10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

download 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

of 7

Transcript of 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    1/7

    Stage-wise Superstructure for Synthesis of

    Heat Exchange Networks

    Cheng-Liang Chen

    PSELABORATORY

    Department of Chemical EngineeringNational TAIWAN University

    Chen CL 1

    Heat Exchange Network Synthesis (HENS)

    Given:

    A set of hot process streams to be cooled, and

    a set of cold process streams to be heated Available heating/cooling utilities

    Inlet/outlet temperatures and

    heat capacity flow rates for all streams and utilities

    Area cost and fixed unit cost, utility costs

    Determine: Network Configurations to

    Minimize the total annual cost (TAC) Maximize operating flexibility (operating ranges ofT & F)

    Chen CL 2

    Heat Exchange Network Synthesis (HENS)Chen CL 3

    Stage-wise Superstructure forHENSAll Possible Matches; Isothermal Mixing

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    2/7

    Chen CL 4

    Stage-wise Superstructure for HENSOrder of Matches; Isothermal Mixing

    Chen CL 5

    Stage-wise Superstructure forHENSUtilities for Heating/Cooling; Isothermal Mixing

    Chen CL 6

    Modeling the Stage-wise SuperstructureIndices, Sets, Parameters

    Indices and sets

    i hot process stream

    j cold process stream

    k stage

    hu hot utility

    cu cold utility

    in inlet

    out outlet

    Parameters

    Tini , Touti , T

    inj , T

    outj inlet and outlet temperatures

    EMAT minimum-approach tempe rature diff erence ,Tmin

    F Ci, F Cj heat capacity flowrates

    Uij, Ui,cu, Uhu,j overall heat transfer coefficients

    Ccu, Chu per unit cost of cold and hot utility

    CFij, CFi,cu, CFhu,j fixed charges for exchangers

    CAij, CAi,cu, CAhu,j area cost coefficientsNOK total number of stages

    upper bound for heat exchange

    upper bound for temperature difference

    ij, i,cu, hu,j exponent for area costs

    Chen CL 7

    Modeling the Stage-wise SuperstructureContinuous and Binary Variables

    Positive variables

    aijk , ai,cu, ahu,j areas for exchangers

    tik temperature of hot streami at the temperature locationk

    tjk temperature of hot streamj at the temperature location k

    thijk temperature for part of hoti that is connected to cold j in stage k

    tcijk temperature for part of coldj that is connected to hot i in stage k

    dtijk temperature difference for match (ij)at the temperature location k

    dtouti,cu temperature difference for match (i,cu)at the hot end of the heat exchanger

    dtouthu,j temperature difference for match (hu,j)at the cold end of the heat exchanger

    dthijk temperature difference for match (ij)at the hot end of the heat exchanger

    dtcijk temperature difference for match (ij)at the cold end of the heat exchanger

    qijk heat exchanged between hot steam i and cold steam j in stage k

    qi,cu heat exchanged between hot steam i and cold utility

    qhu,j heat exchanged between hot utility and cold steamj

    rhijk split ratio of hoti that is connected to cold j in stage k

    rcijk split ratio of coldj that is connected to hot i in stage k

    Binary variables

    zijk existence of a unit for the match(ij)in stage kzi,cu existence of a unit for the match(i,cu)

    zhu,j existence of a unit for the match(hu,j)

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    3/7

    Chen CL 8

    Modeling the Stage-wise SuperstructureOverall Heat Balance forHotStreams

    jCP

    kST

    qijk +qi,cu = FCiTini T

    outi

    i HP (1)

    iHP

    kST qijk +qhu,j = FCj

    T

    out

    j Tin

    j j CP (2)

    Chen CL 9

    Modeling the Stage-wise SuperstructureOverall Heat Balance forColdStreams

    jCP

    kST

    qijk +qi,cu = FCiTini T

    outi

    i HP (1)

    iHP

    kST qijk +qhu,j = FCj

    T

    out

    j Tin

    j j CP (2)

    Chen CL 10

    Modeling the Stage-wise SuperstructureStage-wise Heat Balance forHotStreams

    jCP

    qijk = FCi (tik ti,k+1) i HP,k ST (3)

    iHP

    qijk = FCj(tjk tj,k+1) j CP, k ST (4)

    Chen CL 11

    Modeling the Stage-wise SuperstructureStage-wise Heat Balance forColdStreams

    jCP

    qijk = FCi (tik ti,k+1) i HP,k ST (3)

    iHP

    qijk = FCj(tjk tj,k+1) j CP,k ST (4)

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    4/7

    Chen CL 12

    Modeling the Stage-wise SuperstructureHotandColdUtility Loads

    qhu,j = FCjToutj tj1

    j CP (5)

    qi,cu = FCi (ti,NOK+1 Touti ) i HP (6)

    Chen CL 13

    Modeling the Stage-wise SuperstructureAssignment of I/O Temperatures and Feasibility of Temperatures

    ti1 = Tini i HP (7)

    tj,NOK+1 = Tinj j CP (8)

    dtini,cu = Touti T

    incu i HP (9)

    dtinhu,j = Tinhu T

    outj j CP (10)

    tik ti,k+1 i HP, k ST (11)

    ti,NOK+1 Touti i HP (12)

    tjk tj,k+1 j CP, k ST (13)

    Toutj tj1 j CP (14)

    Chen CL 14

    Modeling the Stage-wise SuperstructureOther Constraints

    Logical constraints

    qijk zijk i HP,j CP,k ST (15)

    qi,cu zi,cu i HP (16)

    qhu,j zhu,j j CP (17)dtijk tik tjk + (1 zijk) i HP, j CP,k ST (18)

    dtij,k+1 ti,k+1 tj,k+1+ (1 zijk) i HP,j CP,k ST (19)

    dtouti,cu ti,NOK+1 Toutcu + (1 zi,cu) i HP (20)

    dtouthu,j Tout

    hu tj1+ (1 zhu,j) j CP (21)

    Minimum approach-temperatures

    dtijk EMAT i HP,j CP, k ST {NOK+ 1} (22)

    dtouti,cu EMAT i HP (23)

    dtouthu,j EMAT j CP (24)

    Chen CL 15

    Variable boundsTini tik T

    outi i HP,k ST (25)

    Toutj tjk Tin

    j j CP,k ST (26)

    qijk FCiTini T

    outi

    i HP,j CP, k ST (27)

    qijk FCj Tout

    j Tinj i HP,j CP, k ST (28)

    qi,cu FCiTini Touti

    i HP (29)

    qhu,j FCjToutj T

    inj

    j CP (30)

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    5/7

    Chen CL 16

    Modeling the Stage-wise SuperstructureObjective Function: TAC

    TAC = iHP

    jCP

    kST

    CFijzijk + iHP

    CFi,cuzi,cu + jCP

    CFhu,jzhu,j

    + iHP

    jCP

    kST

    CAij(aijk)ijk +

    iHP

    CAi,cu (ai,cu)i,cu +

    jCP

    CAhu,j(ahu,j)hu,j

    + iHP

    Ccuqi,cu + jCP

    Chuqhu,j (31)

    aijk = qijk

    Uij LMTDijk(32)

    LMTDijk = dtijk dtij,k+1

    ln dtijk

    dtij,k+1

    (33)

    dtijkdtij,k+1

    dtijk +dtij,k+1

    2

    1/3(34) (Chen Approximation)

    Chen CL 17

    Modeling the Stage-wise SuperstructureMINLP Formulation: Isothermal Mixing

    minx

    TAC

    x

    zijk, zi,cu, zhu,j;

    tik, tjk;dtijk, dtouti,cu, dt

    outhu,j;

    qijk, qi,cu, qhu,j

    i HP,j CP,k ST

    Chen CL 18

    =

    x

    jCP

    kST

    qijk + qi,cu = F Ci

    Tini Touti

    iHP

    kST

    qijk + qhu,j = F Cj

    Toutj T

    inj

    jCP

    qijk = F Ci

    tik ti,k+1

    iHP

    qijk = F Cj

    tjk tj,k+1

    qi,cu = F Ci

    ti,NOK+1 T

    outi

    qhu,j = F Cj

    Toutj tj1

    ti1 = Tini tj,NOK+1 = T

    outj

    dt

    in

    i,cu = T

    out

    i

    T

    in

    cu dt

    in

    hu,j = T

    in

    hu

    T

    out

    jtik ti,k+1 ti,NOK+1 T

    outi

    tjk tj,k+1 Toutj tj1

    qijk zijk , qi,cu zi,cu, qhu,j zhu,j

    dtijk tik tjk + (1 zijk )

    dtij,k+1 ti,k+1 tj,k+1+ (1 zijk )

    dtouti,cu ti,NOK+1 Toutcu +

    1 zi,cu

    dtouthu,j Touthu tj1+

    1 zhu,j

    dtijk EMAT, dt

    outi,cu, dt

    outhu,j EMAT

    Tini tik Touti

    T

    out

    j tjk T

    in

    jqijk , qi,cu F Ci

    Tini T

    outi

    qijk , qhu,j F Cj

    Toutj T

    inj

    i HP,j CP,k ST

    Chen CL 19

    Simultaneous Optimization Model forHeat Exchanger Network SynthesisOne Problem with 2-Hot-2-ColdStreams

    Stream Tin Tout FCp (kW/K) h (KW/m2K) Cost ($/KW-yr)

    H1 650 370 10.0 1.0 -

    H2 590 370 20.0 1.0 -

    C1 410 650 15.0 1.0 -

    C2 353 500 13.0 1.0 -

    S1 680 680 5.0 80

    W1 300 320 1.0 15

    AssumeTmin= 10K, Exchanger cost= $5500 + 150A(area, m2)

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    6/7

    Chen CL 20

    HENS: Simultaneous OptimizationOptimal Network Structure

    155, 000/yr total cost

    (71, 400 for utility cost and 83, 600for capital cost)

    Chen CL 21

    SimultaneousMINLPModel: Example

    FCp (kW/K) Tin (K) Tout (K) h(kW/m2K) Cost ($/kW-yr)

    H1 22. 440 350 2.0 -

    C1 20. 349 430 2.0 -

    C2 7.5 320 368 .67 -

    S1 500 500 1.0 120

    W1 300 320 1.0 20

    Min recovery app temp = 1 KExchanger Cost= 6, 600 + 670(area)0.83

    Chen CL 22 Chen CL 23

    SimultaneousMINLP Model: SameExample with No Stream Splitting

    Ch CL 24

  • 7/27/2019 10 Stage-wise Superstructure for Synthesis of Heat Exchange Networks.pdf

    7/7

    Chen CL 24

    Thank You for Your Attention

    Questions Are Welcome