1.1. Ingenieria Sismologica

download 1.1. Ingenieria Sismologica

of 126

Transcript of 1.1. Ingenieria Sismologica

  • 7/25/2019 1.1. Ingenieria Sismologica

    1/126

    INGENIERIA SISMORRESISTENTEFundamentos de Sismologa e Ingenieria Sismolgica

    M.I. Jos Velsquez VargasMaestra en Ing. Sismorresistente e Ing. Sismolgica (Rose School, Italia)

  • 7/25/2019 1.1. Ingenieria Sismologica

    2/126

    Terremotos

    Terremoto de Pisco (15/08/2007)

    Fuente: Informe de terremotos ocurridos en el mundo - Colegio de Ingenieros del Per

    Terremoto de Chile (27/02/2010)

    Terremoto de Hait (12/01/2010)

    Terremoto de Japn (11/03/2011)

  • 7/25/2019 1.1. Ingenieria Sismologica

    3/126

    Terremoto de Ecuador (2016)

    Terremoto de Manta Mw 7.8 (16/04/2016)

    Fuente: http://earthquake.usgs.gov/

  • 7/25/2019 1.1. Ingenieria Sismologica

    4/126

    Qu es un terremoto?Son vibraciones de la corteza terrestre, generadas por distintos fenmenos, comola actividad volcnica, la cada de techos de cavernas subterrneas y hasta porexplosiones. Sin embargo, los sismos ms severos y ms importantes desde elpunto de vista de la ingeniera, son los de origen tectnico.

    Placas que conforman la

    corteza terrestre

  • 7/25/2019 1.1. Ingenieria Sismologica

    5/126

    SISMICIDAD GL0BAL

    95% de la energa liberada por terremotos se originan en regionesestrechas alrededor de la Tierra: estas zona marcan los bordes delas placas tectnicas

    Sismicidad global entre 1975-1999 conterremotos de magnitude mayor a Mw5.5

  • 7/25/2019 1.1. Ingenieria Sismologica

    6/126

    Cinturn de Fuego del PacficoEst situado en las costas del ocano Pacfico y se caracteriza por concentraralgunas de las zonas de subduccin ms importantes del mundo, lo que ocasionauna intensa actividad ssmica y volcnica en las zonas que abarca.Con ms de 450 volcanes concentra ms del 75 % de los volcanes activos einactivos del mundo. Alrededor del 90 % de los terremotos del mundo y el 80 %de los terremotos ms grandes del mundo se producen a lo largo del Cinturn deFuego.

  • 7/25/2019 1.1. Ingenieria Sismologica

    7/126

    Qu es un terremoto?La presiones que se generan en la corteza por los flujos de magma desde elinterior de la tierra llegan a vencer la friccin que mantienen en contacto losbordes de las placas y producen cadas de esfuerzo y liberacin de enormescantidades de energa almacenada en la roca. La energa se liberaprincipalmente en forma de ondas vibratorias que se propagan a grandesdistancias a travs de las rocas de la corteza.

  • 7/25/2019 1.1. Ingenieria Sismologica

    8/126

    major eqs 8

    LOS TERREMOTOSMS GRANDESDESDE 1900

  • 7/25/2019 1.1. Ingenieria Sismologica

    9/126

    CLCULO DEL PELIGRO SSMICO

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 63 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Numeronormalizzato

    (100anni)

    Magnitudo

    7.0008, 0.18595

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 63 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Numeronormalizzato

    (100anni)

    Magnitudo

    7.0008, 0.18595

  • 7/25/2019 1.1. Ingenieria Sismologica

    10/126

    MAPA DE PELIGRO SSMICO DE PAKISTAN

  • 7/25/2019 1.1. Ingenieria Sismologica

    11/126

    Movimientodelasplac

    as

    tectnicas

    Zona dedivergencia

    Zona de fallas

    Zona de

    convergencia

  • 7/25/2019 1.1. Ingenieria Sismologica

    12/126

    Zona de divergenciaSe generan cuando las placas van en direcciones opuestas, por lo tanto seseparan. Al separarse dejan el camino abierto para que ingrese el magma desdeel centro de la tierra. Como la mayora de las zonas de divergencia estn bajo lasuperficie el magma al entrar en contacto con el agua se enfra y genera uncuerpo slido, una roca.

    En esta zona casi no se producen sismos de gran relevancia.

  • 7/25/2019 1.1. Ingenieria Sismologica

    13/126

    Zona de fallasSe producen cuando las placas van en direcciones opuestas pero paralelamente,es decir, se rozan de lado a lado. Producen sismos menores y actividad volcnicacasi nula.

    Desde San Francisco (EE. UU.) hasta la pennsula de Baja California en Mxico,es una zona de falla.

  • 7/25/2019 1.1. Ingenieria Sismologica

    14/126

    Zona de convergenciaSon zonas en donde dos placas tectnicas se dirigen al mismo lugar, por lo tantocolisionan, dando lugar a las zonas de subduccin. La placa ms densacomienza a penetrar debajo de la placa menos pesada, se produce entonces unazona de contacto directo entre ambas placas que genera gran cantidad de sismosy actividad volcnica. Generalmente son las placas ocenicas las que se hundenbajo las placas continentales.

  • 7/25/2019 1.1. Ingenieria Sismologica

    15/126

    Sismo histrico

    Megaterremoto registrado en Chile (Valdivia) el 22/05/1960, con una intensidad de 9.4 en la escala

    de Richter. Es considerado el peor terremoto en la historia de la humanidad

  • 7/25/2019 1.1. Ingenieria Sismologica

    16/126

    FALLAFractura en la roca que desarrolla

    un desplazamiento relativo

    Falla pordeslizamiento:el sentido prinicipal delmovimiento en el plano defalla es horizontal

    Falla por inmersin:

    el sentido principal delmovimiento en el plano defalla es vertical

    Falla Emerson en California:Produjo el terremoto de Landers

  • 7/25/2019 1.1. Ingenieria Sismologica

    17/126

    Fallas por inmersin (dip-slip)

    Se producen desplazamientos verticalos a lo largo del plano defalla.

    90 inclinacin es vertical. a lla n orm a l: cuando la roca en el lado del plano de la falla

    colgante (muro colgante) se desliza hacia abajo

    a ll a i nv e rs a: cuando el muro colgante se desplaza hacia arribasobre el muro de apoyo.

