12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and...

10
1 Year 12 Complex Numbers – Term 1 Chapter 1A - Operations with Complex Numbers Revision - = 1 - ! = 1 - Standard form = + - Conjugate = You need to be able to Add, Subtract, scalar multiply and multiply. ( Can you recall the difference between multiplication and Scalar multiply? ) Recall from Term 1 Year 11 the definition for the inverse of a number: A number multiplied by its Inverse will result in the Identity Element. For complex numbers that means: × !! = 1 so clearly, it follows that; !! = 1 TASK: Set = + and use algebra to find !! in its simplest form. And you will find … Inverse of ‘z’ What are the pro’s and con’s of remembering this as a rule? ( Hint: Don’t remember the rule, but remember how to find the Inverse of a Complex number) z 1 = 1 z = a a 2 + b 2 b a 2 + b 2 i

Transcript of 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and...

Page 1: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

1

Year12ComplexNumbers–Term1

Chapter1A- OperationswithComplexNumbers

Revision

- 𝑖 = −1- 𝑖! = −1- Standardform 𝑧 = 𝑎 + 𝑏𝑖- Conjugate 𝑧 = 𝑎 − 𝑏𝑖

YouneedtobeabletoAdd,Subtract,scalarmultiplyandmultiply.

(CanyourecallthedifferencebetweenmultiplicationandScalarmultiply?)

RecallfromTerm1Year11thedefinitionfortheinverseofanumber:AnumbermultipliedbyitsInversewillresultintheIdentityElement.

Forcomplexnumbersthatmeans:

𝑧 × 𝑧!! = 1

soclearly,itfollowsthat;

𝑧!! =1𝑧

TASK: Set𝑧 = 𝑎 + 𝑏𝑖andusealgebratofind𝑧!!initssimplestform.

Andyouwillfind…Inverseof‘z’

Whatarethepro’sandcon’sofrememberingthisasarule?

(Hint:Don’tremembertherule,butrememberhowtofindtheInverseofaComplexnumber)

z−1 =1z

=a

a2 + b2−

ba2 + b2

i

Page 2: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

2

PolarForm:

𝑧 = 𝑟 cos𝜃 + 𝑖 𝑟 sin𝜃 = 𝑟 cis𝜃

requirestheModulusandArgumentofthecomplexnumber…where;

𝑀𝑜𝑑 𝑧 = 𝑧 = 𝑟 = 𝑎! + 𝑏!

Arg 𝑧 = 𝜃 = tan!!𝑏𝑎

WecanalsographaComplexnumberusingtheModulusandArgumentonanArganddiagram…horizontalaxis=Realandverticalaxis=Imaginary

ToconvertfromPolarFormbacktogeneralform:

-𝑎 = 𝑧 cos𝜃 = 𝑟 cos𝜃

-𝑏 = 𝑧 sin𝜃 = 𝑟 sin𝜃

TASK:Google“HowtopronounceDeMoivre”

Page 3: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

3

DeMoivres’sTheorem:

𝑧! = 𝑟! cos 𝑛𝜃 + 𝑟! sin(𝑛𝜃) 𝑖

or

𝑧! = 𝑟! cis 𝑛𝜃

SpecificallyDeMoivre’sTheoremreferstocalculatingPowersofcomplexnumbers,howeverbasedonDeMoivre’sTheorem,itfollowsthat;

𝑧!× 𝑧! = 𝑟!𝑟! cos 𝜃! + 𝜃! + 𝑟!𝑟! sin 𝜃! + 𝜃! 𝑖

or

𝑧!× 𝑧! = 𝑟!𝑟! cis 𝜃! + 𝜃!

and

𝑧!𝑧!=𝑟!𝑟!cos 𝜃! − 𝜃! +

𝑟!𝑟!sin 𝜃! − 𝜃! 𝑖

or

𝑧!𝑧!=𝑟!𝑟!cis 𝜃! − 𝜃!

SometimesoperationsoncomplexnumberswillbeeasierinPolarform,ratherthanGeneralform.Soyouneedtobecomfortableconvertingfromonetotheother.

TASK: Theaboverevisionpointsmustberoutineworkforyou.Wherenecessary,Practice!ItmaybeworthwhiletorevisityourYear11MathsCComplexNumbersworkbooks.

Page 4: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

4

Chapter1B- FactorisationofPolynomialsin‘C’

HerearesomeYr10PracticequestionswithREALrootsonly.Trythisfirstifyouneed,andthenheadintoquestionsthatinvolveComplexRoots.

