1 WDM-PON Technologies 2007.11 KT 미래기술연구소 박수진. 2 Future Technology Laboratory...

download 1 WDM-PON Technologies 2007.11 KT 미래기술연구소 박수진. 2 Future Technology Laboratory Content 1.Overview of PON Technologies 2.WDM-PON Technologies 3.Next Generation

If you can't read please download the document

  • date post

    18-Dec-2015
  • Category

    Documents

  • view

    222
  • download

    6

Embed Size (px)

Transcript of 1 WDM-PON Technologies 2007.11 KT 미래기술연구소 박수진. 2 Future Technology Laboratory...

  • Slide 1
  • 1 WDM-PON Technologies 2007.11 KT
  • Slide 2
  • 2 Future Technology Laboratory Content 1.Overview of PON Technologies 2.WDM-PON Technologies 3.Next Generation PON
  • Slide 3
  • 3 Future Technology Laboratory 1. PON Technologies
  • Slide 4
  • 4 Future Technology Laboratory Optical Access Network Technologies Point-to-Point Star ( Home Run)........ CO Active Optical Network ( AON) / Active Double Star........ CO Passive Optical Network ( PON) / Passive Double Star........ CO - Huge number of fibers - Difficult to operate active switch as outside facility - Most favorable - Optical multiple access technologies
  • Slide 5
  • 5 Future Technology Laboratory PON Technologies TDMA (Time Division Multiple Access)
  • Slide 6
  • 6 Future Technology Laboratory PON Technologies TDMA (Time Division Multiple Access) - Downstream packet contains id for intended ONU and uses encryption. - ONU gets synchronized with OLT using the downstream traffic - Dynamic bandwidth allocation is possible - OLT ranges the transmission time for each ONU and allocate time slots to avoid the collision at the splitter. - Burst-mode upstream traffic Continuous mode data Burst mode data Burst packet data
  • Slide 7
  • 7 Future Technology Laboratory PON Technologies Commercial TDM-PON products - B-PON ( ITU-T Rec. G.983 series) - G-PON ( ITU-T Rec. G.984 series) - GE-PON (IEEE 802.3ah) Power budgets Type split ratio power budget BPON 32 max Class A : 20dB Class B : 25dB Class C : 30dB GPON 64 max Class A : 20dB Class B : 25dB Class C : 30dB EPON 16 nominal PX10 US : 23dB Max not defined PX10 DS : 21dB ( up-to 128) PX20 US : 26dB PX20 DS : 26dB
  • Slide 8
  • 8 Future Technology Laboratory PON Technologies TDMA (Time Division Multiple Access) - Physical layer requirements of G-PON and E-PON standards FSAN / ITU-T G-PON IEEE E-PON MAC layer Service Full services (Ethernet, Ethernet data TDM, POTS) Frame GEM frame Ethernet frame PHY layer Distance 10/20km(Logical : 60km) 10/(20)km Branches 64 (Logical : 60km) 16 or over Bit rate Up : 156M, 622M 1.25 Gbps (Up 1.25Gbps and down) Down : 1.25Gbps, 2.5Gbps Coding Scrambled NRZ 8B/10B Opt. loss 15/20/25dB 15/20dB Wavelength Dn : 1480~1500nm Dn : 1480~1500nm Up : 1260~1360nm Up : 1260~1360nm (Video overlay band (Video overlay band available) available) Upstream Guard : 25.6ns Laser turn on/off : burst timing Preamble : 35.2ns 512ns(max) Delimiter: 16.0ns AGC setting and CDR lock : 400ns
  • Slide 9
  • 9 Future Technology Laboratory PON Technologies SCMA (Sub-Carrier Multiple Access) Linear receiver f1f1 Data source LD fifi fnfn fifi LPF fifi fifi OBI (Optical Beating Interference) Bandwidth > 2* (data rate)... RF power RF freq. Data recovery
  • Slide 10
  • 10 Future Technology Laboratory PON Technologies OCDMA (Optical Code Division Multiple Access) Data source Data recovery C1C1 - Spread spectrum - Frequency hopping - OOC( Optical Orthogonal Coding ) -OBI CiCi CnCn C1C1 CiCi CnCn Opt enc Opt dec
  • Slide 11
  • 11 Future Technology Laboratory PON Technologies WDMA (Wavelength Division Multiple Access) 1 i n LD WDM MUX/DEMUX - Colorless ONU
  • Slide 12
  • 12 Future Technology Laboratory PON Technologies Comparison Multiple scheme TDMA SCMA CDMA WDMA Guaranteed BW line rate/N Line rate Line rate Line rate Burst mode upstream No No No Statistical gain Yes No No No MAC Required No need No need No need Timing Control Required NO need No need Depends on scheme QoS Priority Guaranteed Guaranteed Guaranteed management Splitting loss 1/N 1/N 1/N 3~4dB Protocol No Yes Yes Yes Transparency Wavelength control No Partial Yes No Yes Remarks Burst mode Linear Rx Linear Rx WDM MUX receiver OBI High speed OBI suppression colorless transmission suppression High speed ONU transmission
  • Slide 13
  • 13 Future Technology Laboratory 2. WDM - PON - High bandwidth - Protocol/data rate transparency - High security Advantages Disadvantages - Inefficiency in the bandwidth utilization - Difficulty in the wavelength tuning => colorless ONU - Difficulty in the cascaded topology
  • Slide 14
  • 14 Future Technology Laboratory Key Components Athermal WDM MUX/DEMUX - Thin film filter - Independent of temperature change - Expensive for large port number
  • Slide 15
  • 15 Future Technology Laboratory Key Components Athermal WDM MUX/DEMUX - Athermal AWG (Mechanical control) - Athermal AWG (Refractive Index control)
  • Slide 16
  • 16 Future Technology Laboratory Key Components Color-less transmitter - Bidirectional optical subassembly
  • Slide 17
  • 17 Future Technology Laboratory Key Components Comparison of optical transmitters Wavelength control Modulation scheme Modulation speed Colorless ONT Operation bandwidth Remarks Solitary source at ONT Wavelength specific laserNeeded at ONTDirect10GbpsNoUnlimited Tunable laserNeeded at ONTDirect~2.5GbpsYes40nm-Wavelength information Broadband light: ASE from LEDNoDirect~100MbpsYes>50nm-High splicing loss -Dispersion limit for >1Gbps SLDNoDirect50nm EDFNoExternal>10GbpsYes30nm Seed from OLT Array of wavelength specific laser at OLT External modulator Needed at OLTExternal2.5GbpsYesUnlimited-Back reflection penalty -Two feeder fiber RSOANeeded at OLTDirect2.5GbpsYes>50nm FP-LDNeeded at OLT and ONT Direct~1GbpsYes50nm Broadband light at OLT External modulator NoExternal>10GbpsYes30~50nm-High power seed light - Dispersion limit for > 1Gbps RSOANoDirect~1GbpsYes FP-LDNoDirect2.5GbpsYes Re-modulation of downstream data Needed at OLTDirect/ External ~2.5GbpsYes50nm-Back reflection penalty -Limited dynamic range
  • Slide 18
  • 18 Future Technology Laboratory Colorless ONU Technologies - Difficulty in wavelength tuning in the subscriber side - Saving of inventory cost - Saving in the manufacturing cost Why colorless ? Colorless ONU technologies - ASE injected FP-LD - ASE injected R-SOA - Laser injected R-SOS - Tunable LD
  • Slide 19
  • 19 Future Technology Laboratory ASE Injected FP-LD Operation principle W/O ASE injection - Mode partition noise With ASE injection - Mode locked Injected ASE(AWG transmission) wavelength profile
  • Slide 20
  • 20 Future Technology Laboratory ASE Injected FP-LD System Architecture -32 ch. / 125Mbps -20 km
  • Slide 21
  • 21 Future Technology Laboratory Multi-band usage of AWG Ci, Li Ci, Li C1, L1 Cn, Ln wavelength - Use different grating orders for different bands
  • Slide 22
  • 22 Future Technology Laboratory ASE Injected FP-LD Mutually Injected FP-LD for BLS
  • Slide 23
  • 23 Future Technology Laboratory ASE Injected R-SOA R-SOA PD...... R-SOA PD........ Seed for down stream Seed for up stream ONU OLT - ASE is used as BLS - Error floor due to ASE-ASE noise
  • Slide 24
  • 24 Future Technology Laboratory Laser Injected R-SOA - Multi-wavelength laser ( DFB-LD array) is used as seed light (shared) - Reflection noise
  • Slide 25
  • 25 Future Technology Laboratory Current injection HR AR Waveguide R-SOA Bulk type Quantum Well type PDG Gain Saturation output power Un-cooled operation (0 ~ 60 C) Yield Low (