11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the...

18
OPTICAL PROPERTIES AND THE DETECTION OF BLOWING SNOW J.W. Pomeroy and D.H. Male Division of Hydrology University of Saskatchewan Saskatoon, Saskatchewan Canada S7N OW0 Paper prepared for: "Symposium on Remote Sensing and Electromagnetic Properties of Snow and Ice'' American Geophysical Union Fall Meeting 11 December 1985 San Francisco, California, U.S.A.

Transcript of 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the...

Page 1: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

OPTICAL PROPERTIES AND THE DETECTION OF BLOWING SNOW

J . W . Pomeroy and D.H. Male

Div is ion of Hydrology Un ive r s i t y of Saskatchewan

Saskatoon, Saskatchewan Canada S7N OW0

Paper prepared f o r : "Symposium on Remote Sensing and Electromagnet ic P r o p e r t i e s of Snow and Ice' '

American Geophysical Union F a l l Meeting 11 December 1985

San Francisco, C a l i f o r n i a , U.S.A.

Page 2: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

OPTICAL PROPERTIES AND THE DETECTION OF BLOWING SNOW

J . W . Pomeroy and D.H. Male

INTRODUCTION

A c h a r a c t e r i s t i c of blowing snow is reduced v i s i b i l i t y caused by t h e

a b i l i t y of snow p a r t i c l e s t o s c a t t e r and absorb e lec t romagnet ic r a d i a t i o n .

Severa l empi r i ca l i n v e s t i g a t i o n s of t h e l i g h t ex t ingu i sh ing c h a r a c t e r i s t i c s of

blowing snow have been publ ished (Landon-Smith and Woodberry, 1965; Mellor ,

1966; Tabler , 1984) which suggest t h a t t h i s proper ty can be used t o measure t h e

mass of blowing snow per u n i t volume of atmosphere ( d r i f t d e n s i t y ) . Recent

i n v e s t i g a t i o n s of f a l l i n g snow (Seagraves, 1984) suggest t h a t bo th t h e snow

c r y s t a l s i z e d i s t r i b u t i o n and mass concent ra t ion of f a l l i n g snow can be measured

us ing t h e l i g h t e x t i n c t i o n p r o p e r t i e s of snow.

It is t h e purpose of t h i s s tudy t o examine t h e o p t i c a l p r o p e r t i e s of blow-

ing snow f o r t h e v i s i b l e and i n f r a r e d wavelengths and t o demonstrate t h e a p p l i -

c a t i o n of t h e s e p r o p e r t i e s i n t h e c a l i b r a t i o n of a n o p t i c a l measuring system f o r

blowing snow. Schmidt e t a l . (1984) have demonstrated t h a t o p t i c a l measuring

systems a r e capable of r a p i d , continuous measurements w i t h minimal i n t e r f e r e n c e

t o t h e snow-air f l ux . A t h e o r e t i c a l l y c a l i b r a t e d system capable of measuring

both t h e p a r t i c l e s i z e d i s t r i b u t i o n and d r i f t d e n s i t y has an advantage over

empi r i ca l ly c a l i b r a t e d mass f l u x t r a p s .

PROPERTIES OF BLOWING SNOW

Blowing snow i s s u r f a c e snow which has been e n t r a i n e d and i s being t r ans -

por ted by t h e wind. The mode of t r a n s p o r t w i th in about 0.05 m of t h e s u r f a c e i s

s a l t a t i o n , which involves r e g u l a r momentum exchange between t h e p a r t i c l e and t h e

snow s u r f a c e a s w e l l a s t h e ho r i zon ta l component of t h e wind. Above about 0.05 m,

suspended t r a n s p o r t occu r s , and has been observed a t h e i g h t s up t o 1000 m i n

Western Canada. The f a l l v e l o c i t i e s of blowing snow p a r t i c l e s a r e i n t h e same

range a s v e r t i c a l t u r b u l e n t v e l o c i t i e s dur ing blowing snow. A s a r e s u l t t h e r e

Page 3: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

is a n exponen t i a l dec rease i n t h e d r i f t d e n s i t y as he ight i s inc reased .

Blowing snow p a r t i c l e s a r e u sua l ly metamorphosed fragments of t h e s u r f a c e

snow cover and bear l i t t l e s i m i l a r i t y t o f a l l i n g snow c r y s t a l s . The snow f r ag -

ments a r e abraded dur ing s a l t a t i o n and r a p i d l y become rounded, though occasion-

a l l y somewhat e l l i p s o i d (Schmidt, 1981). During suspended t r a n s p o r t , enhanced

sub l ima t ion f u r t h e r rounds and smooths t h e p a r t i c l e s . The d e n s i t y of blowing

snow p a r t i c l e s is approximately equal t o that of i c e . Thus blowing snow par-

t i c l e s approach t h e " o p t i c a l l y i d e a l " i c e sphere more c l o s e l y than do o t h e r

forms of snow.

The s i z e d i s t r i b u t i o n of blowing snow p a r t i c l e s has been f i t t e d t o t h e two

parameter gamma d i s t r i b u t i o n f o r both suspended (Budd, 1966) and s a l t a t i n g

t r a n s p o r t modes (Schmidt, 1981; 1984). This d i s t r i b u t i o n has t h e form

where f ( P ) is t h e r e l a t i v e frequency of p a r t i c l e r a d i u s P a i s t h e d i s t r i b u - r r ' t i o n shape parameter, @ is t h e s c a l e parameter and r denotes a gamma func t ion .

