1 Wall-crossing and holomorphic...

39
1 Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm M. Alim , B. Hagighat, M. Hecht, A.K, M. Rauch, T. Wotschke Dec 2010

Transcript of 1 Wall-crossing and holomorphic...

Page 1: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

1

Wall-crossing and holomorphicanomaly

Hamburg, December 2, 2010

Albrecht Klemm

M. Alim , B. Hagighat, M. Hecht, A.K, M. Rauch, T. Wotschke Dec 2010

Page 2: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

2

∙ Objective of the work

– Generalize holomorphic anomaly from string- to gauge

theory,...

– Topological String as an example

∙ M5 brane(s) on a divisor in a CY 3-fold

– Elliptic genus of the MSW string

– N = 4 SYM theory perspective

∙ Wall-crossing for D4-D2-D0 branes

– The Kontsevich-Soibelmann formula

– Gottsche’s Wall-crossing formula

Page 3: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

3

∙ The holomorphic anomaly equation

– Zwerger’s anholomorphic regularisation of indefinite Θ

-fcts

– Proof of the holomophic anomaly for r = 2

∙ Conclusions

Page 4: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

4

Objective of the work:

∙ Generalize the holomorphic anomaly equation capturing

background dependence of topological string theory.

∙ Extend the relation between modularity and

holomorphicity → Mock modular objects .

∙ Interprete the failure of holomorphicity in terms of Wall

crossing.

∙ Proof a holomorphic anomaly equation for the partition

function of N = 4 SYM on del Pezzo surfaces.

Page 5: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

5

Topological String on CY M as example:

Key object of interest in any topological theory:

Topological partition function

Z(t, t) = exp

⎛⎝ ∞∑g=0

�2g−2Fg(t, t)

⎞⎠

Page 6: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

6

∙ Fg(t, t) invariant under space-time duality group Γ ∈SP (ℎ3(M),ℤ)

∙ Fg(t, t) yields generating function for M2/D2+D0 BPS

invariants n�g ∈ ℤ in holomorphic limit∑g �

2g−2Fg(t) =∑g

�2g−2 limt→t∞

Fg(t, t)

=∑

m,�∈H2(Mℤ)

n�gm

(2 sin

(k�

2

))2g−2

emt⋅�

t∞ reflects the background dependence of the BPS

numbers n�g ∈ ℤ

Page 7: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

7

∙ Fg(t, t) fullfill an holomorphic anomaly equation

∂tkFg =

∫ℳ(g)

∂∂�g =1

2Cij

k

⎛⎝DiDjFg−1 +

g−1∑r=1

DiFrDjFg−r

⎞⎠ .

a b

dc

=

c

=

a

d

b

c

j

φi

Σ ij η

ba

dΣij

φ φ ji η= φ

φ j

i

Σij

(−1)F

= φφ φi jΣij

η

ηij

ijij

ij

∙ The anholomorphicity comes from the boundary of the

moduli space ℳ(g)

Page 8: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

8

Solution

∙ Fg(t, t) are generated by finite polynomials rings of

quasimodular forms Γ ∈ SP (ℎ3(M),ℤ) of weight 3g−3

→ finite numbers of unknows.

∙ Anholomorphic generators are analogs of the

anholomorphic second Eisenstein Series E2(�, �) =

E2(�)− 3�Im(�).

∙ Boundary conditions for limt→tcrit fix the unknows.

Page 9: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

9

M5 branes on a divisor

Wrap M5-brane(s) r-times on a divisor P in a Calabi-Yau

3-fold M and extended in S1 × ℝ3,1

Two effective descriptions of the effective action of the

M5-brane

∙ Dimensional reduction of the effective action on M5

on small P leads to the MSW string with (0,4) CFT

worldsheet theory. �-model whose target space are the

def. of M5 on P . Maldacena, Strominger, Witten 97 r = 1.

∙ Reduction of the effective action on M5 on P × T2

Page 10: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

10

with small T2 leads to N = 4 U(r) SYM on P .

SL(2,ℤ) invariance of SYM is geometrized on the

complex modulus of the torus � = 4�ig2

+ �2�. Minahan,

Nemeschansky, Warner, Vafa 98

BPS states of the MSW string can be computed by

compatifying M5 on P × T2 as elliptic genus of the

MSW string partition function obeying SL(2,ℤ)

invariance and compared with the topological partition

function of N = 4 U(r) and after splitting of U(1)

SU(r) gauge theory.

