10-Bit, 10Msps ADC - Maxim Integrated · 2011. 8. 11. · verter (ADC) is capable of a 10Msps...

16
General Description The MAX1426 10-bit, monolithic analog-to-digital con- verter (ADC) is capable of a 10Msps sampling rate. This device features an internal track-and-hold (T/H) amplifier for excellent dynamic performance; at the same time, it minimizes the number of external components. Low input capacitance of only 8pF minimizes input drive requirements. A wide input bandwidth (up to 150MHz) makes this device suitable for digital RF/IF downconvert- er applications employing undersampling techniques. The MAX1426 employs a differential pipelined architec- ture with a wideband T/H amplifier to maximize through- put while limiting power consumption to only 156mW. The MAX1426 generates an internal +2.5V reference that supplies three additional reference voltages (+3.25V, +2.25V, and +1.25V). These reference volt- ages provide a differential input range of +2V to -2V. The analog inputs are biased internally to correct the DC level, eliminating the need for external biasing on AC-coupled applications. A separate +3V digital logic supply input allows for separation of digital and analog circuitry. The output data is in two’s complement format. The MAX1426 is available in the space-saving 28-pin SSOP package. For a pin-compatible version at a higher data rate, refer to the MAX1424 or MAX1425 Applications Medical Ultrasound Imaging CCD Pixel Processing IR Focal Plane Array Radar IF and Baseband Digitization Set-Top Boxes Features Differential Inputs for High Common-Mode Noise Rejection 61dB Signal-to-Noise Ratio (at f IN = 2MHz) Internal +2.5V Reference 150MHz Input Bandwidth Wide ±2V Input Range Low Power Consumption: 156mW Separate Digital Supply Input for 3V Logic Compatibility Single +5V Operation Possible MAX1426 10-Bit, 10Msps ADC ________________________________________________________________ Maxim Integrated Products 1 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 D0 D1 D2 D3 D4 DGND D9 DV DD DGND DV DD D5 D6 D7 D8 OE/PD CLK CMLN CMLP INN INP AV DD AGND CML REFN REFIN REFP AV DD AGND SSOP TOP VIEW MAX1426 + CLK INP INTERFACE PIPELINE ADC REF SYSTEM + BIAS OUTPUT DRIVERS REF REFIN REFP CML REFN OE/PD AV DD AGND DV DD DGND D9–D0 INN T/H MAX1426 Functional Diagram 19-1598 Rev 1; 7/11 PART MAX1426CAI+ MAX1426EAI+ -40°C to +85°C 0°C to +70°C TEMP. RANGE PIN-PACKAGE 28 SSOP 28 SSOP Pin Configuration Ordering Information +Denotes a lead(Pb)-free/RoHS-compliant package. Devices are also available in a tape-and-reel package. Specify tape and reel by adding “T” to the number when order- ing. For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.

Transcript of 10-Bit, 10Msps ADC - Maxim Integrated · 2011. 8. 11. · verter (ADC) is capable of a 10Msps...

  • General DescriptionThe MAX1426 10-bit, monolithic analog-to-digital con-verter (ADC) is capable of a 10Msps sampling rate. Thisdevice features an internal track-and-hold (T/H) amplifierfor excellent dynamic performance; at the same time, itminimizes the number of external components. Lowinput capacitance of only 8pF minimizes input driverequirements. A wide input bandwidth (up to 150MHz)makes this device suitable for digital RF/IF downconvert-er applications employing undersampling techniques.

    The MAX1426 employs a differential pipelined architec-ture with a wideband T/H amplifier to maximize through-put while limiting power consumption to only 156mW.The MAX1426 generates an internal +2.5V referencethat supplies three additional reference voltages(+3.25V, +2.25V, and +1.25V). These reference volt-ages provide a differential input range of +2V to -2V.The analog inputs are biased internally to correct theDC level, eliminating the need for external biasing onAC-coupled applications.