    Unafa l l a d e e m pu j e es un tipo especial de falla inversa en elcual el ngulo de inclinacin es pequeo (superficial). Zonas desubduccin (Cascadia en el Pacfico Noroeste) son zonas deterremotos con este tipo de fallas

    NormalInversa

  • 7/25/2019 1.1. Ingenieria Sismologica

    18/126

    earth & earthquakes 18

    Fallas de

    Inmersin

  • 7/25/2019 1.1. Ingenieria Sismologica

    19/126

    earth & earthquakes 19

    Source: John S. Shelton

    FALLA NORMAL: MURO COLGANTEABAJO

    Plano de falla

  • 7/25/2019 1.1. Ingenieria Sismologica

    20/126

    FALLASNORMALES

  • 7/25/2019 1.1. Ingenieria Sismologica

    21/126

    earth & earthquakes 21

    REVERSE FAULTS

  • 7/25/2019 1.1. Ingenieria Sismologica

    22/126

    Origen de losterremotos

    Posicin originalSIN DEFORMACIN

    Almacenamiento de energaDEFORMACIN PROGRESIVA

    Ruptura con emisin de energa: TERREMOTORDESPLAZAMIENTO PERMANENTE

  • 7/25/2019 1.1. Ingenieria Sismologica

    23/126

    Teora del Rebote Elstico

    Harry Fielding Reid postul que lasfuerzas que causan los terremotosestn muy distantes de la fuente delterremoto. El terremoto es el resultadodel rebote elstico de la energa de

    deformacin almacenada en las rocas acada lado de la falla.

    Luego del terremoto de San Francisco en 1906 (California), una huella de

    falla fue descubierta que tena un recorrido en lnea recta de 430 km. Eldesplazamiento relativo de la Tierra en un lado con respecto al otro de lafalla fue de 7 m.

  • 7/25/2019 1.1. Ingenieria Sismologica

    24/126

    Rebote Elstico

    Mecanismo de los terremotos

    Las rocas a cada lado de la falla son deformadaspor fuerzas tectnicas.

    Las rocas se flexionan y almacenan energa de

    deformacin. La friccin que mantienen unidas a las rocas es

    superada por las fuerzas tectnicas.

    El deslizamiento se inicia en el punto ms dbil (elfoco)

    Los terremotos ocurren mientras la roca

    deformada vuelve a su posicin de equilibrio(rebote elstico)

    El movimiento mueve las rocas vecinas y assucevisamente

  • 7/25/2019 1.1. Ingenieria Sismologica

    25/126

    earth & earthquakes 25

    Rplicas

    -El cambio en los esfuerzosque sigue al movimientoprinicipal crea terremotosms pequeos que sedenominan replicas.

    Terremoto y rplicasTennessee en 1811/1812

  • 7/25/2019 1.1. Ingenieria Sismologica

    26/126

    earth & earthquakes 26

    Terremotos en zonas de subduccin

    Ejemplo recient: Sumatra Mw9.0 (terremoto y tsunami)

    S C SCO Q 8

  • 7/25/2019 1.1. Ingenieria Sismologica

    27/126

    earth & earthquakes 27

    SAN FRANCISCO EARTHQUAKE APRIL 18,1906

    Fault trace 2 miles north of the Skinner Ranchat Olema. View is north.

    Fence offset by the causative fault on ranch ofE.R. Strain, 1 1/2 miles north of Bolinas Lagoon,looking northeast. The sheer offset is 8 1/2 feet;the total displacement, shown partly by crookingof fence, is 11 feet.

    Example of a strike-slip fault

  • 7/25/2019 1.1. Ingenieria Sismologica

    28/126

    earth & earthquakes 28

    ALASKA EARTHQUAKE OF MARCH 27, 1964

    Example of a thrust fault

    Hanning Bay fault scarp on Montague Island,looking northwest. Vertical displacement in

    the foreground, in rock, is about 12 feet. Themaximum measured displacement of 14 feetis at the beach ridge near the trees in thebackground.

    Hanning Bay fault on MontagueIsland, looking southwest from thebay. The fault trace on the ridge ismarked by active landslides.

  • 7/25/2019 1.1. Ingenieria Sismologica

    29/126

    earth & earthquakes 29

    SAN FERNANDO EARTHQUAKE OF FEBRUARY 9,1971

    Example of a reverse fault

    Trace of the main reverse fault where itcrosses Little Tujunga Road. By the timethis photograph was taken a dirt ramp atright had been built up the scarp. Thescarp indicates more than 1-meterreverse dip-slip movement. The fenceindicates little strike-slip displacement atthis place, which is near the last end ofthe line of surface rupture.

    Compression of freeway

  • 7/25/2019 1.1. Ingenieria Sismologica

    30/126

    MAGNITUD

    La magnitud mide la fuerza del sismo.Es proporcional a la energa elstica liberada por el terremoto.

    Se mide en base a la amplitud de onda en el sismograma considerando ladistancia epicentral.Las escalas ms comunes son:

    1) Magnitud original para sismos locales obtenida a partir delsismmetro de torsion estndar de Wood-Anderson indicado como ML oMAW de acuerdo con la nomenclatura de Karnik (1976);

    2) Magnitud a partir de ondas de cuerpo obtenida usandoinstrumentos de perodo corto o perodo largo, para distanciasepicentrales mayores a 1800km, llamada mB si se ha derivado a partir deperodos largos y mb si se ha derivado a partir de perodos cortos. Sedenominan MPV and M, respectivamente, de acuerdo a la nomenclaturade Karnik3) Magnitud a partir de ondas de superficie registrada por

    instrumentos de perodo largo, para distancias epicentrales de ms de2200 km, indicada como MS, o MLH de acuerdo a la nomenclatura deKarnik.

    Tambin hay una magnitude calculada a partir de la duracin del registro o delmovimiento local.

  • 7/25/2019 1.1. Ingenieria Sismologica

    31/126

    MAGNITUDE

    Kanamori (1977) desarroll una escala de magnitud estndar que es independientedel tipo de instrumento. Se denomina magnitud momento, indicada con M o M

    W,

    y se calcula a partir del momento ssmico M0.

    M0

    = A d

    Donde es el modulo de corte de la roca con la falla (alrededor de 3.31010

    N/m2), A es el rea de la falla (i.e.: el producto de su longitud por su ancho), y des el desplazamiento promedio de la falla (i.e.: deslizamiento el cual es la longituddel vector de deslizamiento de la ruptura medida en el plano de la falla).La manera estndar de convertir el momento ssmico a una magnitud (Hanks yKanamori, 1979) es:

    7.105.1

    log 0 = M

    Mw

    DondeM0 est en dina-cm.

  • 7/25/2019 1.1. Ingenieria Sismologica

    32/126

    Magnitud localEl concepto de magnitud fue introducidopor Richter (1935): la magnitud de

    cualquier sismo se toma el logaritmo dela mximo trazo de amplitude con el cualel sismmetro estndar de torsionregistara un sismo a una distanciaepicentral de 100 km.