Page 11: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

11

Elliptic genus of the MSW string

Degrees of freedom (scalars):

∙ R/L scalars �A from reduction of selfdual 3-form ℎ(3) =

d�AR/L ∧ �±A, �±A ∈ H2

±(P,ℤ),

∙ ℎ0(M,ℒP) − 1 right scalars, describing movement of

M5 in M. In this work we consider rigid divisors. It

implies P a del Pezzo surface (b+2 = 1).

∙ right scalars in the center of mass multiplett, describing

movement in ℝ3,1.

Page 12: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

12

Symmetries and charges (type IIA picture):

∙ rpA D4 brane charge

∙ M2 brane gives rise to

– qA: D2 brane charges in Λ = H2±(X,ℤ)∣P .

– q0 momentum of the M2 around the S1 ∈ T2

The charges are

Γ = (Q6, Q4, Q2, Q0) = r(0, pA, qA, q0),

Page 13: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

13

One defines the modified elliptic genus

Z ′(r)X,P(�, z) = TrℋRR

(−1)FR F 2R q

L′0−cL24 qL

′0−

cR24e2�iz⋅Q2,

which is expected (proven for r = 1) to be a (0, 2)

((−32,

12) after seperating the CMM) SL(2,ℤ) Jacobiform,

with modular parameter � and elliptic parameter z.

It receives contributions only from states annihilated by(L0 −

cR

24− 1

2q2R

)∣q⟩ = 0 .

Page 14: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

14

Using the spectral flow symmetry with k ∈ Λ

− q0 7→ −q0 + k ⋅ q +1

2k ⋅ k,

q 7→ q + k,

one can show using the symmetries of d(r,Q,Q0)

Z(r)X,P(�, z) =

∑Q0;QA

d(r,Q,Q0) e−2�i�Q0 e2�iz⋅Q2

=∑

q0;q∈Λ∗+[P ]2

d(r, q,−q0) e−2�i�rq0 e2�irz⋅q,

Page 15: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

15

for arbitrary rank the decomposition with q0 = −q0 − 12q

2

Z(r)X,P(�, z) =

∑�∈Λ∗/Λ

f (r)� (�)�(r)

� (�, z), (1)

f (r)� (�) =

∑q0≥−

cL24

d(r)� (q0)e

2�i�rq0,

�(r)� (�, z) =

∑k∈Λ+

[P ]2

(−1)rp⋅(k+�)e2�i�r(k+�)2

2 e2�irz⋅(k+�).

Note the shift [P ]2 due to the Freed-Witten anomaly,

whenever P is not a spin manifold.

Page 16: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

16

N = 4 gauge theory perspective

The generating function

f(r)�,J(�) =

∑d≥ 0

(−1)rp⋅� Ω(Γ; J) qd−r�(P )24

of the BPS invariants Ω(Γ; J), defined through

Ω(Γ; J) =∑m∣Γ

Ω(Γ/m; J)

m2

in terms of Euler# of moduli sp. of coherent sheaf on P

Ω(Γ, J) = (−1)dimℂℳJ(Γ)�(ℳ(Γ), J)

Page 17: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

17

Coherent sheaves represent the gauge theory instantons

configurations of N = 4 SYM theory Vafa, Witten 94.

They depend in general through Wall-Crossing behaviour

on the Kahlerclass J in the Kahlercone C(P ) on P .

Also the Θ-functions depend on the Kahlerparameter J

through a choice of polarization:

k2+ =

(k ⋅ J)2

J ⋅ J, k2

− = k2 − k2+.

Page 18: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

18

�(r)�,J(�, z) =

∑k∈Λ+

[P ]2

(−1)rp⋅(k+�)e2�i�r(k+�)2+

2 e2�i�r(k+�)2−

2 e2�irz⋅(k+�),

rank=1: L. Gottsche 97∑q0

d(1, �, q0) e2�i� q0 =

1

��(P ).

For a single M5-brane Ω and Ω become identical and

Page 19: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

19

independent of J . This is reflected by the holomorphicity(∂� +

1

4�i∂2z+

)Z

(1)X,P(�, z) = 0.

For multiple M5-branes and if the branes cannot seperate

(rigid case) one expects boundstates at threshold and a

holomorphic anomaly on the rhs. Minahan, Nemeschansky, Warner,

Vafa 98. A famous example for the not rigid case is P is a

K3. Here we get the elliptic genus of the heterotic string

which is holomophic.

Page 20: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

20

Wall-crossing for D4-D2-D0 branes

In the large volume limit the even D-branme charges are

given by the topological data of the sheaf ℰ on P

Γ = r

(0, [P ], i∗F (ℰ),

�(P )

24+

∫P

1

2F (ℰ)2 −Δ(ℰ)

),

with

Δ(ℰ) :=1

r(ℰ)

(c2(ℰ)− r(ℰ)− 1

2r(ℰ)c1(ℰ)2

), �(ℰ) :=

c1(ℰ)

r(ℰ), F (ℰ) := �(ℰ)+

[P ]

2.