    A separate +3V digital logic supply input allows forseparation of digital and analog circuitry. The outputdata is in two’s complement format. The MAX1426 isavailable in the space-saving 28-pin SSOP package.For a pin-compatible version at a higher data rate, referto the MAX1424 or MAX1425

    ApplicationsMedical Ultrasound ImagingCCD Pixel ProcessingIR Focal Plane ArrayRadarIF and Baseband DigitizationSet-Top Boxes

    Features� Differential Inputs for High Common-Mode

    Noise Rejection

    � 61dB Signal-to-Noise Ratio (at fIN = 2MHz)

    � Internal +2.5V Reference

    � 150MHz Input Bandwidth

    � Wide ±2V Input Range

    � Low Power Consumption: 156mW

    � Separate Digital Supply Input for 3V LogicCompatibility

    � Single +5V Operation Possible

    MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    ________________________________________________________________ Maxim Integrated Products 1

    28

    27

    26

    25

    24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    D0

    D1

    D2

    D3

    D4

    DGND

    D9

    DVDD

    DGND

    DVDD

    D5

    D6

    D7

    D8

    OE/PD

    CLK

    CMLN

    CMLP

    INN

    INP

    AVDD

    AGND

    CML

    REFN

    REFIN

    REFP

    AVDD

    AGND

    SSOP

    TOP VIEW

    MAX1426

    +

    CLK

    INP

    INTERFACE

    PIPELINE ADC

    REF SYSTEM +BIAS

    OUTPUTDRIVERS

    REF

    REFIN REFP CML REFN OE/PD

    AVDD

    AGND

    DVDD

    DGND

    D9–D0INN

    T/H

    MAX1426

    Functional Diagram

    19-1598 Rev 1; 7/11

    PART

    MAX1426CAI+

    MAX1426EAI+ -40°C to +85°C

    0°C to +70°C

    TEMP. RANGE PIN-PACKAGE

    28 SSOP

    28 SSOP

    Pin Configuration

    Ordering Information

    +Denotes a lead(Pb)-free/RoHS-compliant package.Devices are also available in a tape-and-reel package.Specify tape and reel by adding “T” to the number when order-ing.

    For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at www.maxim-ic.com.

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    2 _______________________________________________________________________________________

    ABSOLUTE MAXIMUM RATINGS

    ELECTRICAL CHARACTERISTICS(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = VDGND = 0V, internal reference, digital output loading 35pF, fCLK =10MHz (50% duty cycle), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

    Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.

    AVDD to AGND ........................................................ -0.3V to +6VDVDD to DGND ....................................................... -0.3V to +6V AVDD to DGND........................................................ -0.3V to +6VDGND to AGND................................................................. ±0.3VREFP, REFIN, REFN, CMLN, CMLP,

    CML, INP, INN .....................(VAGND - 0.3V) to (VAVDD + 0.3V)CLK, OE/PD, D0–D9...............(VDGND - 0.3V) to (VDVDD + 0.3V)Continuous Power Dissipation (TA = +70°C)

    28-Pin SSOP (derated 9.5mW/°C above +70°C) .........762mW

    Operating Temperature RangesMAX1426CAI ..................................................... 0°C to +70°CMAX1426EAI................................................... -40°C to +85°C

    Maximum Junction Temperature .................................... +150°CStorage Temperature Range ............................-65°C to +150°CLead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C

    58 60f = 2MHz

    -70 -67f = 2MHz

    %FSR

    %FSR

    f = 2MHz

    (Note 4)

    External reference (REFP, CML, REFN) (Note 3)

    External reference (REFIN) (Note 2)

    Guaranteed monotonic

    (Note 1)

    Internal reference (Note 1)

    f = 2MHz

    CONDITIONS

    SINADSignal-to-Noise and Distortion

    dBTHDTotal Harmonic Distortion (first five harmonics)

    dB69 72SFDRSpurious-Free Dynamic Range

    dB60 61SNRSignal-to-Noise Ratio

    LSB-1 1DNLDifferential Nonlinearity

    Bits10RESResolution

    mV/V-5 ±2 +5PSRRPower-Supply Rejection Ratio

    -5 ±3 5

    -5 ±2 5

    LSB-1.5 ±0.3 1.5INLIntegral Nonlinearity

    No Missing Codes

    -3 ±1.0 3MSOMidscale Offset

    -10 ±5 10

    GEGain Error

    UNITSMIN TYP MAXSYMBOLPARAMETER

    dB

    ACCURACY

    DYNAMIC PERFORMANCE (AIN = -1.0dBFS)