Factorise 484412)( 23 −+−= xxxxP .

(Hint:x=2isonesolution)

Solution:

0

48244824

20104410

2

24104844122

2

2

23

2

23

+−

+−

+−−+−−

xx

xxxx

xx

xxxxxx

Quotient:x2−10x+24=(x−6)(x−4)

P(x)=(x−2)(x−4)(x−6)

Page 5: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

5

Now,forthosequadraticswherethediscriminantis“negative’,wecannowfindComplexsolutions…!

TASK: UsetheQuadraticformulatosolvefor𝑧.

z2 + 8z + 25

Whatdoyounoticeaboutthetworootsoftheaboveexpression?Whattermcanwegivethem?

Whendealingwithasecondorderpolynomial,weareexpectingtwosolutions.Howmanysolutionsareweexpectingforanorder4polynomial?

TASK: Trythisone.

z4 − 81 = 0 Howareyougoingtoget4solutions?

WhatdoyounoticeaboutthetwoComplexrootsoftheaboveexpression?Whattermcanwegivethem?

Factorisingacubic…Trialanderrorforthefirstfactor,then,

PolynomialDivision…canyourecallhowto…?

TASK: Manuallyfactorise (hint:set𝑧 = −2)

WhatdoyounoticeaboutthetwoComplexrootsoftheaboveexpression?Whattermcanwegivethem?

Andyes,wecangotoaregularquarticlike𝑎𝑥! + 𝑏𝑥! + 𝑐𝑥! + 𝑑𝑥 + 𝑒 = 0,butletsnotgettoocarriedawaywithanythinghigherthanthat.Wemayalsodosomethingalittlemoreinterestinglikesolving;

TASK: Solvefor𝑧,given;𝑧 = 𝑧! + 25𝑧! + 144 = 0

(Makesureyouworkouttheshortcut!)

Youmaynoticetwo“couples”ofsolutions.Whatdoyounoticeaboutthem?

Whatisyourhypothesisaboutcomplexroots?

Yes…it’scalledtheconjugateroottheorem.Basically,if𝑎 + 𝑏𝑖isaroot,then,𝑎 − 𝑏𝑖isalsoaroot!

TASK:Createyourownorder4polynomialequationthathasatleast1complexrootandonerealroot,andthenprepareyourfullyworkedsolution.

z3 − z2 − z +10 = 0

Page 6: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

6

SinceweareonthesubjectofConjugates,(andthischapterisabiteasy)letsdigressandtrythese:

1.Showthat𝑧×𝑧 =aRealNumber

2.Prove𝑧×𝑤 = 𝑧×𝑧

3.Find𝑧suchthat;𝑧! + 𝑧 ! = 0

Page 7: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

7

Solutions:

1.

Set𝑧 = 𝑎 + 𝑏𝑖

Nowwehave;

𝑎 − 𝑏𝑖 𝑎 + 𝑏𝑖

= 𝑎! − 𝑏𝑖 !

= 𝑎! − 𝑏!𝑖!

= 𝑎! + 𝑏!

Since𝑎&𝑏 ∈ ℝ,thenclearly𝑎! + 𝑏! ∈ ℝ

QED.

2.

Set𝑧 = 𝑎 + 𝑏𝑖and𝑤 = 𝑐 + 𝑑𝑖

𝑅𝐻𝑆 = 𝑎 − 𝑏𝑖 𝑐 − 𝑑𝑖

= 𝑎𝑐 − 𝑎𝑑𝑖 − 𝑐𝑏𝑖 + 𝑏𝑑𝑖!

= 𝑎𝑐 − 𝑎𝑑 + 𝑏𝑐 𝑖 − 𝑏𝑑

= 𝑎𝑐 − 𝑏𝑑 − 𝑎𝑑 + 𝑏𝑐 𝑖

𝐿𝐻𝑆 = 𝑎 + 𝑏𝚤 𝑐 + 𝑑𝚤

= 𝑎𝑐 + 𝑎𝑑𝚤 + 𝑏𝑐𝚤 + 𝑏𝑑𝚤!

= 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 𝚤 − 𝑏𝑑

= 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝚤

= 𝑎𝑐 − 𝑏𝑑 − 𝑎𝑑 + 𝑏𝑐 𝑖

= 𝑅𝐻𝑆

QED.

Page 8: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

8

3.

Set𝑧 = 𝑎 + 𝑏𝑖

Nowwehave;

𝑎 + 𝑏𝑖 ! + 𝑎 − 𝑏𝑖 ! = 0

𝑎! + 2𝑎𝑏𝑖 + 𝑏𝑖 ! + 𝑎! − 2𝑎𝑏𝑖 + 𝑏𝑖 ! = 0

2𝑎! + 2 𝑏𝑖 ! = 0

𝑎! + 𝑏𝑖 ! = 0

𝑎! + 𝑏!𝑖! = 0

𝑎! − 𝑏! = 0

𝑎 + 𝑏 𝑎 − 𝑏 = 0

byNFL,wehave

𝑎 = −𝑏, 𝑜𝑟 𝑎 = 𝑏

similarlywecouldsay

𝑏 = −𝑎, 𝑜𝑟 𝑏 = 𝑎

Wecannowseeoursolutionfor𝑧;

𝑧 = 𝑎 − 𝑎𝑖 𝑜𝑟 𝑧 = 𝑎 + 𝑎𝑖

where;𝑎 ∈ ℝ

Page 9: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

9

Chapter1C- Solvingequationsin‘C’

Afollowonfromlastchapter…IfwecanFactorise,thenwecanfindsolutionsbyusingtheNullFactorLaw…!

Letsfindouthowtocalculate… 𝑧

Lookforeither 𝑎 + 𝑏𝑖 or 𝑧! = 𝑎 + 𝑏𝑖 (samequestion)

TASK: Find𝑧,given𝑧! = 1+ 3𝑖

(Hint…set𝑧 = 𝑎 + 𝑏𝑖andsubintoequation…then‘correlate’coefficients…andnotethatboth𝑎and𝑏arerealnumbers…andrememberwearelookingfor2solutions)

Tryingthatstrategytofindrootsdoesgetcomplicated,butDeMoivretotherescue!

𝑧! = 𝑧!! = 𝑟

!! cis

𝜃 + 2𝑘𝜋𝑛

So,thetrickybitinthebracketistheprocesstogiveus𝑛solutions.Thatisacubicrootwillhave3solutions,aquarticrootgives4solutions,etcetc.

Important… 𝑘 = 0,1,2,3,… ,𝑛 − 1.

Eg.If𝑛 = 5,then𝑘 = 0, 1, 2, 3, 4

TASK: Find𝑧,given𝑧! = 1+ 3𝑖

(ThistimeuseDeMoivre)

Clearly,forlargevaluesof𝑛,DeMoivreistheweaponofchoice…J

TASK: Plotasolutiontoacubedroot(orlarger)onanarganddiagram.Infact,plotafewofyoursolutions,andseeifyoucancomeupwithahypothesisaboutageometricrelationshipbetweenthesolutions,thatisforacubicrootyouhavethreesolutions,foraquarticrootyouhavefoursolutions.***MakesureyouknowtheanswertothisTask!

Page 10: 12MC Term 1 Complex Numbers - Weebly...We can also graph a Complex number using the Modulus and Argument on an Argand diagram … horizontal axis = Real and vertical axis = Imaginary

10

Questions:

1.Writetheexpression𝑧! + 1astheproductofthreeREALfactors.

Solution:

Set

𝑧! + 1 = 0

𝑧! = −1

byDeMoivre,𝑧!! = 𝑟

!! cis !!!!"

!

𝑧! = 1 cis !!= !

!+ !

!,givesafactorof 𝑧 − !

!− !

!

𝑧! = 1 cis !!= 0+ 𝑖,givesafactorof 𝑧 − 𝑖

𝑧! = 1 cis !!!= ! !

!+ !

!,givesafactorof 𝑧 + !

!− !

!

𝑧! = 1 cis !!!= ! !

!− !

!,givesafactorof 𝑧 + !

!+ !

!

𝑧! = 1 cis !!!= 0− 𝑖,givesafactorof 𝑧 + 𝑖

𝑧! = 1 cis !! !!= !

!− !

!,givesafactorof 𝑧 − !

!+ !

!

∴ 𝑧! + 1

= 𝑧 −32 −

𝑖2 𝑧 − 𝑖 𝑧 +

32 −

𝑖2 𝑧 +

32 +

𝑖2 𝑧 + 𝑖 𝑧 −

32 +

𝑖2

= 𝑧 − 𝑖 𝑧 + 𝑖 𝑧 −32 +

𝑖2 𝑧 −

32 −

𝑖2 𝑧 +

32 −

𝑖2 𝑧 +

32 +

𝑖2

= 𝑧! + 1 𝑧! − 3 𝑧 + 1 𝑧! + 3 𝑧 + 1