Given a choice of J , a sheaf ℰ is called �-semi-stable if

Page 21: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

21

for every sub-sheaf ℰ ′

�(ℰ ′) ⋅ J ≤ �(ℰ) ⋅ J

Walls of marginal stability in J are given by

�(ℰ ′) ⋅ J = �(ℰ) ⋅ J

Page 22: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

22

The Kontsevich-Soibelmann wall-crossing formula

Define a symplectic pairing

⟨Γ1,Γ2⟩ = r1r2(�2 − �1) ⋅ [P ] ,

a Lie algebra

[eΓ1, eΓ2] = (−1)⟨Γ1,Γ2⟩⟨Γ1,Γ2⟩eΓ1+Γ2.

and Lie group elements

UΓ = exp

⎛⎝−∑n≥1

enΓ

n2

⎞⎠ . (2)

Page 23: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

23

The Kontsevich-Soibelman wall-crossing formula

↷∏Γ:Z(Γ;J)∈V

UΩ(Γ;J+)Γ =

↷∏Γ:Z(Γ;J)∈V

UΩ(Γ;J−)Γ , (3)

where J+ and J− denote Kahler classes on the two sides

of the wall, V is a region in IR2 bounded by two rays

starting at the origin and ↷ denotes a clockwise ordering

of the central charges.

Page 24: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

24

Rank 2: All commutators with rank > 2 vanish and with

the Baker-Campell-Hausdorff one gets the primitive

wall-crossing formula

ΔΩ(Γ) = (−1)⟨Γ1,Γ2⟩−1⟨Γ1,Γ2⟩∑

Q0,1+Q0,2=Q0

Ω(Γ1) Ω(Γ2).

Page 25: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

25

Gottsche’s wall crossing formula:

Idea: Count invariants of sheaves on surfaces with

b+2 = 1 using the wall-crossing behaviour:

∙ Provide counting function in one chamber

– by a vanishing theorem

– using blow-up formulas

∙ Use the primitive wall-crossing formula

∙ Sum over (infinitly many) walls to obtain indefinite

Theta function

Page 26: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

26

Program completed for rank 2. Let Γ = (2, �, d),

d = d1 + d2 + � ⋅ � where � = �1 − �. A wall is given by

W � = {J ∈ C(P ) ∣ � ⋅ J = 0}. From primitive

wall-crossing formula:

∑d≥ 0

(Ω(Γ; J+)− Ω(Γ; J−))qd−�(P )/12

=∑

d1,d2≥ 0, �

(−1)2�⋅[P ] � ⋅ [P ] Ω(Γ1)Ω(Γ2)qd1+d2+�2−2�(P )

24

= (−1)2�⋅[P ]−1 1

�(�)2�(P )

∑�

� ⋅ [P ] q�2,

Page 27: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

27

= (−1)2�⋅[P ]−1 1

�(�)2�(P )Coeff2�iy(Θ

J+,J−Λ,� (2�, [P ]y))

Here

ΘJ,J ′

Λ,� (�, x) :=1

2

∑�∈Λ+�

(sgn(J ⋅ �)− sgn(J ′ ⋅ �)) q12�

2e2�i�⋅x.

These theta functions obey a cocycle condition

ΘF,GΛ,� + ΘG,H

Λ,� = ΘF,HΛ,� ,

Page 28: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

28

Let J and J ′ be in arbitrary chambers∑d≥0(Ω(Γ; J)−Ω(Γ; J ′))qd−�(P )/12

=(−1)2�⋅[P ]

�(�)2�(P )Coeff2�iy(Θ

J,J ′

Λ,� (2�, [P ]y)).

Page 29: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

29

The holomorphic anomaly equation

Idea: Regularisation of the indefinite Θ-function

ΘJ,J ′

Λ,� (�, x) :=1

2

∑�∈Λ+�

(sgn(J ⋅ �)− sgn(J ′ ⋅ �)) q12�

2e2�i�⋅x.

is incompatible with the SL(2,ℤ) invariance of N = 4

SYM.

One has to use a modular regularisation of the theta

function. Such a regularisation has been provided by

Zwegers treatment of Mock-modular forms Zwegers 09. It is

non-holomorphic an was used to construct an

Page 30: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

30

anholomophic extension to make Ramanujan’s Mock

modular forms into modular forms.