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    _______________________________________________________________________________________ 3

    ELECTRICAL CHARACTERISTICS (continued)(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = VDGND = 0V, internal reference, digital output loading 35pF, fCLK =10MHz (50% duty cycle), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

    f = 2MHz

    CONDITIONS

    Bits9.3 9.7ENOBEffective Number of Bits

    UNITSMIN TYP MAXSYMBOL PARAMETER

    f1 = 1.98MHz, f2 = 2.00MHz (-7dB FS, each tone) (Note 5)

    dBc-70IMDIntermodulation Distortion

    (Note 7)

    (Note 7)

    VINP - VINN

    CML (Note 6)

    Either input to ground

    Either input to ground

    MHz150LSBWLarge-Signal Bandwidth

    MHz400SSBWSmall-Signal Bandwidth

    V±2DRDifferential Input Range

    V2.25

    ±10%VCMVR

    Input Common-Mode VoltageRange

    pF8CINInput Capacitance

    kΩ3.5RINInput Resistance

    REFP, CML, REFN

    REFP, CML, REFN

    VREFP - VREFN

    REFIN

    REFIN (Note 8)

    V1.25

    ±10%REFN Input Range

    V2.25

    ±10%CML Input Range

    V3.25

    ±10%REFP Input Range

    pF15CINInput Capacitance

    µA-325 +325IINInput Current

    V2.0Differential Reference

    pF10CINInput Capacitance

    kΩ6.5RINInput Resistance

    VREFP - VREFN, TA = +25°C V1.9 2.0 2.1Differential Reference

    V1.25VREFNNegative Reference InputVoltage

    V2.25VCMLCommon-Mode ReferenceVoltage

    V3.25VREFPPositive Reference Voltage

    ppm/°C±50Differential ReferenceTemperature Coefficient

    REFERENCE OUTPUTS (REFP, CML, REFN; external +2.5V reference)

    REFERENCE (VREFIN = 0; REFP, REFN, CML applied externally)

    ANALOG INPUT (INP, INN, CML)

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    4 _______________________________________________________________________________________

    ELECTRICAL CHARACTERISTICS (continued)(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = VDGND = 0V, internal reference, digital output loading 35pF, fCLK =10MHz (50% duty cycle), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

    (Note 1) V3.25VREFPPositive Reference

    (Note 1) V2.25VCMLCommon-Mode ReferenceVoltage

    OE/PD = DVDD

    VDVDD = 5.25V, OE/PD = DVDD

    IOL = 200µA, VDVDD = 2.7V

    IOH = -200µA, VDVDD = 2.7V

    VREFP - VREFN, TA = +25°C

    VDVDD < 4.75V

    VDVDD > 4.75V

    OE/PD = DVDD

    VDVDD = 5.0V

    REFIN = AGND

    OE/PD = DVDD

    VDVDD < 4.75V

    VDVDD = 3.3V

    VDVDD > 4.75V

    CONDITIONS

    pFThree-State Capacitance

    µAThree-State Leakage

    VVOLOutput Logic Low

    VVOHOutput Logic High

    pFInput Capacitance

    0.3 ×VDVDD

    V

    0.8

    VILInput Logic Low

    0.7 ×VDVDD

    V

    2.4

    VIHInput Logic High

    ppm/°C±150Differential ReferenceTemperature Coefficient

    V1.8 2 2.2Differential Reference

    mW156 210PDPower Dissipation

    µA40 150Digital Shutdown Current

    5.3 8

    mA25 35Analog Supply Current withInternal Reference in Shutdown

    mA0.6 1Analog Shutdown Current

    mA3.3 6

    IDVDDDigital Supply Current

    UNITSMIN TYP MAXSYMBOL PARAMETER

    V2.7 3.3 5.5VDVDDDigital Supply Voltage

    V4.75 5.00 5.25VAVDDAnalog Supply Voltage

    mA29 38IAVDDAnalog Supply Current

    (Note 1) V1.25VREFNNegative Reference

    VDVDD = 5.25V µA-20 20

    µA-10 10Input Current Leakage

    10

    VDVDD VDVDD- 0.5

    0.5

    -10 10

    10

    ICLKIOE/PD

    REFERENCE OUTPUT (REFP, CML, REFN; internal +2.5V reference)

