQDI) and grown-in defects QD intermixing (GIDQDI) [3, 4].

    1. Experimental

    The laser diode structure was grown by chemical beam epitaxyon exactly oriented (100) InP n-type substrates. The undopedactive region of the lasers consisted of five stacked layers ofself-assembled InAs quantum dots embedded in In0.816Ga0.392As0.392P0.608. The sample was microfabricated into standardridge lasers of various lengths and widths. A 300 g/mm grating

    with 90% reflection in the first order was used as the tunablefeedback element of the external cavity. More details about thegrowth, packaging and spectroscopy of these structures can befound elsewhere [5].

    The sample used for IIQDI and GIDQDI were grown byMOCVD and CBE respectively, and each consisted of a singleInAs QD layer embedded in InP with respective cap thicknessof 200 and 1000 nm. The InP cap of the GIDQDI sample wasgrown in non-optimal condition to obtain a concentration ofpoint defects, and terminated with a 33 nm InGaAs cap. Fol-lowing growth, different pieces of the sample were annealed insuccessive 60 s time increments for temperatures ranging from400 to 750 ◦C. For IIQDI, sample pieces were irradiated withP+ ions at an energy of 30 keV with doses ranging from 1×1011to 1×1014 ions/cm2, followed by successive 60 s rapid thermalanneals at temperatures ranging from 400 to 700 ◦C. Furtherdetails of the growth, implantation, anneal and spectroscopyprocedures can be found elsewhere [6, 7].

    2. Results

    Fig. 1 (a) shows the evolution of the external cavity laser emis-sion spectrum as a function of grating angle for a∼ 1-mm longand∼ 2.5-µm wide ridge laser placed inside a Littrow externalcavity. The diode was mounted on a Pelletier cooler, regulat-ing the temperature to 18 ◦C, and the injection current waspulsed with a 1% duty cycle at a frequency of 1 kHz. At ex-treme grating angles, the product of gain and external feedback(reflectivity) of the grating is smaller than the product of peakgain and facet feedback, and the natural mode of the laser diodedominates. For intermediate angles, the former dominates andthe emission tunes with the grating angle. For each angle ofthe grating, one can obtain an L-I-V characteristic and Fig. 1(b) shows the current tresholds thus obtained as a function ofthe emission wavelength of the laser. This treshold is fairly

    4

  • QWR/QD.02o 5

    994 × 2.5 m994 3 m994 4 m2008 2.5 m

    µ× µ× µ× µ

    Wavelength (nm )1520 1560

    1560

    1600

    1600

    1640

    1640

    500

    400

    300

    200

    100

    0

    Tre

    shol

    d cu

    rren

    t (m

    A)

    Grating

    angle(a.u.)

    Inte

    nsity

    (a.

    u.)

    994 µm x 2.5 µm= 291 K= 200 mA @ 1% D.F.

    TI

    (a)

    (b)

    Fig. 1. (a) Emission spectra of the QD laser as a function of gratingangle. (b) Treshold currents obtained for various emission wave-lenghts.

    flat over a range of 80 nm, and allowing larger injection cur-rents the tuning range can be extended up to 110 nm. For thelonger 2 mm cavity, the tuning range becomes narrower andis shifted towards longer wavelengths. The extension towardslonger wavelengths comes from increased gain per roundtripas compared to facet losses. The higher losses at shorter wave-lengths remains unexplained, but one could expect that it doesnot originate from re-apsorption in excited states since the lattershould be filled at higher injection currents. However, it is pos-sible that Auger re-emission processes play a role in preventingperfect state-filling, and thus one might prefer to operate thediodes at lower injection currents.

    One possibility to enlarge the gain at low injection currentsis to shift the gain bandwidth in a spatially selective way. Fig. 2shows the emission spectrum obtained from single layer QDsamples processed with IIQDI (a) and GIDQDI (b). For clarity,the annealing temperature is the only processing parametervaried in the results presented. In both cases large blueshiftscan be measured, increasing with annealing temperature upto 375 nm. The nature of the defect or mechanism promotingintermixing in either case may be different, as suggested bythe difference in temperature treshold between both methods.However, from an applied perspective it is interesting to notethat in the case of IIQDI and GIDQDI, the magnitude of theshift obtained for given annealing conditions is proportional toimplant dose and thickness of the GID layer respectively.

    3. Conclusion

    A QD laser tunable trough 1.55 microns was demonstrated,thus reiterating the potential use of quantum dot inhomoge-neous broadening for broadband applications. Techniques towiden the spatial inhomogeneity of QD layers have been in-

    Nor

    mal

    ized

    PL

    inte

    nsity

    (a.

    u.)

    800 1000 1200 1400Energy (eV)

    Grown-indefects

    RTA 180 s

    Φ = 10 P /cmRTA 60 s

    13 + 2

    As g

    row

    nRT

    A 4

    00 °C

    RTA

    450

    °C

    RTA

    500

    °CRT

    A 6

    00 °C

    RTA

    700

    °C

    As g

    row

    nRT

    A 4

    00 °C

    RTA

    600

    °CRT

    A 7

    00 °C

    RTA

    750

    °C

    (a)

    (b)

    Fig. 2. Low Temperature (77 K) Photoluminescence spectra ob-tained from IIQDI (a) and GIDQDI (b) samples processed at variousannealing temperatures.

    vestigated and both IIQDI and GIDQDI show promising prop-erties towards the production of QD devices with very largebandwidth.

    References

    [1] D. Huang et al, Science, 254, 1178 (1991).[2] R. Heitz, T. Warming, F. Guffarth, C. Kapteyn, P. Brunkov,

    V. M. Ustinov and D. Bimberg, Physica E, 21, 215 (2004).[3] J. E. Haysom, G. C. Aers, S. Raymond and P. J. Poole, J. Appl.

    Phys., 88, 3090 (2000).[4] J. E. Haysom, P. J. Poole, R. L. Williams, S. Raymond and

    G. C. Aers, Solid State Communications, 116(4), 187 (2000).[5] C. Nı̀. Allen, P. J. Poole, P. Marshall, J. Fraser, S. Raymond,

    S. Fafard, Appl. Phys. Lett., 80, 3629 (2002).[6] C. Dion, P. Desjardins, S. Raymond, F. Schiettekatte and

    M. Chicoine, to be published.[7] J. F. Girard, C. Dion, P. Desjardins, C. Nı̀. Allen, P. J. Poole and

    S. Raymond, Appl. Phys. Lett., 84, 3382 (2004).

  • 13th Int. Symp. “Nanostructures: Physics and Technology” QWR/QD.03oSt Petersburg, Russia, June 20–25, 2005© 2005 Ioffe Institute

    Carrier transfer and radiative recombination in self-organizedInAs/GaAs QD array: DC current injection pump-probeexperiment and solvable modelsA. V. Savelyev1, A. S. Shkolnik1, S. Pellegrini2, L.Ya. Karachinsky1, A. I. Tartakovskii3 and R. P. Seisyan11 Ioffe Physico-Technical Institute, St Petersburg, Russia2 School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK3 Department of Physics and Astronomy, Sheffiled University, Sheffield, UK

    Abstract. Carrier transfer between quantum dots with following recombination has been studied experimentally andtheoretically. New experimental method based on pump-probe spectroscopy of electrically pumped samples was used andqualitative description in terms of the coherent-medium a