The parameters a and f3 a r e a l s o def ined i n terms of t h e mean p a r t i c l e r a d i u s

- P (Haan, 1977) where r -

P =aB . r

The v a l u e of a is approximately 5 f o r s a l t a t i n g and 1 0 f o r suspended t r a n s p o r t .

The mean p a r t i c l e r a d i u s dec reases w i th he ight , t y p i c a l v a l u e s being 100 pm

near t h e s u r f a c e and 40 pm a t 2 m. The degree of t u rbu lence i n t h e wind can

cause P t o f l u c t u a t e f o r a given he ight . r

OPTICAL PROPERTIES OF BLOWING SNOW

The e lec t romagnet ic t r ansmi t t ance through a d i s p e r s i v e media is t h e r a t i o

of t h e l i g h t i n t e n s i t y t r ansmi t t ed through t h e media t o t h a t i n t e n s i t y t r a n s m i t t e d

wi thout t h e s c a t t e r i n g and abso rp t ion e f f e c t s of t h e media. Following t h e

Page 4: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

Bouger-Lambert law, t h e t r ansmi t t ance T through an ensemble of small p a r t i c l e s

i s found from t h e l e n g t h of t ransmiss ion L and t h e e x t i n c t i o n c o e f f i c i e n t ah f o r

t h e wavelength h considered, where

The e x t i n c t i o n c o e f f i c i e n t i s a func t ion of t h e c ross - sec t iona l a r e a of p a r t i c l e s

per u n i t volume and t h e e x t i n c t i o n e f f i c i e n c y Q of t h e p a r t i c l e s . Thus, e

I n Eq. 4 N i s t h e number of p a r t i c l e s per u n i t volume of atmosphere, and

dP deno tes t h e i n t e g r a l of P over t h e r a d i u s range. r

The e x t i n c t i o n c o e f f i c i e n t can be expressed i n terms of t h e d r i f t d e n s i t y

rl by t h e fol lowing s u b s t i t u t i o n . The d r i f t d e n s i t y i s def ined as

r

L

where p is t h e d e n s i t y of snow p a r t i c l e s . S u b s t i t u t i n g t h e d r i f t d e n s i t y i n t o i

Eq. 4 and i n t e g r a t i n g over t h e p a r t i c l e r a d i u s y i e l d s

Thus, t h e e x t i n c t i o n c o e f f i c i e n t is a func t ion of n , a, 6 and A .

The v a r i a t i o n of Q wi th P and h must be def ined t o so lve Eq. 6. I n e r

c l a s s i c a l geometr ical o p t i c s Q i s considered equal t o 2.0, an approximation e

which i s on ly v a l i d f o r p a r t i c l e s t h a t a r e l a r g e wi th r e s p e c t t o t h e l i g h t

wavelength. For smal le r p a r t i c l e s Q i s a func t ion of t h e p a r t i c l e s i z e para- e

meter x = 2nP /A and t h e complex index of r e f r a c t i o n . This func t ion can be r

c a l c u l a t e d us ing t h e Mie complex angular momentum approach t o l i g h t s c a t t e r i n g

(van d e Hu l s t , 1957). However, even t h e f a s t e s t a lgor i thms (Wiscombe, 1980;

Page 5: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

Ungut e t a l . , 1981) can r e q u i r e excess ive computing time, p a r t i c u l a r l y when

x i s l a r g e and a range of s c a t t e r i n g ang le s and s i z e parameters a r e cons idered .

Nussenzveig and Wiscombe (1980) have proposed asymptot ic approximations t o t h e

e x t i n c t i o n e f f i c i e n c y based on Mie theory. These c a l c u l a t i o n s e x h i b i t e r r o r s of

l e s s t han 0.01% when compared t o exac t Mie c a l c u l a t i o n s and a r e w e l l s u i t e d t o

a p p l i c a t i o n s where an ensemble of non-uniform p a r t i c l e s a r e considered.

Blowing snow p a r t i c l e s a r e e s s e n t i a l l y i c e spheres , f o r which I r v i n e and

P o l l a c k (1968) have c a l c u l a t e d t h e r e a l and Fmaginary components of t h e index

of r e f r a c t i o n f o r v a r i o u s wavelengths. Using t h e s e va lues , t h e e x t i n c t i o n

e f f i c i e n c y Q has been c a l c u l a t e d us ing Nussenzveig and Wiscombe's (1980) a lgo r - e

i t h m . The r e s u l t s a r e p l o t t e d a g a i n s t t h e snow p a r t i c l e r a d i u s f o r v a r i o u s

wavelengths i n Fig. 1. Note t h a t f o r X = 300 nm, Q i s w i t h i n 1% of 2.0 f o r e

p a r t i c l e s g r e a t e r than 50 urn i n rad ius . The corresponding r a d i i f o r which Q is e

w i t h i n 1% of 2.0 f o r A = 600 nm i s 95 pm and f o r X = 1.06 pm i s 168 pm. Qe a t

X = 2 pm i s never c o n s i s t e n t l y w i t h i n 1% of 2.0. For blowing snow, t h e d i f f e r -

ence between t h e geometr ica l o p t i c s and ~ i e theory Q becomes more pronounced as e

wavelength inc reases and extends t o l a r g e r p a r t i c l e s i z e s . However, a t a l l

wavelengths, t h e smal le r p a r t i c l e s e x h i b i t g r e a t e r e x t i n c t i o n e f f i c i e n c i e s t han

do l a r g e r p a r t i c l e s .