This idea appeared in similar context in the work of Jan

Manschot Manschot 08 & 09

Using the an-holmophicity of Zwergers regularistion we

will prove the holomorphic anomaly equation.

Zwerger’s anholomorphic regularisation of indefinite

Θ-fcts

Page 31: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

31

f(2)�,J ′(�)− f (2)

�,J(�) =#Λ⊥(�)2

�2�(P )(�)Coeff2�iy(Θ

J,J ′

Λ,� (2�, [P ]y)).

transforms not well under SL(2,ℤ).

Zwegers regularization:

Θc,c′

Λ,�(�, x) = 12

∑� ∈Λ+�

((E

((c⋅(�+Im (x)

�2))√�2√

−Q(c)

)−

E

((c′⋅(�+Im (x)

�2))√�2√

−Q(c′)

))e2�i�⋅xqQ(�),

Page 32: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

32

here Q(x) = 12x

2 and E denotes the incomplete error

function

E(x) = 2

∫ x

0

e−�udu.

The non-holomorphic function Θc,c′

Λ,�(�, x) transforms as a

Jacobi form of weight 12r(Λ).

Using

E(x) = sgn(x)(1− �12(x2)),

one splits

Θc,c′

Λ,�(�, x) = Θc,c′

Λ,�(�, x)− Φc�(�, x) + Φc′

�(�, x),

Page 33: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

33

with

Φc�(�, x) =

1

2

∑� ∈Λ+�

⎡⎣sgn(� ⋅ c)− E

⎛⎝(c ⋅ (� + Im (x)�2

))√�2√

−Q(c)

⎞⎠⎤⎦ e2�i�⋅xqQ(�).

containing all anholomorphicity. Using ideas review in

Zagier 07 one shows

∂�Coeff2�iyΦc�(2�, [P ]y) = −�

−32

2

8�i

c ⋅ [P ]√−c2

(−1)4�2 �(2)�,c(�, 0),

Page 34: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

34

Splitting

f(2)�,J(�) = f

(2)�,J ′(�)− 1

�2�(P )Coeff2�iyΘ

J,J ′� (2�, [P ]y),

into the holomophic ambiguity f(2)�,J ′(�) and writting the

reduced elliptic genus (spitting the center of mass mode

off)

Z(2)X,P(�, z) =

∑�∈Λ∗/Λ

f(2)�,J(�)�

(2)�,J(�, z).

With

Dk = ∂� +i

4�k∂2z+,

Page 35: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

35

one proofs the holomorphic anomaly equation at rank

two for general surfaces P

D2Z(2)X,P(�, z) = �

−3/22

1

16�i

J ⋅ [P ]√−J2

(Z

(1)X,P(�, z)

)2

.

Page 36: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

36

Conclusions

∙ We generalized the holomorphic anomaly in topological

string theory counting D2-D0 brane BPS invariants to

D4-D2-D0 brane invariants associated to N = 4 gauge

theory instantons..

∙ The form that we proof is compatible with the

conjectured form for the E-string related to gauge

theory on half K3 Minahan, Nemeschansky, Warner, Vafa 98

∂�Z(n)(q1) =

i�−22

16�

n−1∑s=1

s(n− s)Z(s)(q1)Z(n−s)(q1) ,

Page 37: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

37

∙ Asuming this one can make a prediction for the general

anomaly of the f

∂f�(r) =∑n=1,�

�(n), �(r−n)

n(r − n)f�(n)f�(r−n)e

(r n (r − n)�

2�2

),

with � ∈ Λ + �(r) − �(n) + �(r−n) + P2 .

∙ Quasimodularity of the topological string gets replaced

by Mock modularity. To every mock modular form ℎ of

weight k there exists a shadow g ∈M2−k such that

ℎ(�) = ℎ(�) + g∗(�)

Page 38: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

38

transforms as a wheight k modular from. Let gc(z) =

g(−z), and g∗(�) is defined by

g∗(�) = −(2i)k∫ ∞−�

(z + �)−kgc(z) dz.

Then∂ℎ

∂�=∂g∗

∂�= �−k2 g(�).

E2 indead is a trivial case of a mock modular form with

constant shadow:

E2(�) = E2(�)− 3

��2.

Page 39: 1 Wall-crossing and holomorphic anomalyqft2010.desy.de/e88901/e104145/infoboxContent104501/Klemm.pdf · Wall-crossing and holomorphic anomaly Hamburg, December 2, 2010 Albrecht Klemm

39

From ∂�E2 = �−22

3i2� we get g = 3i

2�

g∗(�) = − (2i)2 ∫∞−�(z + �)−2 3i

2�dz

= −6i�

[ −1z+�

]∞−� = − 3

��2.