    POWER SUPPLY

    DIGITAL INPUTS (CLK, OE/PD)

    DIGITAL OUTPUTS (D0–D9)

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    _______________________________________________________________________________________ 5

    ELECTRICAL CHARACTERISTICS (continued)(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = VDGND = 0V, internal reference, digital output loading 35pF, fCLK =10MHz (50% duty cycle), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)

    Note 1: Internal reference, REFIN bypassed to AGND with a 0.1µF capacitor.Note 2: External +2.5V reference applied to REFIN.Note 3: Internal reference disabled. VREFIN = 0, VREFP = 3.25V, VCML = 2.25V, and VREFN = 1.25V.Note 4: Measured as the ratio of the change in midscale offset voltage for a ±5% change in VAVDD using the internal reference. Note 5: IMD is measured with respect to either of the fundamental tones.Note 6: Specifies the common-mode range of the differential input signal supplied to the MAX1426.Note 7: Defined as the input frequency at which the fundamental component of the output spectrum is attenuated by 3dB.Note 8: VREFIN is internally biased to +2.5V through a 5kΩ resistor.

    PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

    10 20 ns

    ns10 20

    Bus Enable

    Bus Disable

    Data Output Delay ns5 20 25tOD

    Aperture Jitter ps7tAJ

    Aperture Delay ns5tAD

    Pipeline Delay (Latency) cycles5.5

    Clock Low ns40 50 60Figure 4tCL

    Clock High ns40 50 60Figure 4tCH

    Clock Frequency MHz10fCLK

    Conversion Rate MHz0.1 10CONV

    TIMING CHARACTERISTICS

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    6 _______________________________________________________________________________________

    Typical Operating Characteristics(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = 0V, internal reference, digital output load = 35pF, fCLK = 10MHz (50%duty cycle), for dynamic performance 0dB is full scale, TA = +25°C, unless otherwise noted.)

    -1.2

    -0.6

    -0.8

    -1.0

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    0 400200 600 800 1000

    INTEGRAL NONLINEARITY vs. CODE

    MAX

    1426

    -01

    CODE

    INL

    (LSB

    )

    fINP = 2MHz

    -0.6

    -0.2

    -0.4

    0

    0.2

    0.4

    0.6

    0 400200 600 800 1000

    DIFFERENTIAL NONLINEARITY vs. CODE

    MAX

    1426

    -02

    CODE

    DNL

    (LSB

    )

    fINP = 2MHz

    -8.0

    -6.0

    -7.0

    -5.0

    -4.0

    -3.0

    -2.0

    -1.0

    0

    0.01 10.1 10 100 1000 10,000

    ANALOG INPUT BANDWIDTH(FULL POWER)

    MAX

    1426

    -03

    BANDWIDTH (MHz)

    AMPL

    ITUD

    E (d

    B)

    -140

    -100

    -120

    -60

    -80

    -20

    -40

    0

    0 2.01.0 3.0 4.00.5 2.51.5 3.5 4.5 5.0

    INTERMODULATION DISTORTION

    MAX

    1426

    -04

    FREQUENCY (MHz)

    MAG

    NITU

    DE (d

    B)

    fCLK = 10MHzf1 = 1.98MHzf2 = 2.00MHz

    0

    20

    10

    30

    50

    40

    60

    70

    SIGNAL-TO-NOISE RATIO vs. POWER (fIN = 1.997MHz)

    MAX

    1426

    -07

    INPUT (dB)

    SNR

    (dB)

    -60 -30-45 -15 0

    0

    20

    40

    60

    80

    SIGNAL-TO-NOISE PLUS DISTORTION vs. POWER (fIN = 1.997MHz)

    MAX

    1426

    -05

    INPUT (dB)

    SINA

    D (d

    B)

    -60 -30-45 -15 00

    20

    40

    60

    80

    SIGNAL-TO-NOISE RATIO PLUS DISTORTION vs. POWER (fIN = 4.942MHz)

    MAX

    1426

    -06

    INPUT (dB)

    SINA

    D (d

    B)