The behaviour of t h e e x t i n c t i o n c o e f f i c i e n t can be demonstrated by i t s

e f f e c t on t h e meteoro logica l v i s u a l range, a n i n v e r s e l i n e a r f u n c t i o n of a The X '

meteoro logica l v i s u a l range V is t h e maximum d i s t a n c e a t which a n "averageH eye

can d i s t i n g u i s h a b l ack o b j e c t of lo i n v i s u a l angle . Koschmieder's d e f i n i t i o n

of v i s u a l range a t a g iven wavelength (Middleton, 1952) is;

While t h e concept of "v isua l" range becomes a b s t r a c t o u t s i d e of t h e v i s i b l e

spectrum, i t i s a s tandard meteorological v a r i a b l e and a u s e f u l s u r r o g a t e f o r

t h e e x t i n c t i o n c o e f f i c i e n t .

Page 6: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

o 20 40 60 80 100 120 140 ieo ieo zoo 220 240 zeo zeo

S N O W PARTICLE RADIUS C m i c r . >

'e 1. Mie Ex t inc t ion E f f i c i e n c i e s . Calculated f o r blowing snow us ing Nussenzveig and Wiscombe's (1980) asymptot ic approximation f o r wavelengths of 300 nm , 600 nm ---- , 1.06 pm - - - and 2.0 pm - . - . The geometr ical o p t i c s approximation i s 2.Q.

Ca lcu la t ion of V involves combining Eqs. 6 and 7 , d e f i n i n g t h e p a r t i c l e X

s i z e d i s t r i b u t i o n parameters and so lv ing f o r v a r i o u s wavelengths and d r i f t

d e n s i t i e s . Budd (1966) and Schmidt (1982) suggest f o r suspended blowing snow

p a r t i c l e r a d i i t h a t a = 1 0 is a reasonable va lue . Pomeroy e t a l . (1985) demon-

strate t h a t f o r a given P even a 50% v a r i a t i o n i n a r e s u l t s i n a n i n s i g n i f i - r ' c a n t change i n a when in t eg ra t ed over t h e p a r t i c l e s i z e d i s t r i b u t i o n . The

v i s u a l range through blowing snow as a func t ion of d r i f t d e n s i t y f o r a = 10 , a

v a r i e t y of X and t h e suspended range of P has been c a l c u l a t e d and is p l o t t e d i n r

Fig. 2. Var i a t ion i n wavelength from t h e u l t r a v i o l e t t o near i n f r a r e d r e s u l t s

i n a v i s u a l range v a r i a t i o n of between 1 .5 t o 8.3% wi th o t h e r f a c t o r s cons tan t .

However, v a r i a t i o n of t h e mean p a r t i c l e r a d i u s through i ts range f o r suspended

blowing snow r e s u l t s i n v i s u a l range v a r i a t i o n of between 52.9 and 56.2% wi th

o t h e r f a c t o r s cons tant . The mean p a r t i c l e s i z e appears t o be an important f a c t o r

a f f e c t i n g t h e blowing snow d r i f t d e n s i t y - v i s u a l range r e l a t i o n s h i p .

Page 7: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

MP4

MPR MPR

. O 1 I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I -01 .05 . 10 . 50 1.00 5. 00

micr.

micr. rnior.

DRIFT DENSITY ~ ~ / r n 3 >

Figure 2. Visual Range i n Blowing Snow. - Calcula ted f o r a gamma d i s t r i b u t i o n of p a r t i c l e r a d i i a of 10 , Pr of 40, 50 and 90 pm and wavelengths of 300, 600, 1006 and 2000 nm though t h e wavelengths a r e not i n d i - v i d u a l l y d i sce rnab le . Budd e t a l . ' s (1966) obse rva t ions a r e p l o t t e d a s *.

Meteorological v i s u a l ranges ( v i s i b l e spectrum) and d r i f t d e n s i t i e s a t a

2-m he igh t were measured i n t h e A n t a r c t i c by Budd e t a l . (1966). These d a t a a r e

a l s o p l o t t e d i n Fig. 2 and correspond t o t h e t h e o r e t i c a l p r e d i c t i o n s us ing P = r

40 pm. While Budd e t a l . (1966) do no t provide t h e 7 va lue from t h e i r obser-

v a t i o n s , Budd (1966) i n d i c a t e s a n expected of 40-45 pm a t a 2-m he igh t f o r

s i m i l a r cond i t i ons . The d a t a of Budd e t a l . , while spa r se , ag rees w e l l w i t h t h e

r e s u l t s of t h e t h e o r e t i c a l model.

OPTICAL DETECTION OF BLOWING SNOW

The wavelength and p a r t i c l e s i z e dependence of t h e d r i f t dens i ty -ex t inc t ion

c o e f f i c i e n t r e l a t i o n s h i p sugges ts a t l e a s t two approaches t o t h e d e t e c t i o n of

blowing snow p r o p e r t i e s . One approach involves measuring t h e t r ansmi t t ance

through blowing snow wi th opto-e lec t ronic d e t e c t o r s a t two widely sepa ra t ed

wavelengths and then so lv ing f o r both t h e d r i f t d e n s i t y and 6 from t h e p a r t i c l e

s i z e d i s t r i b u t i o n . Another approach involves measuring t h e time averaged

Page 8: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

t r a n s m i t t a n c e of an ensemble of p a r t i c l e s w i th a wide beam d e t e c t o r and count ing

i n d i v i d u a l p a r t i c l e s w i t h a narrow beam d e t e c t o r . Our o b j e c t i v e of a n inexpen-

s i v e and r e l i a b l e f i e l d component could no t be m e t by t h e f i r s t approach, as

d e t e c t o r s s e n s i t i v e t o 6-12 pm wavelengths a r e both expensive and d i f f i c u l t t o

ma in t a in i n t h e f i e l d . The second approach uses d e t e c t o r s and sources which a r e

commonly used i n t h e f i b r e - o p t i c s communications indus t ry . We chose t h e second

approach and d e t a i l i t here .