    ML =logA logA0

    Charles F. Richter (1900-1985)

  • 7/25/2019 1.1. Ingenieria Sismologica

    33/126

    instrumental seismology 33

    DURATION MAGNITUDE

    There is also a magnitude calculated from the duration of the recording of alocal shock: the equation has to be derived empirically by comparison withactual ML estimates. Duration magnitude is indicated with MD and thegeneral relation has the form:

    where is the duration of the signal, computed from the P-wave arrival tothe moment when the earthquake wave amplitude has the same amplitudeas the background noise, is the epicentral distance anda,b, andc areparameters calculated by regression analysis. In practice,c is very small

    indicating a slight dependence ofMD on distance.

    MD =a +b log+c

  • 7/25/2019 1.1. Ingenieria Sismologica

    34/126

    instrumental seismology 34

    BODY-WAVE MAGNITUDE

    The general formula recommended fromthe IASPEI's Committee of Zurich 1967is the following, given by Gutenberg in1945:

    whereA is the maximum true amplitudeand T the period of the used wave, Q is

    the Gutenberg-Richter's correction valuefor hypocentral depth and distance and is the station correction obtained bystatistical analysis of the resultingsystematic divergences.

    m =log AT max+Q+

  • 7/25/2019 1.1. Ingenieria Sismologica

    35/126

    instrumental seismology 35

    SURFACE-WAVE MAGNITUDE

    The magnitude from surface waves can also be computed using different waves andvertical or horizontal components. The most common is the one computed with the

    waves of maximum amplitude having period from 10 to 30 seconds. The magnitudeexpression, given by Karnik (1962) is:

    whereA is the maximum true amplitude of the wave used, computed as the square rootof the sum of the squares of the two horizontal components, Tis the period and dis the

    epicentral distance in degrees.

    M=log A

    T

    max+1.66log d+3.3

  • 7/25/2019 1.1. Ingenieria Sismologica

    36/126

    instrumental seismology 36

    SUMMARYABOUTMAGNITUDES

  • 7/25/2019 1.1. Ingenieria Sismologica

    37/126

    COMPARACIN

    Mw no se satura

  • 7/25/2019 1.1. Ingenieria Sismologica

    38/126

    Magnitud e Intensidad de un terremoto

    Magnitud: La magnitud de un sismo corresponde a la energa liberada por larotura o el desplazamiento de rocas en el interior terrestre. Se mide mediante la escalade Richter; es una escala objetiva porque se basa en los datos extrados del registro desismgrafos.

    Intensidad: La intensidad de un sismo corresponde a los efectos producidos porla accin de las ondas superficiales. Se puede medir mediante la escala MSK omediante la escala de Mercalli. Las dos son medidas subjetivas porque dependen de laapreciacin de las personas

  • 7/25/2019 1.1. Ingenieria Sismologica

    39/126

    ESCALA RICHTER (Se expresa en nmeros rabes)Representa la energa ssmica liberada en cada terremoto y se basa en el registrosismogrfico.Es una escala que crece en forma potencial o semilogartmica, de manera que cada punto

    de aumento puede significar un aumento de energa diez o ms veces mayor. Una magnitud4 no es el doble de 2, sino que 100 veces mayor.

  • 7/25/2019 1.1. Ingenieria Sismologica

    40/126

    ESCALA MERCALLI Se expresa en nmeros romanos.Creada en 1902 por el sismlogo italiano Giusseppe Mercalli, no se basa en losregistros sismogrficos sino en el efecto o dao producido en las estructuras y en lasensacin percibida por la gente. Para establecer la Intensidad se recurre a larevisin de registros histricos, entrevistas a la gente, noticias de los diarios pblicos

    y personales, etc. La Intensidad puede ser diferente en los diferentes sitiosreportados para un mismo terremoto (la Magnitud Richter, en cambio, es una sola) ydepender de:a)La energa del terremoto,b)La distancia de la falla donde se produjo el terremoto,c)La forma como las ondas llegan al sitio en que se registra (oblicua, perpendicular,etc,)d)Las caractersticas geolgicas del material subyacente del sitio donde se registra laIntensidad y, lo ms importante,e)Cmo la poblacin sinti o dej registros del terremoto.

  • 7/25/2019 1.1. Ingenieria Sismologica

    41/126

    seismic hazard 41

    ESTIMACIN DEL PELIGRO SSMICO

    DSHA PSHA Elementos del

    PSHA

    Mapas Parmetro de

    movimiento

  • 7/25/2019 1.1. Ingenieria Sismologica

    42/126

    seismic hazard 42

    RIESGO= PELIGRO* VUNERABILIDAD* VALOR

    RIESGO= probabilidad de observer cierto estado de dao o prdida deopercin

    PELIGRO= probabilidad de observar cierto movimiento del suelo(aceleracin, intensidad, etc.)en un perodo de tiempo fijo

    VULNERABILIDAD= tendencia del objeto de studio (edificio, complejo, etc.)

    a sufrir daos o modificaciones

    VALOR = (econmico, social, etc.) cuantificacin del objeto de estudio

  • 7/25/2019 1.1. Ingenieria Sismologica

    43/126

    43

    MODELOS ESTADSTICOS

    Determinismo = el proceso ES CONOCIDOy es possible escribir una ecuacin

    Ejemplo: ley de la gravedad s = 1/2 g*t2

    Probabilismo = el proceso NO ES CONOCIDOy es posible aproximarlo a partir deobservacionesEjemplo: una encuesta

  • 7/25/2019 1.1. Ingenieria Sismologica

    44/126

    seismic hazard 44

    APPROACHES FOR SHA

    SEISMIC HAZARD ASSESSMENT

    Historical determinism

    Historical probabilism

    Seismotectonic probabilism

    Non-Poissonian probabilism

    Eq prediction

    Reference ground motion

    Detailed scenario

    Probabilistic approaches Deterministic approaches

    Muir Wood (1993)

  • 7/25/2019 1.1. Ingenieria Sismologica

    45/126

    seismic hazard 45

    DETERMINISTIC APPROACH

    Select a small number of individualearthquake scenarios: M, R (Location) pairs

    Compute the ground motion for eachscenario (typically use ground motion with50% or 16% chance of being exceeded if theselected scenario earthquake occurs

    Select the largest ground motion from any ofthe scenarios

  • 7/25/2019 1.1. Ingenieria Sismologica

    46/126

    seismic hazard 46

    PROBABILISTIC APPROACH (1)

    Source Characterization Develop a comprehensive set of possible scenario

    earthquakes: M, R (location) Specify the rate at which each scenario earthquake (M, R)

    occurs

    Ground Motion Characterization Develop a full range of possible ground motions for each

    earthquake scenario (=number of std dev above or belowthe median)

    Specify the probability of each ground motion for eachscenario

  • 7/25/2019 1.1. Ingenieria Sismologica

    47/126

    seismic hazard 47

    PROBABILISTIC APPROACH (2)

    Hazard Calculation Rank scenarios (M,R, ) in order of decreasing severity of

    shaking

    Table of scenarios with ground motions and rates

    Sum up rates of scenarios (hazard curve)

    Select a ground motion for the design hazard level Back off from worst case ground motion until the sum of the

    rates of scenarios exceeding the ground motion is largeenough to warrant consideration (e.g. the design hazardlevel)

  • 7/25/2019 1.1. Ingenieria Sismologica

    48/126

    seismic hazard 48

    STEPS OF THE DETERMINISTIC

    APPROACH

    1. Identification and characterization of all earthquakesources capable of producing significant groundmotion at the site.