    -60 -30-45 -15 0

    0

    20

    10

    30

    50

    40

    60

    70

    SIGNAL-TO-NOISE RATIO vs. POWER (fIN = 4.942MHz)

    MAX

    1426

    -08

    INPUT (dB)

    SNR

    (dB)

    -60 -30-45 -15 00

    20

    10

    30

    60

    50

    40

    70

    80

    SPURIOUS-FREE DYNAMIC RANGE vs. POWER (fIN = 1.997MHz)

    MAX

    1426

    -09

    INPUT (dB)

    SFDR

    (dB)

    -60 -30-45 -15 0

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    _______________________________________________________________________________________ 7

    0

    20

    40

    60

    80

    SPURIOUS-FREE DYNAMIC RANGE vs. POWER (fIN = 9.942MHz)

    MAX

    1426

    -10

    INPUT (dB)

    SFDR

    (dB)

    -60 -30-45 -15 0-80

    -60

    -40

    -20

    0

    TOTAL HARMONIC DISTORTION vs. POWER (fIN = 1.997MHz)

    MAX

    1426

    -11

    INPUT (dB)

    THD

    (dB)

    -60 -30-45 -15 0-80

    -60

    -40

    -20

    0

    TOTAL HARMONIC DISTORTION vs. POWER (fIN = 4.942MHz)

    MAX

    1426

    -12

    INPUT (dB)

    THD

    (dB)

    -60 -30-45 -15 0

    0

    2

    4

    6

    8

    10

    EFFECTIVE NUMBER OF BITSvs. POWER (fIN = 1.997MHz)

    MAX

    1426

    -13

    INPUT (dB)

    ENOB

    (bits

    )

    -60 -30-45 15 0

    57

    58

    59

    60

    SIGNAL-TO-NOISE RATIOvs. INPUT FREQUENCY

    MAX

    1426

    -16

    INPUT FREQUENCY (MHz)

    SNR

    (dB)

    2 3 4 5

    0

    2

    4

    6

    8

    10

    EFFECTIVE NUMBER OF BITSvs. POWER (fIN = 4.942MHz)

    MAX

    1426

    -14

    INPUT (dB)

    ENOB

    (bits

    )

    -60 -30-45 15 08.0

    8.4

    8.8

    9.2

    9.6

    10.0

    EFFECTIVE NUMBER OF BITS vs. INPUT FREQUENCY

    MAX

    1426

    -15

    INPUT FREQUENCY (MHz)

    ENOB

    (bits

    )

    2 3 4 5

    -75

    -74

    -73

    -72

    -71

    -70

    TOTAL HARMONIC DISTORTION vs. INPUT FREQUENCY

    MAX

    1426

    -17

    INPUT FREQUENCY (MHz)

    THD

    (dB)

    2 3 4 557

    58

    59

    60

    61

    SIGNAL-TO-NOISE PLUS DISTORTION vs. INPUT FREQUENCY

    MAX

    1426

    -18

    INPUT FREQUENCY (MHz)

    SINA

    D (d

    B)

    2 3 4 5

    Typical Operating Characteristics (continued)(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = 0V, internal reference, digital output load = 35pF, fCLK = 10MHz (50%duty cycle), for dynamic performance 0dB is full scale, TA = +25°C, unless otherwise noted.)

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    8 _______________________________________________________________________________________

    Typical Operating Characteristics (continued)(VAVDD = VCMLP = +5V, VDVDD = +3.3V, VCMLN = VAGND = 0V, internal reference, digital output load = 35pF, fCLK = 10MHz (50%duty cycle), for dynamic performance 0dB is full scale, TA = +25°C, unless otherwise noted.)

