12-01 Slope monitoring methods - IPGPstep.ipgp.fr/images/3/37/12-01_Slope_monitoring_methods.pdf ·...

15
Grasberg, 2003 Slope Monitoring Types of slope instruments Displacement monitoring devices Precise surveys Differential global positioning systems (DGPS) Space-borne and terrestrial SAR Interferometry Strain monitoring devices Surface extensometers Borehole extensometers Borehole inclinometers Tiltmeters Time domain reflectometry (TDR) Pore-pressure measurements Piezometers and monitoring wells Tensiometers TDR moisture gauges Microseismicity Geophones

Transcript of 12-01 Slope monitoring methods - IPGPstep.ipgp.fr/images/3/37/12-01_Slope_monitoring_methods.pdf ·...

  • 1

    Grasberg, 2003

    Slope Monitoring

    Types of slope instruments

    Displacement monitoring devicesPrecise surveysDifferential global positioning systems (DGPS)Space-borne and terrestrial SAR Interferometry

    Strain monitoring devicesSurface extensometersBorehole extensometersBorehole inclinometersTiltmetersTime domain reflectometry (TDR)

    Pore-pressure measurementsPiezometers and monitoring wellsTensiometersTDR moisture gauges

    MicroseismicityGeophones

  • 2

    Displacement monitoring1) “Total Station”: Electronic Distance Measurement

    (“EDM”) + Theodolite

    2) “DGPS” Differential Global Positioning System:Base station+measuring stations Target prism

    Britannia Mine, B.C. Disturbed Area

    PR #104

    PR #102

    PR #100

  • 3

    PR #100

    PR #104

    PR #102

    “East Block”

    East Block, failure model

    0 50 100 150 200 250 300 350 400

    1000

    1050

    1100

    1150

    1200

    1250

    1300

    1350

    1400

    ELE

    VA

    TIO

    N (m

    )

    Toppling(schematic)

    Tensioncracks

    102

    100

    300,000 m3

    0 50 100 150 200 250 300 350 400

    1000

    1050

    1100

    1150

    1200

    1250

    1300

    1350

    1400

    ELE

    VA

    TIO

    N (m

    )

    Toppling(schematic)

    Tensioncracks

    102

    100

  • 4

    MonitoringJane Basin Slope

    26-Jul-02 30-Aug-04

    04-Jan-9506-Jan-92

    05-Aug-93

    25-Nov-92

    20-Jul-92

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06

    Date

    Del

    ta T

    otal

    Mov

    emen

    t (m

    )PR100

    PR101

    PR102

    PR103

    PR104

    Coal Mine Waste Dumps

  • 5

    Wire extensometer

    With data logger

    Borehole extensometer (Slope Indicator, Ltd.)

  • 6

    Surface rod extensometer (“crackmeter”)

    Vibrating wire displacement gauge (or a vernier for manual readings or a linear transducer) accuracy

  • 7

    Borehole inclinometer (“Slope Indicator”)

    Some inclinometer applications (Slope Indicator, Ltd.)

  • 8

    Time domain reflectometry (TDR)

    Synthetic aperture radar interferometry (SAR)

  • 9

    Piezometers

    ▼ 1) Observation well (open) –not a piezometer

    2) Pneumatic piezometer

    3) Standipe(Casagrande) piezometer

    4) Electric piezometer(Vibrating Wire)

    SEAL

    SAND PACK

    MEMBRANE

    AIR

    Piezometercomparison

  • 10

    Slope Indicator multi-point vibrating wire

    piezometer

    Grasberg, 2003

    Monitoring Interpretation

  • 11

    Chuquicamata Mine, Chile, 1968

    Movement vector F-2

    Micro-seismic events/day

    Chuquicamata Mine, Chile, 1968

    Movement vector F-2

    Micro-seismic events/day

  • 12

    Inverse Velocity Method (Fukuzono, 1985)Normal

    Inverse

    Inverse Velocity Method, more examples

    “La Clapiere”France

    PredictionReal

    Tripp Mine: slow failure

  • 13

    Inverse Velocity Method, another example

    18-Jul-01 25-Jul-01 1-Aug-01 8-Aug-01 15-Aug-01 22-Aug-01 29-Aug-01DATE

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    INV

    ER

    SE

    VE

    LOC

    ITY

    (day

    s/cm

    )

    45 40 35 30 25 20 15 10 5 0TIME BEFORE FAILURE (DAYS)

    0

    5

    10

    15

    20

    25

    30

    35

    VE

    LOC

    ITY

    (cm

    /day

    )45 40 35 30 25 20 15 10 5 0

    TIME BEFORE FAILURE (DAYS)

    Regression coeffiecient (R2) = 99%for all inverse-velocity fits

    Predicted velocity curves (basedon inverse-velocity fits) comparedwith actual velocity data

    18 million m3 pit slope failure prediction (Rose and Hungr, 2006)

  • 14

    Use of inverse velocity to monitor stabilization progress (Rose and Hungr, 2006)

    1-May-02 16-May-02 31-May-02 15-Jun-02 30-Jun-02 16-Jul-02 31-Jul-02 15-Aug-02DATE

    0

    0.5

    1

    1.5

    2

    INV

    ER

    SE

    VE

    LOC

    ITY

    (day

    s/cm

    )

    105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0TIME BEFORE FAILURE (DAYS)

    Buttress and OffloadRemedial Measures

    Stabilization of Slope Displacements

    Regression Coeffiecient (R2) = 96 to 99%for all Inverse-Velocity Fits.

    Pats FaultMidnight Fault

    Carlin waxy silt unit

    100mScale

    Two faults and a pre-sheared silt layer, 3 million m3

    Total Displacement?

    ValPola rock avalanche, 1986

    100 m pre-historic movement

    New crack

  • 15

    Small rock slides

    Libby Dam, Montana, 1971

    Prediction not feasible

    Purpose of monitoring

    1) Movement detection, failure prediction

    2) Vector solutions, interpretation of failure mechanism

    (Cruden, 1986)

    Predicted rupture surface