    2. Selection of a source-to-site distance parameter for

    each source zone. In most DSHAs, the shortestdistance between the source zone and the siteof interest is selected.

    3. Selection of the controlling earthquake (i.e., theearthquake that is expected to produce thestrongest level of shaking), generally expressedin terms of some ground motion parameter, atthe site.

    4. The hazard at the site is formally defined, usually interms of the ground motions produced at the siteby the controlling earthquake. Its characteristicsare usually described by one or more groundmotion parameters obtained from predictiverelationships.

  • 7/25/2019 1.1. Ingenieria Sismologica

    49/126

    seismic hazard 49

    CALCULO DEL PSHA

    SEISMIC HAZARD ASSESSMENT

    Probabilistic Approaches

    Historical DeterminismHistorical ProbabilismSeismotectonic ProbabilismNon-Poissonian ProbabilismEarthquake Prediction

    (Muir-Wood, 1993)

    Deterministic Approaches

    Reference ShakingDetailed Scenario

    EL PRIMER MAPA DE

  • 7/25/2019 1.1. Ingenieria Sismologica

    50/126

    50

    EL PRIMER MAPA DEPELIGRO SSMICO (?)

    Mapa de ocurrencia de terremotos

    por Robert Mallet en 1854

    2ND GENERATIONGumbel approach (1)

  • 7/25/2019 1.1. Ingenieria Sismologica

    51/126

    seismic hazard 51

    HISTORICALPROBABILISM

    P[Imax i]= ImaxF (i) = exp{[(w i) /(w u)]k}

    XF (x) = i /(n +1)

    iy = ln{ln[ XF (xi)]}

    iy =(xi u)

    The Gumbel approach

    Given Imax = max Xi, with i=1, , n and n largeType 1: no upper limit of Xi

    ApplicationPutting

    P[Imax i] =FImax (i) =exp[e iu( )]

    Type 3: upper limit of Xi

    Introducing the reduced variable

    Gumbel approach (1)

    2ND GENERATION HISTORICALPROBABILISM

    Gumbel approach (2)

  • 7/25/2019 1.1. Ingenieria Sismologica

    52/126

    seismic hazard 52

    PROBABILISM

    Example of the Gumbel approachGiven an eq catalogue, lets take the maximum annual (extreme)magnitudes and order them x1, x2, , xn: xi xi+1 i

    XF (x) =i/(n +1) lets assign the annual non exceedence probability:

    iy = ln{ ln[ XF (xi)]} lets calculate the Gumbel reduced variable:

    iy = (x i u) we obtain:

    lets compute and u by regression analysis:

    lets compute the hazard estimates(e.g.: extreme exceeded with probability p in T years:

    p ,Ty =u {ln[ ln(1p)] +lnT}/

    Gumbel approach (2)

    2ND GENERATIONHISTORICAL Th th d i i it h (1)

  • 7/25/2019 1.1. Ingenieria Sismologica

    53/126

    seismic hazard 53

    HISTORICALPROBABILISM

    i =nje

    ij2

    / c2

    j

    e

    ij2 / c 2

    j

    (u >u0) =1

    Ti

    i

    P[u >u0mmin

    mu

    | di,mj]fm(m)dm

    The smoothed seismicity approach

    The hazard computation is based on the number niof earthquakeswith magnitude greater than Mref in each cell iof a grid: this countrepresents the maximum likelihood estimate of 10a for that cell.The grid of nivalues is then smoothed spatially by multiplying by aGaussian function with correlation distance c, obtaining :

    The annual rate (u>u0) of exceeding ground motion u0 at aspecific site is determined from a sum over distance and magnitude

    fm(m) =b ln10 10b(mm 0)

    110b(mum 0)

    P[u > u0 | di,mj] =1

    2

    ln u0 ln u(di ,mj)

    2

    where

    (from Frankel, 1995 andLapajne et al., 1997)

    The smoothed seismicity approach (1)

    2ND GENERATION

  • 7/25/2019 1.1. Ingenieria Sismologica

    54/126

    seismic hazard 54

    HISTORICALPROBABILISM The smoothed seismicity approach (2)

    Options: the activity rate can be computed considering different seismicity models; the b-value and Mmax can vary in space;

    different attenuation relations can be used.

    Seismicity models: m0 = 3, low seismicity contributes to define hazard

    (activity rates normalized over different Tsaccording to the zone)

    m0 = 5, only high seismicity contributes to define hazard(activity rates normalized over different Tsaccording to the zone)

    2ND GENERATION:HISTORICAL The smoothed seismicity approach (3)

  • 7/25/2019 1.1. Ingenieria Sismologica

    55/126

    seismic hazard 55

    HISTORICALPROBABILISM

    The smoothed seismicity approach (3)

    Zonation modelsin each zone b-value and Mmax are constant

    Average PGAwith T=475 fromzonation models

  • 7/25/2019 1.1. Ingenieria Sismologica

    56/126

    seismic hazard 56

    3RD GENERATIONSEISMOTECTONIC PROBABILISM

    The 4 stepsof PSHA

    The Cornell (1968) approach (1)

  • 7/25/2019 1.1. Ingenieria Sismologica

    57/126

    seismic hazard 57

    The Cornell (1968) approach (1)

    P[E] = P E| S[ ]fs(s)ds

    z = ii=1

    N

    iP(Z>z|m,r)fr= o

    r=

    mo

    mu

    (m) if (r)drdm

    T= t/ln(1P(ZT >z))

    El enfoque de Cornell (1968)

    Application

    El teorema de probabilidad total:

    cada fuente GR distribution SZ geometry

    If it is a Poisson process (stationary, independent, non-multiple events)

    SF (s) = P[Sz[ ]=1 ezT

    Promedio anual detasa deexcedencia

    Tasa anual promedio

    de ocurrencia

    3RD GENERATION The Cornell (1968) approach (2)

  • 7/25/2019 1.1. Ingenieria Sismologica

    58/126

    seismic hazard 58

    SEISMOTECTONIC PROBABILISMThe Cornell (1968) approach (2)

    Working hypotheses of the

    Cornell (1968) approach

    The eq magnitude is exponentiallydistributed

    The eq number in time forms aPoisson process

    The seismicity is spatially uniforminside the seismic sources (faults,areas, etc.)

    (from Algermissen & Perkins, 1976)

    3RD GENERATION The Cornell (1968) approach (3)

  • 7/25/2019 1.1. Ingenieria Sismologica

    59/126

    seismic hazard 59

    SEISMOTECTONIC PROBABILISM( ) pp ( )

    a b

    c

    d e

    Contributing information

    a = geology, historical & instrumentalseismicity

    b = historical & instrumentalseismicityc = instrumental seismicity for PGA

    historical seismicity for intensityd = statisticse = statistics

    (from Algermissen & Perkins, 1976)

    3RD GENERATION The Cornell (1968) approach (4)

  • 7/25/2019 1.1. Ingenieria Sismologica

    60/126

    seismic hazard 60

    SEISMOTECTONIC PROBABILISM( ) pp ( )

    The actual stepsin PSHA computation

    A) Definition of SZsB) Seismicity characterisation

    Attenuation relationC) Probability of ground motion

    exceedenceD) Probability of ground motion

    exceedence in T yrs

    Uniformely distributed seismicityGutenberg-Richter law

    Poisson distribution

    (from Algermissen & Perkins, 1976)

    SOURCE-TO-

  • 7/25/2019 1.1. Ingenieria Sismologica

    61/126

    seismic hazard 61

    SITEDISTANCE

    Arcs of circles with centers at thesite approximate in Seisrisk IIIthe area of the quadrilater.

    Examples of different earthquake source geometries: a) short fault that can bemodelled as a point source; b) shallow fault that can be modelled as a linearsource; c) 3D source zone modelled as an area source

    (from Kramer, 1996)

  • 7/25/2019 1.1. Ingenieria Sismologica

    62/126

    seismic hazard 62

    FR(R)

    Variations of source-to-site distance for different source zone geometries. Theshape of the PDF can be visualized by considering the relative portions of thesource zone that would fall between each of a series of circles (or spheres for3D problems) with equal differences in radius

    (from Kramer, 1996)

    fL( l)dl = fR(r)dr

    fR(r) = fL (l)dl

    dr

    fL( l) = l /Lf

    l2 = r2 rmin2

    fR(r) = r

    Lf r2 rmin

    2

    (b)

    Many single sources, see (a)

    FM(M)

  • 7/25/2019 1.1. Ingenieria Sismologica

    63/126

    seismic hazard 63

    ( )GUTENBERG - RICHTER

    LAW

    log nm =a bmnm = 0e

    m

    nm = 0e(mm0)

    with m0 = threshold

    magnitude= b ln10

    0 =10a

    FM(m) =P[Mm0] =nm0 nm

    nm0

    =1 e(mm0)

    fM(m) = d

    dmFM(m) =e

    (mm0)

    Gutenberg-Richter recurrence law: a) meaning ofa

    andb

    parameters; b) application of Gutenberg-Richter law to worldwide seismicity data

    FM(M)

  • 7/25/2019 1.1. Ingenieria Sismologica

    64/126

    seismic hazard 64

    M( )BOUNDED GUTENBERG -

    RICHTER LAW

    Bounded Gutenberg-Richter recurrencelaws for mo=4 and mmax=6, 7, and 8constrained by constant seismicity rate

    where =exp(m0) is the rate ofoccurrence of earthquakesexceeding m0

    nm = exp m m0( )[ ] exp mmax m0( )[ ]

    1 exp mmax m0( )[ ]

    FM(m) =P[M

  • 7/25/2019 1.1. Ingenieria Sismologica

    65/126

    seismic hazard 65

    CHARACTERISTICEARTHQUAKE

    Youngs & Coppersmithdeveloped ageneralizedmagnitude-frequency

    PDF that combined anexponential magnitudedistribution at lowermagnitudes with auniform distribution in

    the vicinity of thecharacteristicearthquake.

    Comparison of recurrence laws from bounded Gutenberg-Richter and characteristic earthquakemodels (from Youngs & Coppersmith, 1985).Inconsistency of mean annual rate of exceedance asdetermined from seismicity data and geologic data (from Schwartz and Coppersmith, 1984).

    SEISMIC HAZARD PGA with 10% exceedanceprobability over various exposure

  • 7/25/2019 1.1. Ingenieria Sismologica

    66/126

    seismic hazard 66

    CURVE The individual components of the Eq are

    complicated that the integrals cannot beevaluated analitically: numerical integration is

    requiredP[E] = P E| S[ ]fS(s)ds

    P[Z>z] = iP(Z>z| m,r)f

    r= o

    r=

    mo

    mu

    (m) if (r)drdm

    z = ii=1

    NS

    iP(Z>z| m,r)fr= o

    r=

    mo

    mu

    (m) if (r)drdm

    z = ik=1

    NR

    j=1

    NM

    i=1

    NS

    P(Z>z| mj ,rk)fMi (m j )fR i (rk)mr

    z = ik=1

    NR

    j=1

    NM

    i=1

    NS

    P(Z>z| m j ,rk)P[M=m j ]P[R =rk]

    P ZT >z[ ]=1 ezT

    Magnitude and distance ranges are divided into segments

    Poisson model

    times for 14 areas in NorthAmerica

    Mean annual rateof exceedence

    Hazard curve

    Exceedence

    probability

    d f b d

  • 7/25/2019 1.1. Ingenieria Sismologica

    67/126

    seismic hazard 67

    0.001

    0.01

    0.1

    1

    0.1 1

    ponti del Veneto

    e

    xceedence

    probability

    in

    50

    yrs

    PGA

    Spresiano

    BotteonPeron

    Fener

    Hazard curves for 4 bridges in Veneto

  • 7/25/2019 1.1. Ingenieria Sismologica

    68/126

    seismic hazard 68

    MAXIMUM MAGNITUDE

    The circles represent actualearthquake data. The dataset iscomplete for small magnitudes, butbecomes erratic for the larger. Atabout M=5, there are no records,

    simply because the historical recordis usually too short. In some casespaleoseismology can fill some of thegap.

  • 7/25/2019 1.1. Ingenieria Sismologica

    69/126

    seismic hazard 69

    THE KIJKO APPROACH (1)

    The maximum magnitude mmax is the upper limit of magnitudefor a given seismogenic source

    The generic formula for estimation of mmax

  • 7/25/2019 1.1. Ingenieria Sismologica

    70/126

    seismic hazard 70

    THE KIJKO APPROACH (2)

    Three cases are possible: eq magnitudes are distributed according to the G-R relation; eq magnitude distribution deviates largely from the G-R relation;

    no specific model for the eq magnitude distribution is assumed.

    THE KIJKOAPPROACH

  • 7/25/2019 1.1. Ingenieria Sismologica

    71/126

    seismic hazard 71

    APPROACH(3)

    E1(z )=

    e

    z

    d

    E1(z ) = z 2 +2.334733z +0.250621

    z z2 +3.330657z +1.681534( )

    THE KIJKO

  • 7/25/2019 1.1. Ingenieria Sismologica

    72/126

    seismic hazard 72

    APPROACH (4)

    THE KIJKO

  • 7/25/2019 1.1. Ingenieria Sismologica

    73/126

    seismic hazard 73

    APPROACH (3)

    THE EARTHQUAKE CYCLE (1)

  • 7/25/2019 1.1. Ingenieria Sismologica

    74/126

    seismic hazard 74

    THE EARTHQUAKE CYCLE (1)

    Some regions repeatedlyexperience earthquakes andthis suggests that perhaps

    earthquakes are part of a cycle.The effects of repeatedearthquakes were first notedlate in the nineteenth centuryby American geologist G. K.Gilbert, who observed a fresh

    fault scarp following the 1872Owens Valley, Californiaearthquake

    THE EARTHQUAKE CYCLE (2)

  • 7/25/2019 1.1. Ingenieria Sismologica

    75/126

    seismic hazard 75

    THE EARTHQUAKE CYCLE (2)

    For an ideal elastic-reboundfault, the stress on the faultperiodically cycles between a

    minimum and maximum valueand if the two blocks continue tomove at a constant rate, therecurrence time (the timebetween earthquakes) is also

    uniform

    THE EARTHQUAKE CYCLE (3)

  • 7/25/2019 1.1. Ingenieria Sismologica

    76/126

    seismic hazard 76

    THE EARTHQUAKE CYCLE (3)

    Unfortunately, actual faultsare more complex: the

    recurrence time is notperiodic and we have fewobservations of completeearthquake cycles. In fact,the Nankaido region of Japanshows that neither the time

    nor the slip is uniform fromearthquake-to-earthquake

  • 7/25/2019 1.1. Ingenieria Sismologica

    77/126

    seismic hazard 77

    THE GSHAP PROJECT(1)

    The Gl obal Sei smi c Hazar d Assessment Pr ogram ( GSHAP) wasl aunched i n 1992 by t he I nt er nat i onal Li t hospher e Pr ogr am ( I LP)wi t h t he suppor t of t he I nt er nat i onal Counci l of Sci ent i f i cUni ons ( I CSU) , and endor sed as a demonst r at i on pr ogr am i n t hef r amewor k of t he Uni t ed Nat i ons I nt er nat i onal Decade f orNat ur al Di sast er Reduct i on ( UN/ I DNDR) . The pr i mar y goal ofGSHAP was t o cr eat e a gl obal sei smi c hazar d map i n a har moni zed

    and r egi onal l y coor di nat ed f ashi on, based on advanced met hodsi n pr obabi l i st i c sei smi c hazard assessment s ( PSHA) . The GSHAPst r at egy was t o est abl i sh Regi onal Cent r es whi ch wer er esponsi bl e f or t he coor di nat i on and r eal i zat i on of t he f ourbasi c el ement s of modern PSHA:

    1. Ear t hquake cat al ogue 2. Ear t hquake sour ce char act er i zat i on

    3. St r ong sei smi c gr ound mot i on 4. Comput at i on of sei smi c hazar d.

  • 7/25/2019 1.1. Ingenieria Sismologica

    78/126

    seismic hazard 78

    THE GSHAP PROJECT (2) Seismic hazard map

    produced by GSHAP(Giardini et al., 1999)http://www.seismo.ethz.ch/GSHAP/index.html

  • 7/25/2019 1.1. Ingenieria Sismologica

    79/126

    seismic hazard 79

    THE ESC PROJECT (1)

    The ESC-SESAME is the firstever unified model forProbabilistic Seismic HazardAssessment for Europe andthe Mediterranean. It wasdeveloped within theframework of several recentprojects on global andregional seismic hazard

    assessment and allows forhomogeneous hazardcomputation throughout thewhole European-Mediterranean domain.

  • 7/25/2019 1.1. Ingenieria Sismologica

    80/126

    seismic hazard 80

    THE ESC PROJECT(3)

  • 7/25/2019 1.1. Ingenieria Sismologica

    81/126

    seismic hazard 81

    (3)

    Seismic hazard map of theEuropean Mediterraneanregion (Jimenez et al., 2003)http://wija.ija.csic.es/gt/earthquakes/

    Predictive relationships of the expected ground motion (mainlyPGA) are nearly always obtained empirically by least-squaresregression on a particular set of strong motion parameter data

  • 7/25/2019 1.1. Ingenieria Sismologica

    82/126

    seismic hazard 82

    Schematic illustration of conditional probability of exceeding a particularvalue of a ground motion parameter for a given magnitude and distance

    regression on a particular set of strong motion parameter data.Despite attempts to remove questionable data and the use ofquality-based weighting schemes, some amount of scatter in thedata is inevitable. The scatter results from randomness in the

    mechanics of rupture and from variability and heterogeneity of thesource, travel path, and site conditions. Scatter in the data can bequantified by confidence limits or by the standard deviation of thepredicted parameter. Reflecting the form of most predictiverelationships, the standard deviation of the logarithm of thepredicted parameter is usually computed.

    ATTENUATION

    3rd Generation Seismotectonic ProbabilismTh C ll (1968) h

  • 7/25/2019 1.1. Ingenieria Sismologica

    83/126

    seismic hazard 83

    INGREDIENTS OF PSHA

    Seismogenic zonation for source geometry

    Earthquake catalogue for seismicity characterisation (rates, Mmax,recurrence)

    Attenuation relations

    The Cornell (1968) approach

  • 7/25/2019 1.1. Ingenieria Sismologica

    84/126

    seismic hazard 84

    General framework: Kinematic model of Adria

    The SZs are drawnon the basis

    of the slip vector patternrepresenting

    the kinematic model

    of the Adria microplate

    Seismogenic zonation of Italy

  • 7/25/2019 1.1. Ingenieria Sismologica

    85/126

    seismic hazard 85

    Seismogenic zonation of Italy

    Legend:1. Seismic source zones related to the interaction

    between Adria and Europe.2. Alps/Apennine transfer zones.3. Seismic source zones related to the sinking

    of the Adria lithosphereand to the uplift of the asthenosphere.

    4. Seismic source zones related to the deactivationof the thrust belt - foredeep systemand to the counterclockwise rotation of Adria.

    5. Seismic source zones of the Calabrian Arc.6. Seismic source zones inside the foreland region

    and along the flexural margins.7. Seismic source zones in active volcanic regions.

    Identification: supported by geology,neotectonics, seismicity

    Geometry: contro lled by kinematics, seismici tyBehaviour: controlled by kinematics, neotectonics ,

    intensity maps, fps

    (from Slejko et al., 1999)

    WHERE IS THE EPICENTER?

  • 7/25/2019 1.1. Ingenieria Sismologica

    86/126

    seismic hazard 86

    Image from: http://nisee.berkeley.edu/kozak/Images of Historical EarthquakesThe Jan T. Kozak CollectionFresco of 1361 in St. Mary chapel (Karlstein Castle, Prague)

    illustrating the damage caused to the Arnoldstein castleby the Villach (Austria) earthquake of January 25, 1348

    1348 Villach

    1511 Idrija - Gemona

    Doubts remain on the epicentersof the two strogest events in theEastern Alps

    THE CONTRIBUTION OF THE

  • 7/25/2019 1.1. Ingenieria Sismologica

    87/126

    seismic hazard 87

    INSTRUMENTAL SEISMOLOGY

    Fault plane solution

    Fault

    Hypocentral probability

    Map of the historical earthquakes (1000 1980)

  • 7/25/2019 1.1. Ingenieria Sismologica

    88/126

    seismic hazard 88

    Seismogenic zone 10

    MAP OF THE PRESENT-DAY SEISMICITY (SINCE 1977)

  • 7/25/2019 1.1. Ingenieria Sismologica

    89/126

    seismic hazard 89

    Principalfaults

  • 7/25/2019 1.1. Ingenieria Sismologica

    90/126

    seismic hazard 90

    Principal faultsin Friuli - Venezia Giulia

    Tectonic scheme for PSHA

    Seismogenic fault

    Neotectonic fault

    Seismicity characterisation of the SZs

  • 7/25/2019 1.1. Ingenieria Sismologica

    91/126

    seismic hazard 91

    Seismicity rates and maximum magnitude for SZ 4; different time periods are plotted (see legend);arrows indicate the rates suggested from the completeness analysis, large open squares the selected ones.The line is the Gutenberg-Richter interpolation, on which the maximum magnitude (Mmax) is evaluated.

    Uncertain seismicity characterisation for some SZs

  • 7/25/2019 1.1. Ingenieria Sismologica

    92/126

    seismic hazard 92

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 63 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980 1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Numeronormalizzato

    (100anni)

    Magnitudo

    7.0008, 0.18595

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 10 1936-1980

    1915-1980

    1895-1980

    1871-1980

    1836-1980

    1826-1980 1699-1980

    1596-1980

    1000-1980

    Scelte

    Numeronormalizzato

    (100anni)

    Magnitudo

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 54 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1686-1980

    1626-1980

    1501-1980

    1465-1980

    Scelta

    Nu

    meronormalizzato

    (100anni)

    Magnitudo

    0.1

    1

    10

    3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7 7 7.3 7.6 7.9

    ZS 67 1936-1980

    1915-1980

    1895-1980

    1843-1980

    1787-1980

    1626-1980

    1501-1980

    1300-1980

    1000-1980

    Scelta

    Nu

    meronormalizzato

    (100anni)

    Magnitudo

    I am fine I am poor

    I am crazy

    I am moody

    INFLUENCE OF HI TORIC L ND IN TRUMENT L EI MICITY TO H Z RD

  • 7/25/2019 1.1. Ingenieria Sismologica

    93/126

    seismic hazard 93

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1

    %PGA

    Threshold magnitude

    0.1

    1

    10

    100

    3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4

    Number(in10

    0yrs)

    Magnitude

    Seismicity rates Contribution to hazard

    INFLUENCE OF HISTORICAL AND INSTRUMENTAL SEISMICITY TO HAZARD

  • 7/25/2019 1.1. Ingenieria Sismologica

    94/126

  • 7/25/2019 1.1. Ingenieria Sismologica

    95/126

    seismic hazard 95

    PGA with a 475-yr return period

    Computed considering

    seismogenic zones

  • 7/25/2019 1.1. Ingenieria Sismologica

    96/126

    seismic hazard 96

    Accelerazione orizzontale di piccocon periodo di r itorno 475 anni

    calcolata solo con le

    faglie sismogenetiche

  • 7/25/2019 1.1. Ingenieria Sismologica

    97/126

    seismic hazard 97

    Accelerazione orizzontale di piccocon periodo di r itorno 475 anni

    calcolata sia con lefaglie sismogeneticheche con quelleneotettoniche

    Seismogenic zonation for the Eastern Alps

  • 7/25/2019 1.1. Ingenieria Sismologica

    98/126

    seismic hazard 98

    SZs, faults,historical and instrumental eqs

    g p

    Valutazione della pericolosita' sismicaalla scala nazionale

  • 7/25/2019 1.1. Ingenieria Sismologica

    99/126

    seismic hazard 99

    ZonazioneSismotettonica

    RevisioneCatalogo dei

    Terremoti

    StimaProbabilistica

    moto del suolo

    GNDT 1990-1995

    PGA

    CATALOGO &DATABASE

    SORGENTIAREALI

    MCS

    1996

  • 7/25/2019 1.1. Ingenieria Sismologica

    100/126

    seismic hazard 100

    Gruppo Nazionale per la Difesa dai Terremoti

    Seismic Hazard Map of Italy

    475-yr return period PGAon an average soil

    In color boxes(red=rock, blue=stiff soil, green=soft soil):

    year, place, magnitude, max recorded PGA,and number of deaths for recent eqs

    Proposal for the seismic zonation 2003

    Consensus seismic hazard maps:b i d t f th t ti l i i ti

  • 7/25/2019 1.1. Ingenieria Sismologica

    101/126

    seismic hazard 101

    basic products for the present national seismic zonation

  • 7/25/2019 1.1. Ingenieria Sismologica

    102/126

    seismic hazard 102

    The most recent

    seismic hazardmap of Italy inagreement with

    Ord. 3274

    Comparison between results obtained with the Gumbel and Cornell approaches

  • 7/25/2019 1.1. Ingenieria Sismologica

    103/126

    seismic hazard 103

    8

    8

    0.22 g = 8 MCS

    0.13 g = 7 MCS

    8

    8

    The smoothed seismicity approach vs. the Cornell approach

  • 7/25/2019 1.1. Ingenieria Sismologica

    104/126

    seismic hazard 104

    Average PGA with T=475from the smoothed seismicity appr.

    Average PGA with T=475from the Cornell appr.

    Difference(smoothed seismicity - Cornell)

  • 7/25/2019 1.1. Ingenieria Sismologica

    105/126

    seismic hazard 105

    1 2

    3

    1 - Cornell approach with SZs2 - Cornell approach with faults3 - characteristic time-dependent eq on faults

    From the 3rd to the 4th generation PSHASeismic Hazard in Central Italy

    475-yr return period PGA

  • 7/25/2019 1.1. Ingenieria Sismologica

    106/126

    seismic hazard 106

    GROUND-MOTION PARAMETERS

    SINGLE QUANTITIESPeak Ground Acceleration (PGA); Peak Ground Velocity (PGV): better than PGA because it is associated

    with kinetic energy, which is proportional to the square of velocity.

    COMBINED QUANTITIES (correlated with the damage onset; Benjamin et al., 1988) Arias Intensity; Cumulative Absolute Velocity.

    SOME OTHER COMBINED QUANTITIES Effective Peak Acceleration (EPA); Housner Intensity (SI).

    Which is better for seismic design and which for zonation?

    Spectral Quantities

  • 7/25/2019 1.1. Ingenieria Sismologica

    107/126

    seismic hazard 107SI is the area of the velocity spectrum

    Response Spectrum

    PGA

    Quantification of seismic hazard

  • 7/25/2019 1.1. Ingenieria Sismologica

    108/126

    seismic hazard 108

    10

    20

    30

    40

    50

    10

    20

    30

    40

    50

    0.1 1

    Pseudovelocity(cm/s)

    Period (s)

    b

    0.06

    0.08

    0.1

    0.3

    0.5

    0.7

    0.06

    0.08

    0.1

    0.3

    0.5

    0.7

    0.1 1

    Ab

    soluteacceleration(g

    )

    Period (s)

    a

    Grumento

    Gemona

    Similar PGA

    Different SA and PSV at 1 s

    Grumento is the most hazardous site in Italy

    100Spectru m intens ity 0.1 - 0.5 s

    Different SIscan characterize sites

    ith different seismicit

  • 7/25/2019 1.1. Ingenieria Sismologica

    109/126

    seismic hazard 109

    0.1

    1

    10

    100

    0.01 0.1 1 10

    Spectru m in tensi ty 0.2 - 2.0 s

    period (s)

    M=7 D=10km

    M=7 D=100km

    M=4 D=10km

    M=4 D=100km

    0.1

    1

    10

    00

    0.01 0.1 1 10period (s)

    M=7 D=10km

    M=7 D=100km

    M=4 D=10km

    M=4 D=100km

    with different seismicity

    Similar SI

    Different SI

    Response spectra for the main Italian towns

  • 7/25/2019 1.1. Ingenieria Sismologica

    110/126

    seismic hazard 110

    Specific main soil

    MILAN

  • 7/25/2019 1.1. Ingenieria Sismologica

    111/126

    seismic hazard 111

    0

    0.2

    0.4

    0.6

    0.8

    0.1 1

    MILANVENICETRIESTEFLORENCEROME

    NAPLESMESSINACATANIA1st cat.2nd cat.3rd cat.

    spectrala

    cceleration(g)

    period (s)

    Uniform hazardresponse spectrum

    for the mainItalian townsand design spectraof the seismic codepre-2003

    10

    T=1.0s

    eleration(g)

    10

    T=0.2s

    eration(g)

  • 7/25/2019 1.1. Ingenieria Sismologica

    112/126

    seismic hazard 112

    0.001

    0.01

    0.1

    1

    10

    1 10 100

    T=1.0s SD

    Acceleration(g)

    Distance (km)

    Ms=7.0

    Ms=5.5

    Ms=4.0

    d0.001

    0.01

    0.1

    1

    10

    1 10 100

    T=0.2s SD

    Distance (km)

    Ms=7.0

    Ms=5.5

    Ms=4.0

    Acceleration(g)

    c

    0.001

    0.01

    0.1

    1

    1 10 100Distance (km)

    Ms=7.0

    Ms=5.5

    Ms=4.0

    Acce

    b0.001

    0.01

    0.1

    1

    1 10 100Distance (km)

    Ms=7.0

    Ms=5.5

    Ms=4.0

    Accele

    aSpectralAttenuation

    Relationssolid = Ambraseys et al(1996)

    dashed = Sabetta & Pugliese(1996)

    IMAGES OF SEISMIC HAZARD (1)

  • 7/25/2019 1.1. Ingenieria Sismologica

    113/126

    seismic hazard 113

  • 7/25/2019 1.1. Ingenieria Sismologica

    114/126

    IMAGES OF SEISMIC HAZARD (3)

  • 7/25/2019 1.1. Ingenieria Sismologica

    115/126

    seismic hazard 115

  • 7/25/2019 1.1. Ingenieria Sismologica

    116/126

    seismic hazard 116

    Comparison amongdifferent parameters

    Every point is anItalian municipality

    DEAGGREGATION

  • 7/25/2019 1.1. Ingenieria Sismologica

    117/126

    seismic hazard 117

    z(mj ,rk) P[M= mj ]P[R = rk] ii=1

    NS

    P(Z>z| mj ,rk)

    It allows the estimate of the mostlikely earthquake magnitude anddistance: the mean annual rate ofexceedence is expressed as a

    function of magnitude anddistance

  • 7/25/2019 1.1. Ingenieria Sismologica

    118/126

    seismic hazard 118

    SITE EFFECTS

    Influence of: lithology morphology

    SITE CLASSIFICATIONAND

  • 7/25/2019 1.1. Ingenieria Sismologica

    119/126

    seismic hazard 119

    AMPLIFICATION

    FACTORS

    SITE CLASSIFICATIONAND

  • 7/25/2019 1.1. Ingenieria Sismologica

    120/126

    seismic hazard 120

    ATTENUATION

    RELATIONSAttenuation relations for European eqs (Ambraseys et al., 1996)

    SOIL TYPES IN NE ITALY

  • 7/25/2019 1.1. Ingenieria Sismologica

    121/126

    seismic hazard 121

    HAZARD MAPS FOR NE ITALY

  • 7/25/2019 1.1. Ingenieria Sismologica

    122/126

    seismic hazard 122

    HAZARD MAPS FOR NE ITALY

    Soft soil

    rock

    Stiff soil

    SOIL HAZARD MAPS FOR NE ITALY

  • 7/25/2019 1.1. Ingenieria Sismologica

    123/126

    seismic hazard 123

    SOIL HAZARD MAPS FOR NE ITALY

    PGA with a 475-yrreturn period

    median values

    with aleatory uncertainty

    SOIL HAZARD MAP FOR FRIULI - VENEZIAGIULIA

  • 7/25/2019 1.1. Ingenieria Sismologica

    124/126

    seismic hazard 124

    GIULIA

    HAZARD MAP OF FRIULI - VENEZIA GIULIAIN INTENSITY

  • 7/25/2019 1.1. Ingenieria Sismologica

    125/126

    seismic hazard 125

    IN INTENSITY

    THIS IS THE END OF SEISMIC

  • 7/25/2019 1.1. Ingenieria Sismologica

    126/126

    HAZARD