    -140

    -100

    -120

    -60

    -80

    -20

    -40

    0

    0 2.01.0 3.0 4.00.5 2.51.5 3.5 4.5 5.0

    FFT PLOT (fIN = 2MHz)

    MAX

    1426

    -19

    FREQUENCY (MHz)

    MAG

    NITU

    DE (d

    B)

    24

    28

    36

    32

    40

    44

    0.60

    0.65

    0.75

    0.70

    0.80

    0.85

    -40 -15 10 35 60 85

    TOTAL SUPPLY CURRENTvs. TEMPERATURE

    MAX1426-21

    TEMPERATURE (°C)

    SUPP

    LY C

    URRE

    NT (m

    A)

    SHUT

    DOW

    N CU

    RREN

    T (m

    A)

    OE/PD = L

    SHUTDOWN

    REFIN = AGND

    REFIN = GND

    -140

    -100

    -120

    -60

    -80

    -20

    -40

    0

    0 42 6 81 53 7 9 10

    FFT PLOT (fIN = 5MHz)

    MAX

    1426

    -20

    FREQUENCY (MHz)

    MAG

    NITU

    DE (d

    B)

    2.08

    2.10

    2.14

    2.12

    2.16

    2.18

    -40 -15 10 35 60 85

    INTERNAL REFERENCE VOLTAGE vs. TEMPERATURE

    MAX

    1426

    -22

    TEMPERATURE (°C)

    INTE

    RNAL

    REF

    EREN

    CE (V

    )

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    _______________________________________________________________________________________ 9

    Pin Description

    Common-Mode Level Positive Input. For AC applications, connect to AVDD to internally set the inputDC bias level. For DC-coupled applications, connect to AGND.

    CMLP11

    Common-Mode Level Negative Input. Connect to AGND to internally set the input DC bias level forboth AC- and DC-coupled applications.

    CMLN12

    Clock Input. Clock frequency range from 0.1MHz to 10MHz.CLK13

    Active-Low Output Enable and Power-Down Input. Digital outputs become high impedance anddevice enters low-power mode when pin is high. OE/PD

    14

    Digital Data Output (MSB)D915

    Negative Reference Output. Bypass to AGND with 0.1µF capacitor. REFN can accept an externalvoltage when the internal reference is disabled (REFN = AGND).

    REFN5

    Common-Mode Level Input. Bypass to AGND with a 0.1µF capacitor. CML can accept an externalvoltage when the internal reference is disabled (REFN = AGND).

    CML6

    Positive Analog Signal InputINP9

    Negative Analog Signal InputINN10

    External Reference Input. Bypass to AGND with a 0.1µF capacitor. REFIN can be biased externallyto adjust the reference level and calibrate full-scale errors. To disable the internal reference, connectREFIN to AGND.

    REFIN4

    Positive Reference Output. Bypass to AGND with a 0.1µF capacitor. If the internal reference is disabled, REFP can accept an external voltage.

    REFP3

    PIN

    Analog Supply Voltage Input. Bypass with a parallel combination of 2.2µF, 0.1µF, and 100pF capacitorsto AGND. Bypass each supply input to the closest AGND (e.g., capacitors between pins 1 and 2).

    AVDD2, 8

    Analog Ground. Connect all return paths for analog signals to these pins.AGND1, 7

    FUNCTIONNAME

    Digital Data Outputs 4–1D4–D124–27

    Digital Data Output (LSB)D028

    Digital Supply Voltage Input. Bypass with 2.2µF and 0.1µF capacitors in parallel. Digital supply canoperate with voltages as low as +2.7V.

    DVDD20, 22

    Digital GroundDGND21, 23

    Digital Data Outputs 8–5D8–D516–19

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    10

    Detailed DescriptionThe MAX1426 uses a 10-stage, fully differential, pipelinedarchitecture (Figure 1) that allows for high-speed conver-sion while minimizing power consumption. Each samplemoves through a pipeline stage every half clock cycle.Counting the delay through the output latch, there is a 5.5clock-cycle latency.

    A 2-bit flash ADC converts the input voltage to digitalcode. A DAC converts the ADC result back into an ana-log voltage, which is subtracted from the held input sig-nal. The resulting error signal is then multiplied by two,and this product is passed along to the next pipelinestage where the process is repeated. Digital error correc-tion compensates for offsets and mismatches in eachpipeline stage and ensures no missing codes.