The Div i s ion of Hydrology e x t i n c t i o n meter (wide beam d e t e c t o r ) u ses a

photodiode d e t e c t o r of 1300 pm r a d i u s mounted 0.15 m from a co l l ima ted LED

source of equ iva l en t diameter . The d e t e c t o r and LED a r e s p e c t r a l l y matched,

w i t h a peak wavelength of 900 nm, t o reduce t h e r e l a t i v e i n t e n s i t y of ambient

l i g h t . The LED i s modulated t o a l l ow f u r t h e r compensation f o r ambient l i g h t

l e v e l s . The e x t i n c t i o n meter measures l i g h t i n t e n s i t y , which is r e fe renced t o

t h e una t tenuated i n t e n s i t y t o provide t h e t r ansmi t t ance and fo l lowing Eq. 3 , t h e

e x t i n c t i o n c o e f f i c i e n t . For d e t e c t o r s whose angular r a d i u s w i t h t h e p a r t i c l e is

g r e a t e r t han CL 0° , t h e e x t i n c t i o n e f f i c i e n c y must be c o r r e c t e d f o r forward

s c a t t e r i n g of l i g h t i n t o t h e d e t e c t o r . These c o r r e c t i o n s can be made by calcu-

l a t i n g forward s c a t t e r i n g i n t e n s i t i e s us ing t h e Mie theory f o r a range of angu-

lar r a d i i def ined by t h e p o s s i b l e p a r t i c l e p o s i t i o n s i n t h e beam and t h e de tec-

t o r r a d i u s . However, computat ional t imes (Wiscombe, 1980) a r e excess ive .

van d e Hu l s t (1957), Hodkinson and Greenleaves (1963) and Ungut et a l . (1981)

have shown t h a t f u l l geometr ica l o p t i c s approximations can be used f o r a c c u r a t e

l i g h t s c a t t e r i n g computations, e s p e c i a l l y when forward ang le s a r e l e s s t han 20'

and a range of wavelengths and p a r t i c l e s i z e s a r e used. These approximations

are v a l i d f o r t h e index of r e f r a c t ion , wavelength and range of p a r t i c l e s i z e s

used i n t h i s a p p l i c a t i o n .

The e x t i n c t i o n e f f i c i e n c y , Qe , as c a l c u l a t e d us ing t h e method of Nussenzveig

and Wiscombe (1980) is c o r r e c t e d f o r forward s c a t t e r i n g from Fraunhoffer d i f f r a c t i o n

Page 9: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

and r e f r a c t i o n without i n t e r n a l r e f l e c t i o n . Pomeroy e t a 1 . (1985) have shown

t h a t forward s c a t t e r i n g from e x t e r n a l l y r e f l e c t e d l i g h t is l e s s t han 0.1% of

rece ived i n t e n s i t i e s i n blowing snow. The d i f f r a c t i o n c o r r e c t i o n AQd t o Q e

accounts f o r l i g h t d i f f r a c t e d forward by t h e p a r t i c l e i n t o a s o l i d ang le de f ined

by t h e d e t e c t o r r a d i u s Dr and d i s t a n c e R from p a r t i c l e t o d e t e c t o r . Hodkinson

and Greenleaves (1963) p re sen t a formula f o r AQ based on t h e work of van d e d

Hu l s t (1957). This formula is i n t e g r a t e d over t h e d e t e c t i o n d i s t a n c e L t o

provide a s p a t i a l l y averaged c o r r e c t i o n

where x = 27rP / A and J and J1 a r e ze ro th and f i r s t o r d e r Bessel f u n c t i o n s of r o

t h e f i r s t kind r e spec t ive ly . For t h e e x t i n c t i o n meter , t h e magnitude of AQd can

b e 50% of Q and i n c r e a s e s w i th p a r t i c l e s i z e . e

The r e f r a c t i o n c o r r e c t i o n AQ is a func t ion of t h e complex index of r e f r a c - r

t i o n m and t h e p a r t i c l e d e t e c t o r geometry. The formula presented by Hodkinson

and Greenleaves (1963) is i n t e g r a t e d over t h e d e t e c t i o n d i s t a n c e t o g ive

where A = cos8/2, B = sec48/2 , C = s in8 and 8 = arcsin(Dr/R). I n p r a c t i s e a

s i m p l i f i e d express ion can be f i t t o t h e r e s u l t s of Eq. 9 once t h e index of

r e f r a c t i o n has been s e l e c t e d . For t h e e x t i n c t i o n meter t h e magnitude of AQ is r

less than 1% of Q and is independent of p a r t i c l e s i z e . e

The e f f e c t i v e e x t i n c t i o n e f f i c i e n c y Q i s t h e Mie approximation Q cor- e f e

r e c t e d f o r forward s c a t t e r i n g and i s a func t ion of t h e d e t e c t o r geometry and t h e

r e f r a c t i v e q u a l i t i e s of t h e l i g h t d i s p e r s i v e media. Thus

Qe and Q a r e p l o t t e d a s func t ions of t h e snow p a r t i c l e r a d i u s f o r t h e e x t i n c t i o n e f

meter conf igu ra t ion i n Fig. 3. There is a dramat ic drop i n t h e e f f e c t i v e

Page 10: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

MIE EXTINCTION EFFICIENCY

EFFECTIVE HIE EXTINCTION EFFICIENCY

1 . o L 0 20 40 80 80 100 120 140 160 180 200

SNOW PARTICLE RADIUS <mi cr. )

Figure 3. Ex t inc t ion E f f i c i e n c i e s f o r t h e Ex t inc t ion Meter. The Mie e x t i n c t i o n e f f i c i e n c y and e f f e c t i v e e x t i n c t i o n e f f i c i e n c y c o r r e c t e d f o r d i f f r a c - t i o n and r e f r a c t i o n a r e c a l c u l a t e d f o r t h e Div is ion of Hydrology Ex t inc t ion Meter .

e x t i n c t i o n e f f i c i e n c y as t h e p a r t i c l e r a d i u s i n c r e a s e s from 15 t o 50 pm. I n

terms of geometr ica l o p t i c s , f o r l a r g e r p a r t i c l e s almost a l l of t h e d i f f r a c t e d

component of s c a t t e r e d l i g h t i s s c a t t e r e d forward i n t o t h e d e t e c t o r . While t h i s

f e a t u r e reduces t h e s e n s i t i v i t y of t h e gauge, t h e e f f e c t of t h e p a r t i c l e s i z e

d i s t r i b u t i o n on t h e e x t i n c t i o n c o e f f i c i e n t w i l l be g r e a t e r t han f o r t h e v i s u a l

r ange case .

The performance of t h e e x t i n c t i o n meter can be modelled us ing Eqs. 3 , 6 , 8,

9 and 1 0 and s u b s t i t u t i n g Qef f o r Qe. The r e s u l t s a r e shown i n Fig. 4. A

v a r i a t i o n i n t h e mean snow p a r t i c l e r a d i u s through i ts normal range can r e s u l t

i n t r ansmi t t ance d i f f e r e n c e s of 0.35 f o r a cons t an t d r i f t d e n s i t y . This beha-

v i o u r n e c e s s i t a t e s t h e de t e rmin ia t ion of t h e p a r t i c l e s i z e d i s t r i b u t i o n t o

c a l i b r a t e t h e t r ansmi t t ance - d r i f t d e n s i t y r e l a t i o n s h i p . However, t h e v a r i a -

t i o n w i t h p a r t i c l e s i z e provides a t o o l f o r i n d i r e c t measurement of t h e s i z e

d i s t r i b u t i o n .

Page 11: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

MPR.

MPR.

MPR.

100 mtor

BO micr

00 mior

40 micr

0.0- I I I 1111 1 1 1 l 1 1 1 1 I 1 1 1 1 1 1 1 I 1111 n o o o 0 . . r. Y' 2 d €i d

4 0 n

OR I F T DENS I T Y < g / m g >

Figure 4. Ex t inc t ion Meter Performance. Transmit tance c a l c u l a t e d f o r a gamma d i s t r i b u t i o n of a p r t i c l e r a d i i a of 1 0 and P of 40, 60, 80 and r 100 p.

The Divis ion of Hydrology p a r t i c l e d e t e c t o r (narrow beam d e t e c t o r ) u ses a

photodiode d e t e c t o r of 150 pm r a d i u s mounted 0.02 m from a co l l ima ted LED source

of equiva len t diameter . The peak wavelength of t ransmiss ion f o r t h i s system i s

820 nm. The p a r t i c l e d e t e c t o r counts t h e number of p a r t i c l e s per second whose

i n d i v i d u a l t r ansmi t t ances drop beyond t h e threshold l e v e l f o r d e t e c t i o n . The

t ransmi t tance , T, a s s o c i a t e d w i t h a s i n g l e p a r t i c l e i n t e r c e p t i n g a co l l imated

l i g h t beam is c a l c u l a t e d fol lowing Zuev (1970). Thus

T = T 0 - ( 1 ~ ~ 1 ~ ~ ~ 1 Qef 7 (11

where T is t h e t r ansmi t t ance antecedent t o t h e beam i n t e r c e p t i o n , I is t h e o r

i n t e r c e p t e d r a d i u s of t h e p a r t i c l e and D is t h e r a d i u s of t h e d e t e c t o r (and r

beam). The in t e rcep ted p a r t i c l e r a d i u s is t h e r a d i u s of a c i r c l e of equ iva l en t

a r e a t o t h a t area of t h e p a r t i c l e which is i n t e r c e p t e d by t h e beam. It is a

f u n c t i o n of bo th t h e p a r t i c l e r a d i u s and t h e c ros s - sec t iona l t r a j e c t o r y of t h e

p a r t i c l e through t h e beam.

Page 12: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

The e f f e c t i v e e x t i n c t i o n e f f i c i e n c y as a f u n c t i o n of t h e i n t e r c e p t e d

p a r t i c l e r a d i u s is c a l c u l a t e d f o r t h e p a r t i c l e d e t e c t o r i n t h e same manner a s

f o r t h e e x t i n c t i o n meter. The r e s u l t s f o r t h e p a r t i c l e d e t e c t o r c o n f i g u r a t i o n

a r e p l o t t e d i n Fig. 5. Most of t h e d i f f r a c t e d l i g h t from p a r t i c l e s w i th I r

g r e a t e r t han 60 pm is s c a t t e r e d forward i n t o t h e d e t e c t o r . The e f f e c t of i n t e r -

f e r e n c e phenomena between v a r i o u s o r d e r s of s c a t t e r i n g r a y s is expressed i n t h e

incons i s t ency i n Q f o r r a d i i above 70 w. . ef

The t r ansmi t t ance a s s o c i a t e d wi th an i n t e r c e p t e d p a r t i c l e r a d i u s and t h e

v a r i a t i o n i n t h i s t r ansmi t t ance wi th a p a r t i c l e c r o s s i n g p o s i t i o n between source

and d e t e c t o r can be examined by c a l c u l a t i n g Q without i n t e g r a t i n g over d i s - ef

t a n c e from t h e d e t e c t o r (see Eqs. 8 and 9 ) . This Q (R) is h o r i z o n t a l l y spe- ef

c i f i c a s opposed t o t h e i n t e g r a t e d Q p l o t t e d i n Fig. 5. Using Eq. 11, t h e ef

t r a n s m i t t a n c e is c a l c u l a t e d a s a func t ion of I and R and t h e r e s u l t s p l o t t e d i n r

Fig. 6. The p a r t i c l e s have g r e a t e r l i g h t ex t ingu i sh ing e f f e c t s as d i s t a n c e

i n c r e a s e s from t h e d e t e c t o r . Incons i s t enc i e s i n some v a l u e s of T r e s u l t from

d i f f r a c t i o n i n t e r f e r e n c e e f f e c t s which appear more seve re when no t averaged o u t

as i n Fig. 5. These e f f e c t s a r e l e s s prominent when incoherent l i g h t and a

range of p a r t i c l e s i z e s a r e considered.

I f t h e t h re sho ld t r ansmi t t ance of d e t e c t i o n f o r t h e p a r t i c l e d e t e c t o r was

1 . 0 and t h e p a r t i c l e r a d i u s much l e s s than t h e beam r a d i u s , t hen t h e number of

snow p a r t i c l e s per u n i t volume of atmosphere N could be determined from t h e

number of p a r t i c l e s counted per second, 4 , t h e sampling a r e a of t h e beam per-

pendicular t o t h e p a r t i c l e f l u x , As, and t h e h o r i z o n t a l p a r t i c l e speed which i s

equ iva l en t t o t h e h o r i z o n t a l wind speed, u, where

N = 4/uAs . (12)

However, because t h e l i g h t beam is r e l a t i v e l y narrow, t h e sampling a r e a d i f f e r s

f o r each p a r t i c l e s i z e and i s a f u n c t i o n of t h e v e r t i c a l d e v i a t i o n of p a r t i c l e

t r a j e c t o r i e s from t h e beam c e n t r e f o r which Ir is g r e a t e r than some th re sho ld .

Page 13: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

M I € EXTINCTION EFFICIENCY

W

W

W 1.2 - 1.1 - 1.0'-

o 20 40 60 eo 100 1 2 0 1 4 0 180 i e o 200

SNOW PARTICLE RADIUS <micr. >

Figure 5. Extinction Eff ic iencies fo r the P a r t i c l e Detector. The Mie extinc- t ion e f f ic iency and e f fec t ive ex t inc t ion eff ic iency corrected f o r d i f f r ac t i on and re f rac t ion a r e calculated fo r the Division of Hydrology P a r t i c l e Detector. .

, - - - - - - - - - - - 1 rod. 15 m i o r

- - - - - - - rod. - 40 m i o r

- - - - - - - - rod. - 70 m i o r - -

W U z < - 6

- - - - - - - - - - - I-

t. rod. - 100 m i o r

V) z < . 4 - - - - - - - - - (I: I-

.3 - - - - - - - - - - - - - - - - - - -

. I - - - - - - - m22 . 00 .01 .02 r a k - 135 m i o r 0. 0

DISTANCE FROM PARTICLE TO DETECTOR <m>

Figure 6. Single P a r t i c l e Extinction fo r the P a r t i c l e Detector. Transmittance calculated f o r s ing le pa r t i c l e s of 15, 40, 70, 100 and 135 pro radius a t various dis tances from the detector .

Page 14: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

A complete d i s c u s s i o n of techniques f o r c a l c u l a t i n g A from t h e p a r t i c l e and S

beam geometr ies is included i n Pomeroy e t a l . (1985).

Because of background e l e c t r o n i c n o i s e l e v e l s and h igh p a r t i c l e speeds

(% 1 5 m/s) a c t u a l t h re sho ld t r ansmi t t ances of d e t e c t i o n a r e i n t r i n s i c t o i nd i -

v i d u a l d e t e c t o r s and range from 0.90 t o 0.995. A t h r e sho ld r a d i u s i s def ined as

t h e i n t e r c e p t e d r a d i u s which r e s u l t s i n a h o r i z o n t a l l y averaged t r ansmi t t ance a t

t h e th re sho ld of d e t e c t i o n . F igure 6 shows t h a t t h e e r r o r s i n u s ing t h e mean

t r ansmi t t ance become small as a t r ansmi t t ance of 1 .0 i s approached. Equation 12

i s modified t o account f o r t h i s th reshold r a d i u s by d iv id ing t h e number d e n s i t y

of p a r t i c l e s g r e a t e r than t h e th re sho ld f o r d e t e c t i o n by t h e cumulat ive f r e -

quency of p a r t i c l e s g r e a t e r than t h i s th reshold . To account f o r sampling a r e a s

s p e c i f i c t o each P t h e frequency of each P is d iv ided by t h e sampling a r e a r ' r

f o r t h a t r a d i u s . Using t h e gamma d i s t r i b u t i o n , t h e r e s u l t i n g form of t h e

equat ion i s

I n Eq. 1 3 A (P ) is t h e sampling a r e a f o r p a r t i c l e s of r a d i u s Pr and Ptr is t h e s r

p a r t i c l e r a d i u s a t t h e threshold d e t e c t i o n (when Ir = Pr) . Equation 1 3 can be

s u b s t i t u t e d i n t o Eq. 4 and wi th t h e e x t i n c t i o n c o e f f i c i e n t known from t h e ex t inc-

t i o n meter and a assumed a cons t an t , 6 can be found. With 6 known, a form of

Eq. 6 can be p r e c i s l y solved f o r t h e d r i f t dens i ty . ,

Thus t h e i n p u t s f o r t h i s blowing snow measuring system a r e a n assumed a,

t h e e x t i n c t i o n c o e f f i c i e n t from t h e e x t i n c t i o n meter, t h e number of p a r t i c l e s

counted per second by t h e p a r t i c l e d e t e c t o r and t h e mean windspeed a t t h e

h e i g h t of d e t e c t i o n . Outputs of t h e system a r e t h e d r i f t d e n s i t y of blowing

snow, t h e s i z e d i s t r i b u t i o n of snow p a r t i c l e s and t h e product nu which i s t h e

mass f l u x of blowing snow.

Page 15: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

d

CONCLUSIONS

C a l c u l a t i o n of t h e Mie e x t i n c t i o n e f f i c i e n c i e s f o r blowing snow p a r t i c l e s

shows t h e c l a s s i c a l geometr ica l o p t i c s approximation of Qe = 2.0 i s n o t v a l i d

f o r p a r t i c l e r a d i i l e s s than 50 pm i n t h e near u l t r a v i o l e t and l e s s than 95 pm

i n t h e middle v i s i b l e range. The geometr ica l o p t i c s approximation is no t v a l i d

a t a l l f o r t h e normal range of blowing snow p a r t i c l e r a d i i when wavelengths i n

t h e nea r i n f r a r e d a r e used. S ince Q can range above 2.5 f o r p a r t i c l e r a d i i e

less than 15 u m i n v i s i b l e and near i n f r a r e d wavelengths, use of Mie approxi-

mations t o c a l c u l a t e t h e e x t i n c t i o n e f f i c i e n c y is recommended.

The v i s i b l e range - d r i f t d e n s i t y r e l a t i o n s h i p is i n v e r s e and l o g a r i t h m i c .

However, t h e r e l a t i o n s h i p i s almost l i n e a r f o r t h e range of d r i f t d e n s i t i e s from

0.01 t o 0.1 g/m3 f o r which t h e v i s i b l e range drops from approximately 15 t o 1 . 5

km. This h e l p s t o exp la in t h e low v i s i b i l i t i e s f r e q u e n t l y experienced a t "eye"

l e v e l dur ing snow storms, d e s p i t e t h e r e l a t i v e l y low d r i f t d e n s i t i e s found a t

t h e 1 .5 t o 2.5 m he igh t s . A range of wavelengths from 300 t o 2000 nm produces a

r e l a t i v e l y small change i n t h e v i s i b l e range, no wavelength possess ing c l e a r l y

s u p e r i o r l i g h t t r ansmis s ion c h a r a c t e r i s t i c s i n t h i s range. However, v a r i a t i o n

i n t h e p a r t i c l e s i z e d i s t r i b u t i o n over i ts blowing snow range produces s i g n i f i -

c a n t e f f e c t s on t h e v i s i b i l i t y w i th approximately 55% change over t h e range of

mean p a r t i c l e r a d i i . The smal le r p a r t i c l e s e x h i b i t lower v i s i b l e ranges. These

p a r t i c l e s predominate a t eye l e v e l , another f a c t o r i n low v i s i b i l i t i e s a t t h i s

he igh t .

The c o r r e c t i o n r equ i r ed t o t h e e x t i n c t i o n e f f i c i e n c y f o r forward s c a t t e r i n g

of d i f f r a c t e d l i g h t i n t o t h e d e t e c t o r s i s s i g n i f i c a n t , being approximately 50%

reduc t ion i n Q f o r l a r g e r blowing snow p a r t i c l e s . The s t r o n g v a r i a t i o n w i t h e

p a r t i c l e s i z e of t h i s c o r r e c t i o n impl ies t h a t t h e use of d e t e c t o r s w i t h r e l a -

t i v e l y wide s c a t t e r i n g acceptance ang le s can enhance t h e v a r i a t i o n of t h e

e f f e c t i v e e x t i n c t i o n e f f i c i e n c y wi th p a r t i c l e s i z e . This v a r i a t i o n permi ts t h e

Page 16: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

use of e x t i n c t i o n meters i n p a r t i c l e s i z e de terminia t ion a s wel l a s d r i f t

dens i ty measurement.

The t h e o r e t i c a l c a l i b r a t i o n of a p a r t i c l e d e t e c t o r is complex, because

t h e sampling a r e a v a r i e s with p a r t i c l e s i z e , p a r t i c l e t r a j e c t o r i e s d iverge

from t h e beam c e n t r e r e s u l t i n g i n smaller in te rcep ted p a r t i c l e r a d i i and no

t ransmit tance l e v e l is uniquely associa ted with an in te rcep ted rad ius . The

i d e n t i f i c a t i o n of a p a r t i c l e s i z e from i ts individual t ransmit tance is there-

f o r e unl ike ly . However, when l a r g e numbers of p a r t i c l e s a r e considered, t h e

number of p a r t i c l e s g r e a t e r than some threshold can be accura te ly est imated.

This va lue wi th t h e e x t i n c t i o n c o e f f i c i e n t measured by an e x t i n c t i o n meter i s

used t o so lve f o r t h e p a r t i c l e s i z e d i s t r i b u t i o n parameters. With t h e s i z e

d i s t r i b u t i o n solved, t h e d r i f t dens i ty can be p rec i se ly ca lcu la ted . Thus t h e

o p t i c a l de tec t ion system presented here can measure both t h e quan t i ty and s i z e

of blowing snow p a r t i c l e s . These parameters a r e u s e f u l i n c a l c u l a t i n g v i s i b l e

range, t r anspor t r a t e s and sublimation r a t e s i n blowing snow.

REFERENCES

Budd, W.F. 1966. The d r i f t i n g of non-uniform snow p a r t i c l e s . Stud. Anta rc t i c

Meteorol., Am. Geophys. Union, Antact. Res. Ser . , 9:59-70.

Budd, W.F., W . R . J . Dingle and U. Radok. 1966. The Byrd snow d r i f t p r o j e c t :

Out l ine and bas ic r e s u l t s . Stud. Antarc t ic Meteorol., Am. Geophys.

Union, Antarct . Res. Ser . , 9:71-134.

Haan, C.T. 1977. S t a t i s t i c a l Methods i n Hydrology. The Iowa S t a t e Universi ty

P ress , Ames, Iowa. 378 p.

Hodkinson, J . R . and I. Greenleaves. 1963. Computations of l i g h t - s c a t t e r i n g

and e x t i n c t i o n by spheres according t o d i f f r a c t i o n and geometrical o p t i c s ,

and some comparisons with t h e Mie theory. J. Opt. Soc. Am., 53 (5) : 577-588.

I rv ine , W.M. and J . B . Pollack. 1968. In f ra red o p t i c a l p r o p e r t i e s of water

and i c e spheres. Icarus . 8:324-360.

Page 17: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

b

Landon-Smith, I .H . and B. Woodberry. 1965. The p h o t o e l e c t r i c meter ing of

wind-blown snow. ANARE In t e r im Reports, Ser.A(IV), 79. Antarc t . Div.,

Dept. of Ext. A f f a i r s , Melbourne. pp. 1-17.

Mellor, M. 1966. Light s c a t t e r i n g and p a r t i c l e agg rega t ion i n snow-storms.

J. G lac io l . , 6(44):237-248.

Middleton, W.E.K. 1952. Vision Through t h e Atmosphere. Toronto, Univ. of

Toronto Press . 250 p.

Nussenzveig, H.M. and W . J . Wiscombe. 1980. E f f i c i ency f a c t o r s i n Mie s c a t t e r i n g .

Phys. Rev. L e t t r s . , 45 (18) : 1490-1494.

Pomeroy, J . W . , T. Brown and D.H. Male. 1985. Measurement of blowing snow

p r o p e r t i e s us ing o p t i c a l a t t e n u a t i o n devices . Proceedings, Snow Prope r ty

Measurement Workshop/Symposium. Ottawa. N.R.C.C. Snow and I c e Subcomm.

Tech. Mem.

Schmidt, R.A. 1981. Es t imates of th reshold windspeed from p a r t i c l e s i z e s i n

blowing snow. Cold Reg. Sc i . Technol., 4:187-193.

Schmidt, R.A. 1982. V e r t i c a l p r o f i l e s of wind speed, snow concen t r a t ion and

humidity i n blowing snow. Boundary Layer Meteorol. , 23:223-246.

Schmidt, R.A. 1984. Measuring p a r t i c l e s i z e and snowfa l l i n t e n s i t y i n d r i f t i n g

snow. Cold Reg. Sc i . Technol., 9:121-129.

Schmidt, R.A., R. Meister and H. Gubler . 1984. Comparison of snow d r i f t i n g

measurements a t a n a l p i n e r i d g e c r e s t . Cold Reg. Sc i . Technol., 9:131-141.

Seagraves, M.A. 1984. P r e c i p i t a t i o n r a t e and e x t i n c t i o n i n f a l l i n g snow.

J. Atmos. Sc i . , 41(11) :1827-1835.

Tabler , R.D. 1984. Using v i s u a l range d a t a f o r highway ope ra t ions i n blowing

snow. Opt. Eng., 23 (1) : 55-61.

Ungut, A., G. Grehan and G. Gouesbet. 1981. Comparisons between geometr ica l

o p t i c s and Lorenz-Mie theory. Appl. Opt., 20(17):2911-2918.

Page 18: 11 - usask.ca · Nussenzveig and Wiscombe (1980) have proposed asymptotic approximations to the extinction efficiency based on Mie theory. These calculations exhibit errors of less

van de Hulst, H.C. 1957. Light Scattering by Small Particles. John Wiley

and Sons, New York. 470 p.

Wiscombe, W. J. 1980. Improved Mie scattering algorithms. Appl. Opt.,

19(9) : 1505-1509.

Zuev, V.E. 1970. Propagation of Visible and Infrared Radiation in the

Atmosphere. Trans. by D. Lederman. Israel Programme for Scientific

Translations, London. 405 p.