    Internal Track-and-Hold CircuitFigure 2 shows a simplified functional diagram of theinternal track-and-hold (T/H) circuit in both track modeand hold mode. The fully differential circuit samples theinput signal onto the four capacitors C1a, C1b, C2a,and C2b. Switches S2a and S2b set the common modefor the amplifier input, and open before S1. When S1opens, the input is sampled. Switches S3a and S3bthen connect capacitors C1a and C1b to the output ofthe amplifier. Capacitors C2a and C2b are connectedeither to REFN, REFP, or each other, depending on theresults of the flash ADC. The amplifier then multiplies

    the residue by two and the next stage in the pipelineperforms a similar operation.

    System Timing RequirementsFigure 3 shows the relationship between the clockinput, analog input, and data output. The MAX1426samples the falling edge of the input clock. Output datais valid on the rising edge of the input clock. The outputdata has an internal latency of 5.5 clock cycles, asshown. Figure 4 shows an output timing diagram thatspecifies the relationship between the input clock para-meters and the valid output data.

    Analog Input and Internal ReferenceThe MAX1426 has an internal +2.5V reference used togenerate three reference levels: +3.25V, +2.25V, and+1.25V corresponding to VREFP, VCML, and VREFN.These reference voltages enable a ±2V input range.Bypass all reference voltages with a 0.1µF capacitor.

    The MAX1426 allows for three modes of referenceoperation: an internal reference (default) mode, anexternally adjusted reference mode, or a full externalreference mode. The internal reference mode occurswhen no voltages are applied to REFIN, REFP, CML,

    T/HVOUTx2Σ

    FLASHADC DAC

    2 BITS

    MDAC

    10

    VIN

    VIN

    STAGE 1 STAGE 2

    D [9:0]

    DIGITAL CORRECTION LOGIC

    STAGE 10

    S3a

    INP

    REFP

    REFNREFPREFN

    INN

    S4a

    S4c

    C1aCML

    S2a

    S1

    S2b

    CML

    C2a

    C2b

    C1b

    S4b

    S3a

    INP

    a) TRACK MODE

    b) HOLD MODE

    REFPREFNREFPREFN

    INN

    S4a

    S3b

    S4c

    C1aCML

    S2a

    S1

    S2b

    CML

    C2a

    C2b

    C1b

    S4b

    Figure 1. Pipelined A/D Architecture (Block) Figure 2. Internal Track-and-Hold Circuit

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    ______________________________________________________________________________________ 11

    and REFN. In this mode, the voltages at these pins are set to their nominal values (see ElectricalCharacteristics). The reference voltage levels can beadjusted externally by applying a voltage at REFIN.This allows other input levels to be used as well. Thefull external reference mode is entered when REFIN =AGND. External voltages can be applied to REFP,CML, and REFIN. In this mode, the internal voltageshuts down, resulting in less overall power consump-tion.

    Clock Input (CLK)CLK is TTL/CMOS compatible. Since the interstageconversion of the device depends on the rising andfalling edges of the external clock, use a clock with lowjitter and fast rise and fall times (

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    12 ______________________________________________________________________________________

    Figure 5. Typical Application Circuit Using the Internal Reference

    INPUT

    50Ω

    25Ω

    -5V

    +5V

    0.1µF

    0.1µF

    0.1µF

    BAS16 22pF

    +5V

    -5V

    300Ω

    600Ω

    300Ω

    300Ω

    INP

    CML

    INN

    600Ω

    2.5k

    +5V

    -5V

    0.1µF

    600Ω

    300Ω

    300Ω600Ω

    300Ω

    50Ω

    50Ω

    2.5k

    +5V

    22pF50Ω

    BAS16

    0.1µF

    0.1µF

    0.1µF

    0.1µF

    0.1µF

    0.1µF

    0.1µF0.1µF

    25Ω

    MAX4108

    MAX473A

    MAX1426

    MAX4108

    MAX4108

    heavy loads, as they are specified to deliver only 200µAfor TTL compatibility. If an application needs outputbuffering, use 74LS74s or 74ALS541s as required.

    Applications InformationFigure 5 shows a typical application circuit containing asingle-ended to differential converter. The internal ref-erence provides a +2.25V output for level shifting. Theinput is buffered and then split to a voltage follower andinverter. The op amps are followed by a lowpass filterto remove some of the wideband noise associated with

    high-speed op amps. In this application, the amplifieroutputs are directly coupled to the inputs. This configura-tion can also be modified for AC-coupled applications.The MAX1426 includes a DC level-shifting circuit internalto the part, allowing for AC-coupled applications. Thelevel-shifting circuit is shown in Figure 6.

    The circuit in Figure 6 can accept a 1Vp-p maximuminput voltage. With a maximum clock frequency of10MHz, use 50Ω termination to minimize reflections.Buffer the digital outputs with a low-cost, high-speed,

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    ______________________________________________________________________________________ 13

    octal D-latched flip-flop (74ALS374), or use octalbuffers such as the 74ALS541.

    Typical Application Using an External Reference

    Figure 7 shows an application circuit that shuts downthe internal reference, allowing an external reference tobe used for selecting a different common-mode volt-age. This added flexibility also allows for ratiometricconversions, as well as for calibration.

    Using Transformer CouplingA small transformer (Figure 8) provides isolation andAC-coupling to the ADC’s input. Connecting the trans-former's center tap to CML provides a +2.25VDC levelshift to the input. Transformer coupling reduces theneed for high-speed op amps, thereby reducing cost.Although a 1:1 transformer is shown, a step-up trans-former may be selected to reduce the drive require-ments.

    Single-Ended DC-Coupled Input SignalFigure 9 shows an AC-coupled, single-ended applica-tion. The MAX4106 quad op amp provides high speed,high bandwidth, low noise, and low distortion to main-tain the integrity of the input signal.

    4.5k

    CMLP

    INP

    INN

    CMLN

    4.5k

    TO T/H INPUT

    5.5k 5.5k

    Figure 6. Analog Input DC Bias Circuit

    Figure 7. Using an External Reference for REFP, REFN, and CML (internal reference shut down)

    MAX1426

    REFIN

    REFN

    R

    50Ω

    R

    R

    R

    R

    +1V

    R

    50Ω

    50Ω

    R

    R

    VDD

    VDD2

    CML

    0.1µF

    0.1µF

    0.1µF

    AGND

    VDD2

    VDD2

    VDD4

    VDD4

    MAX4284

    MAX4284

    ( )

    VDD2

    - 1V( )

    REFPVDD

    2+ 1V( )

    MAX4284

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    14 ______________________________________________________________________________________

    Bypassing and Board LayoutThe MAX1426 requires high-speed board layout designtechniques. Locate all bypass capacitors as close tothe device as possible, using surface-mount devicesfor minimum inductance. Bypass all analog voltages(AVDD, REFIN, REFP, REFN, and CML) to AGND.Bypass the digital supply (DVDD) to DGND. Multilayerboards with separated ground and power planes pro-duce the highest level of signal integrity. Route high-speed digital signal traces away from sensitive analogtraces. Matching impedance, especially for the inputclock generator, may reduce reflections, thus providingless jitter in the system. For optimum results, use low-distortion complementary components such as theMAX4108.

    Figure 8. Using a Transformer for AC-Coupling

    Figure 9. Single-Ended AC-Coupled Input Signal

    MAX1426T1

    N.C.

    IN1 61

    52

    43

    C322pF

    C922pF

    0.1µFR2100Ω

    R3100Ω

    R525Ω

    R425Ω

    MINICIRCUITSKKB1 INP

    CML

    INN

    MAX1426

    0.1µF

    100Ω50Ω

    ±2V

    100Ω

    22pFINP

    INN

    0.1µF 50ΩVIN±V

    MAX4108

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    ______________________________________________________________________________________ 15

    ________________________________________________________Package InformationFor the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-tains to the package regardless of RoHS status.

    PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO.

    28 SSOP A28+1 21-0056 90-0095

    http://www.maxim-ic.com/packageshttp://pdfserv.maxim-ic.com/package_dwgs/21-0056.PDFhttp://pdfserv.maxim-ic.com/land_patterns/90-0095.PDF

  • MA

    X1

    42

    6

    10-Bit, 10Msps ADC

    Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

    16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

    © 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.

    Revision History

    REVISIONNUMBER

    REVISIONDATE

    DESCRIPTIONPAGES

    CHANGED

    0 1/00 Initial release —

    1 7/11Updated Ordering Information, Absolute Maximum Ratings, Electrical Characteristics,and Package Information

    1, 2, 15

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice