1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles Poles, Zeros, Bode Plots Op...

100
1 Tim Green OUT IN + - Volts Amps + - High Current V-I Circuits

Transcript of 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles Poles, Zeros, Bode Plots Op...

Page 1: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

1Tim Green

OUTIN+

-Volts Amps

+

-High Current V-I Circuits

Page 2: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

2

Review - Essential Principles

Poles, Zeros, Bode Plots Op Amp Loop Gain Model Loop Gain Test β and 1/β Rate-of-Closure Stability Criteria Loop Gain Rules-of-Thumb for Stability RO and ROUT

Page 3: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

3

R

CVIN

VOUT

A = VOUT/VIN

Single Pole Circuit Equivalent

X100,000

Poles and Bode Plots

Pole Location = fP

Magnitude = -20dB/Decade Slope

Slope begins at fP and continues down as frequency increases

Actual Function = -3dB down @ fP

Phase = -45°/Decade Slope through fP

Decade Above fP Phase = -90°

Decade Below fP Phase = 0°

A(dB) = 20Log10(VOUT/VIN)

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

0

(d

egre

es)

-45o @ fP

-45o/Decade

-90o

0o

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

-20dB/Decade-6dB/Octave

fPG

0.707G = -3dB

ActualFunction

Straight-Line Approximation

Page 4: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

4

Zeros and Bode Plots

R

C

VOUT

A = VOUT/VIN

Single Zero Circuit Equivalent

X100,000

Zero Location = fZ

Magnitude = +20dB/Decade Slope

Slope begins at fZ and continues up as frequency increases

Actual Function = +3dB up @ fZ

Phase = +45°/Decade Slope through fZ

Decade Above fZ Phase = +90°

Decade Below fZ Phase = 0°

A(dB) = 20Log10(VOUT/VIN)

+90

-90

+45

+-45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

0

(d

egr

ees)

+90o

0o

+45o/Decade

+45o @ fZ

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

fZ

+20dB/Decade+6dB/Octave

Straight-Line Approximation

G

1.414G = +3dB(1/0.707)G = +3dB Actual

Function

Page 5: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

5

Op Amp: Intuitive Model

+

-

K(f)

VDIFF

IN+

IN-

RIN

RO

VO

VOUTx1

Page 6: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

6

Op Amp Loop Gain Model

+

-

RF

RI

VIN

+

-

network

Aol+

-

VOUTVIN

VFBVOUT

VFB

RF

RI

=VFB/VOUT

VOUT

network

VOUT/VIN = Acl = Aol/(1+Aolβ)

If Aol >> 1 then Acl ≈ 1/β

Aol: Open Loop Gain

β: Feedback Factor

Acl: Closed Loop Gain

1/b

= S

mal

l Sig

nal A

C G

ain

b=

feed

back

att

enua

tion

Page 7: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

7

Stability Criteria

VOUT/VIN = Aol / (1+ Aolβ)If: Aolβ = -1 Then: VOUT/VIN = Aol / 0 ∞

If VOUT/VIN = ∞ Unbounded Gain

Any small changes in VIN will result in large changes in VOUT which will feed back to VIN and result in even larger changes in VOUT OSCILLATIONS INSTABILITY !!

Aolβ: Loop GainAolβ = -1 Phase shift of +180°, Magnitude of 1 (0dB)fcl: frequency where Aolβ = 1 (0dB)

Stability Criteria:At fcl, where Aolβ = 1 (0dB), Phase Shift < +180°Desired Phase Margin (distance from +180° Phase Shift) > 45°

Page 8: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

8

Traditional Loop Gain Test

+

-

RF

RI

VIN

+

-

network

VFB

VOUT

Op Amp Loop Gain Model

Op Amp is “Closed Loop”

SPICE Loop Gain Test:

Break the Closed Loop at VOUT

Ground VIN

Inject AC Source, VX, into VOUT

Aolβ = VY/VX+

-

RF

RI

VIN

+

-

network

VFB

VOUT

+

-VX

VY

1GF

1GH

Short for ACOpen for DC

Open for ACShort for DC

Page 9: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

9

β and 1/β

VOUT

VFB

RF

RI

=VFB/VOUT

network

+

-

RF

RI

VIN

+

-

network

VFB

VOUT

β is easy to calculate as feedback network around the Op Amp

1/β is reciprocal of β

Easy Rules-Of-Thumb and Tricks to Plot 1/β on Op Amp Aol Curve

Page 10: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

10

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

Aol

(dB

)

fcl Acl

Aol

Aol (Loop Gain)

Closed Loop Response

Open Loop Response

Plot (in dB) 1/β on Op Amp Aol (in dB)

Aolβ = Aol(dB) – 1/β(dB)

Note how Aolβ changes with frequency

Proof (using log functions):

20Log10[Aolβ] = 20Log10(Aol) - 20Log10(1/β)

= 20Log10[Aol/(1/β)]

= 20Log10[Aolβ]

Loop Gain Using Aol & 1/β

Page 11: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

11

Stability Criteria using 1/β & Aol

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

Aol

(dB

)

Aol

fcl1

fcl4

fcl3

fcl2

*

*

**

**

At fcl: Loop Gain (Aolb) = 1

Rate-of-Closure @ fcl =(Aol slope – 1/β slope)

*20dB/decade Rate-of-Closure @ fcl = STABLE

**40dB/decade Rate-of-Closure@ fcl = UNSTABLE

Page 12: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

12

180

0

135

45

10 100 1k 10k 100k 1M 10M

Frequency(Hz)

90

(d

egre

es)

-45

fp1

fp2 fz1

fcl

45o

“Phase Margin”

-135o

“Phase Shift”

Loop Gain Bandwidth Rule: 45 degrees for f < fcl

Aolβ (Loop Gain) Phase Plot

Loop Stability Criteria: <-180 degree phase shift at fclDesign for: <-135 degree phase shift at all frequencies <fclWhy?: Because Aol is not always “Typical”Power-up, Power-down, Power-transient Undefined “Typical” AolAllows for phase shift due to real world Layout & Component Parasitics

Page 13: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

13

Poles & Zeros Transfer: (1/β, Aol) to Aolβ

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

Aol

fcl

fp1

fp2fz1

Aol

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

fp1

fz1

fp2

fcl

Aol & 1/β Plot Loop Gain Plot(Aolβ)

To Plot Aolβ from Aol & 1/β Plot:

Poles in Aol curve are poles in Aolβ (Loop Gain)PlotZeros in Aol curve are zeros in Aolβ (Loop Gain) Plot

Poles in 1/β curve are zeros in Aolβ (Loop Gain) PlotZeros in 1/β curve are poles in Aolβ (Loop Gain) Plot[Remember: β is the reciprocal of 1/β]

Page 14: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

14

Frequency Decade Rules for Loop Gain

+

-

+

-VIN

RI

RF

VOUT

CL

CnRn

0

20

40

60

80

100

10M1M100k10k1k100101

Frequency (Hz)

A (

dB)

fcl

fp1

fp2

fz1

fp3

Aol

1/Beta

VOUT/VIN

Loop Gain View: Poles: fp1, fp2, fz1; Zero: fp3

Rules of Thumb for Good Loop Stability:

Place fp3 within a decade of fz1 fp1 and fz1 = -135° phase shift at fz1 fp3 < decade will keep phase from dipping further

Place fp3 at least a decade below fcl Allows Aol curve to shift to the left by one decade

Page 15: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

15

Op Amp Model for Derivation of ROUT

+

-

RDIFF

xAol

RO-IN

+IN

-

+

VE

Op Amp Model

1A

VOUT

VO

RF

RI

IOUTVFB

ROUT = VOUT/IOUTFrom: Frederiksen, Thomas M. Intuitive Operational Amplifiers. McGraw-Hill Book Company. New York. Revised Edition. 1988.

ROUT = RO / (1+Aolβ)

Page 16: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

16

Op Amp Model for Loop Stability Analysis

RO is constant over the Op Amp’s bandwidth

RO is defined as the Op Amp’s Open Loop Output Resistance

RO is measured at IOUT = 0 Amps, f = 1MHz (use the unloaded RO for Loop Stability calculations since it will be the largest

value worst case for Loop Stability analysis)

RO is included when calculating b for Loop Stability analysis

Page 17: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

17

RO & Op Amp Output Operation

Bipolar Power Op Amps CMOS Power Op Amps Light Load vs Heavy Load

Page 18: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

18

RO Measure w/DC Operating Point: IOUT = 0mA

BipolarAll NPN Output

V+

V-

VOUT

Page 19: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

19

RO Measure w/DC Operating Point: IOUT = 0mA

RO = VOA / AM1RO = 9.61mVrms / 698.17μArms RO = 13.765Ω

Page 20: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

20

RO Measure w/DC Operating Point IOUT = 4.45mA Sink

Page 21: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

21

RO Measure w/DC Operating Point IOUT = 4.45mA Sink

RO = VOA / AM1RO = 3.45Vrms / 706.25µArms RO = 4.885Ω

Page 22: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

22

RO Measure w/DC Operating Point IOUT = 5.61mA Source

Page 23: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

23

RO Measure w/DC Operating Point IOUT = 5.61mA Source

RO = VOA / AM1RO = 3.29mVrms / 700.98μArms RO = 4.693Ω

Page 24: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

24

RO Measure w/DC Operating Point IOUT = 2.74A Source

Page 25: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

25

RO Measure w/DC Operating Point IOUT = 2.74A Source

RO = VOA / AM1RO = 314.31uVrms / 550.1μArms RO = 0.571Ω

Page 26: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

26

RO Measure w/DC Operating Point IOUT = 2.2A Sink

Page 27: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

27

RO Measure w/DC Operating Point IOUT = 2.2A Sink

RO = VOA / AM1RO = 169.92uVrms / 635.16μArms RO = 0.267Ω

Page 28: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

28

RO Measure w/DC Operating Point IOUT = 0A

V+

VOUT

MOSFETComplementary

Output

Page 29: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

29

RO Measure w/DC Operating PointIOUT = 0A

RO = VOA / AM1RO = 4.42mVrms / 702.69μArms RO = 6.29Ω

Page 30: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

30

RO Measure w/DC Operating PointIOUT = 1A Sink

Page 31: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

31

RO Measure w/DC Operating PointIOUT = 1A Sink

RO = VOA / AM1RO = 166.76μVrms / 540.19μArms RO = 0.309Ω

Page 32: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

32

RO Measure w/DC Operating PointIOUT = 1A Source

Page 33: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

33

RO Measure w/DC Operating PointIOUT = 1A Source

RO = VOA / AM1RO = 166.61μVrms / 540.34μArms RO = 0.308Ω

Page 34: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

34

Non-Inverting Floating Load V-I

Basic Topology Stability Analysis (w/effects of Ro)

1/b & Aol TestLoop Gain TestTransient Test

Small Signal BW for Current Control

Page 35: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

35

Non-Inverting V-I Floating Load

V+ 15

V- 15

+

VINLL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VOA

VRS

VP

IOUT

IOUT = VP / RSIOUT = (R2*VIN) / (R1A + R1B + R2) / RS

+5V3.03A

-5V-3.03A

VP

VP

VP

Op Amp Point of Feedback is VRSOp Amp Loop Gain forces +IN (VP) = -IN = VRS

+1V -1V

Page 36: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

36

Non-Inverting V-I Floating LoadRO Reflected Outside of Op Amp

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VRS

VP

VFB

VOA

+

VIN

V1 0

-

+

-

+VCV1 RO 13.77

VO

RO = 13.765 @ No Load

RO = 0.267 @ Full Load

x1

FB#1

Page 37: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

37

Non-Inverting V-I Floating LoadFB#1 DC 1/b Derivation

LL 15m

RL 1.5

RS 330m

VRS

VOA

-

+

-

+VCV1 RO 13.77

VO

RF 1kVFB

+

-

+

Ilim

E/S

U2 OPA548

x1

DC Beta FB#1 = VFB/VO

VFB = VO*RS RO+RL+RS

Set VO = 1

VFB = RSVO (RO+RL+RS)

DC 1/Beta FB#1 = VO/VFB

VO = (RO+RL+RS)VFB RS

VO = (13.77+1.5+0.33)VFB 0.33

VO = 47.27 33.49dBVFB

20Log10 (47.27) = 33.49dB

FB#1 DC 1/BetaLL is a SHORT

Page 38: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

38

Non-Inverting V-I Floating LoadFB#1 1/b Derivation

LL 15m

RL 1.5

RS 330m

VRS

VOA

-

+

-

+VCV1 RO 13.77

VO

RF 1kVFB

+

-

+

Ilim

E/S

U2 OPA548

x1

Beta FB#1 = VFB/VO

VFB = VO*RS RO+XLL+RL+RS

XLL = jLL

Set VO = 1

VFB = RSVO (RO+RL+RS) + jLL

VFB = RS / LLVO (RO+RL+RS) + j LL

Pole in Beta FB#1:fp = Ro+RL+RS 2LL

1/Beta FB#1 = VO/VFB

VO = (RO+RL+RS) + jLLVFB RS

VO = (RO+RL+RS) + jVFBLL RS / LL

Zero in 1/Beta FB#1:fz = Ro+RL+RS 2LL

fz = 13.77+1.5+0.33 215mH

fz = 165Hz

Page 39: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

39

Non-Inverting V-I Floating LoadFB#1 1/ b Data for RO No Load & Full Load

IOUT RO fz DC 1/b

No Load 0A 13.765W 165Hz 33.49dB

Full Load 1A 0.267W 22.25Hz 16.06dB

Page 40: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

40

OPA548 Data Sheet Aol

Page 41: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

41

1 10 100 1K 10K 100K 1M 10M

Frequency (Hz)

Gai

n (d

B)

0

20

40

60

80

100

120

OPA548 Aol

1/ FB#1 w/RO=13.765

1/ FB#1 w/RO=0.267

fz

fz

Non-Inverting V-I Floating LoadFB#1 1/b Plot for RO No Load & Full Load

STABLE

Page 42: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

42

Non-Inverting V-I Floating LoadFB#1 1/b Tina SPICE

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VRS

VP

VFB

VOA2

-

+

-

+VCV1 LT 1G

CT 1G

+

VG1

VTVOA

RO 13.77

RO = 13.765 @ No Load

RO = 0.267 @ Full Load

1/Beta FB#1 = VT/VFB

Aol = VOA/VFB

Loop Gain = VOA/VT

Page 43: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

43

Non-Inverting V-I Floating LoadFB#1 1/b Tina SPICE Results

T

OPA548 Aol

1/Beta FB#1RO = 13.77 ohms

Frequency (Hz)

10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

OPA548 Aol

1/Beta FB#1RO = 13.77 ohms

STABLE

Page 44: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

44

Non-Inverting V-I Floating LoadFB#1 1/b Tina SPICE Results

T

OPA548 Aol

1/Beta FB#1

RO = 0.267 ohms

Frequency (Hz)

10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1/Beta FB#1

RO = 0.267 ohms

OPA548 Aol

STABLE

Page 45: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

45

Non-Inverting V-I Floating LoadFB#1 Loop Gain Tina SPICE Results

TLoop Gain Magnitude

RO = 0.267 ohms

Loop Gain Phase

RO = 0.267 ohms

Frequency (Hz)

10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

Frequency (Hz)

10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-45.00

0.00

45.00

90.00

135.00

180.00

fcl

Loop Gain Phase

RO = 0.267 ohms

Loop Gain Magnitude

RO = 0.267 ohms

a

STABLE

Page 46: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

46

Non-Inverting V-I Floating LoadFB#1 Transient Analysis Tina SPICE Circuit

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VRS

VP

VOA2

-

+

-

+VCV1

VOA

RO 267m

V1 0

+

VG1

A+

AM1

RO = 13.765 @ No Load

RO = 0.267 @ Full Load

100Hz

330mVpk

tr=tf =10ns

Page 47: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

47

Non-Inverting V-I Floating LoadFB#1 Transient Analysis Tina SPICE Results

T

Time (s)

0.00 5.00m 10.00m 15.00m 20.00m

AM1

-252.74m

282.89m

VG1

-330.00m

330.00m

VOA

-14.74

13.25

VOA2

-14.79

13.30

VP

-66.20m

68.12m

VRS

-83.40m

93.35m

STABLE

Page 48: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

48

Non-Inverting V-I Floating LoadAdd FB#2 and Predict 1/b

1 10 100 1K 10K 100K 1M 10M

Frequency (Hz)

Ga

in (

dB)

0

20

40

60

80

100

120

OPA548 Aol

1/ FB#1 w/RO=13.765

1/ FB#1 w/RO=0.267

fz

fz

fz140Hz

36dB

FB#1

FB#2

1/

Note: Load Current Control begins to roll-off in frequency where FB#2 dominates

Page 49: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

49

-

Large β

Small β

Answer:

The largest β (smallest 1/β) will dominate!

How will the two feedbacks combine?

Page 50: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

50

Non-Inverting V-I Floating LoadFB#2 Circuit

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VRS

VP

VFB

VOA2

-

+

-

+VCV1 LT 1G

+

VT

VTVOA

RO 267m

Rd 61.9k CF 68n

CT 1G

RO = 13.765 @ No Load

RO = 0.267 @ Full Load1/Beta = VT/VFB

Aol = VOA/VFB

Loop Gain = VOA/VT

Ope

n FB

#1

Analy

ze F

B#2

Separ

ate

FB#2

FB#1

Page 51: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

51

Non-Inverting V-I Floating LoadFB#2 High Frequency 1/b

RO 13.77

Rd 61.9k

RF 1k

CF 68n

RS 330m

VOA

VFB

Hi-F Beta FB#2 = VFB/VO

Hi-F Beta FB#2 = 1/63 = 0.15848931

Set VO = 1Beta=VFB

IFB = VFB/(RF+RS)IFB = 0.15848931/(1k+0.33)=15.85uA

VOA-VFB = Rd IFB

1 - 0.15848931 = 62.09k use 61.9k 15.85uA

Hi-f 1/Beta FB#2 = VOA/VFB

Hi-f 1/Beta FB#2 = 36dB

36dB 10(36/20) = 63

FB#2 High Frequency 1/BetaCF is a SHORT

IFB

Page 52: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

52

Non-Inverting V-I Floating LoadFB#2 fz1

RO 13.77

Rd 61.9k

RF 1k

CF 68n

RS 330m

VOA

VFB

FB#2 1/Beta - fz1

fz1 = 1 2CF*(RO+Rd+RF+RS)

But if: Rd > 10*RF Rd > 10*RS Rd > 10*RoThen:fz1 1 2CF*Rd

CF 1 2fz1*Rd

CF = 1 = 64.2nF 240Hz*61.9k

Use: CF = 68nF

Page 53: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

53

Non-Inverting V-I Floating LoadTina SPICE Loop Test

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Ilim

E/S

U2 OPA548

VRS

VP

VFB

VOA2

-

+

-

+VCV1 LT 1G

+

VT

VTVOA

RO 267m

Rd 61.9k CF 68n

CT 1G

RO = 13.765 @ No Load

RO = 0.267 @ Full Load1/Beta = VT/VFB

Aol = VOA/VFB

Loop Gain = VOA/VT

Page 54: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

54

Non-Inverting V-I Floating LoadAol and 1/b Tina SPICE Results

T

Aol

1/Beta

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

aol A:(21.54; 87.71) B:(197.05; 75.74) beta1 A:(21.54; 19.14) B:(197.05; 33.04)

1/Beta

Aol

a b

Page 55: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

55

Non-Inverting V-I Floating LoadLoop Gain Tina SPICE Results

T

Loop Gain Magnitude

Loop Gain Phase

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

45.00

90.00

135.00

180.00

fcl

Gain : loop A:(20.02k; -135.8m)

Phase : loop A:(20.02k; 89.43)

Loop Gain Phase

Loop Gain Magnitude

a

Page 56: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

56

Non-Inverting V-I Floating LoadIOUT/VIN AC Response Circuit

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Il im

E/S

U2 OPA548

VRS

VP

VFB

VOA2

-

+

-

+VCV1

VOA

RO 267m

Rd 61.9k CF 68n+

VIN A+

IOUT

RO = 13.765 @ No Load

RO = 0.267 @ Full Load1/Beta = VT/VFB

Aol = VOA/VFB

Loop Gain = VOA/VT

Page 57: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

57

Non-Inverting V-I Floating LoadIOUT/VIN AC Tina SPICE Results

T

IOUT / VIN Magnitude

IOUT / VIN Phase

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-160.00

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-270.00

-225.00

-180.00

-135.00

-90.00

-45.00

0.00

Gain : IOUT A:(202.21; -6.45)

Phase : IOUT A:(202.21; -45.23)

IOUT / VIN Phase

IOUT / VIN Magnitude

a

Page 58: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

58

Non-Inverting V-I Floating LoadIOUT/VIN Transient Circuit

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

RF 1k

R1B 20k

R2 10k

R1A 20k+

-

+

Il im

E/S

U2 OPA548

VRS

VP

VFB

VOA2

-

+

-

+VCV1

VOA

RO 267m

Rd 61.9k CF 68n

A+

IOUT

+

VIN

RO = 13.765 @ No Load

RO = 0.267 @ Full Load

330mVp

100Hz

tr=tf =10ns

Page 59: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

59

Non-Inverting V-I Floating LoadIOUT/VIN Transient Tina SPICE Results

T

Time (s)

0.00 2.50m 5.00m 7.50m 10.00m

IOUT

-197.99m

231.12m

VIN

-330.00m

330.00m

VOA

-7.59

4.06

VRS

-65.33m

76.27m

Page 60: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

60

V+ 15

V- 15

+VIN

LL 15m

RL 1.5

RS 330m

RF 2k

+

-

+

Ilim

E/S

U2 OPA548

VOA

VRS

RI 10k

IOUT

Inverting V-I Floating Load

IOUT = -VIN*(RF/RI) / RSIOUT = -VIN*RF/ (RI*RS)

+5V

-3.03A-5V

+3.03A

Op Amp Point of Feedback is VRSOp Amp Loop Gain forces VRS = -VIN (RF/RI)

-1V +1V

Stability Analysis & Compensation Techniques similar to Non-Inverting V-I Floating Load

Page 61: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

61

Grounded Load V-IImproved Howland Current

Pump

Basic Topology Stability Analysis (w/effects of Ro)

1/b & Aol TestLoop Gain TestTransient Test

Small Signal BW for Current Control

Page 62: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

62

Improved Howland Current PumpIL Accuracy Circuit

RS 5

RF 5kRI 1k

RZ 1k

RX 5k

RL

10

VO

VL

VM 100m

VP 200m

-

+

-

+VCV1

RT 0

A+

IL

X1G

RT allows for trim to optimum ZOUT and improved DC Accuracy

IL

VPRX

RZ

RF

RI1

RS

RZ

VMRF

RI

RX

RZ1

RS

RL1

RX

RZ

RS RXRZ

RF

RI

RL

Page 63: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

63

Improved Howland Current PumpV-I DC Accuracy Calculations

1% Resistors (w/RT=0) could yield only 9% Accuracy at T=25°C

Still useful for V-I control in Motors/Valves V-Torque ControlOuter position feedback adjusts V for final position

RT RF RX RI RZ RS RL IL VL VOAM1 Sensitivity

(%) Comments2.858407 5000 5000 1000 1000 5 10 0.100000052 1.000000100 1.500667000 0.000000000 Rt adjusted for Ideal IL

0 5000 5000 1000 1000 5 10 0.099866893 0.998668931 1.498669000 0.133158931 Rt=0, Nominal Values2.858407 5050 5000 1000 1000 5 10 0.102371216 1.023712000 1.536255000 -2.371162767 1% Resistor Changes2.858407 5000 5050 1000 1000 5 10 0.098700599 0.987005991 1.481159000 1.299452324 1% Resistor Changes2.858407 5000 5000 1010 1000 5 10 0.097727653 0.977276527 1.466563000 2.272397818 1% Resistor Changes2.858407 5000 5000 1000 1010 5 10 0.101353602 1.013536000 1.520981000 -1.353549296 1% Resistor Changes2.858407 5000 5000 1000 1000 5.05 10 0.099009365 0.990094651 1.490756000 0.990686485 1% Resistor Changes2.858407 5000 5000 1000 1000 5 10.1 0.099999329 1.009993000 1.510665000 0.000723 1% Resistor Changes

0 5050 4950 990 1010 4.95 10 0.108995522 1.089955000 1.630222000 -8.995465322 1% Worst Case w/RT=0)2.858407 5050 4950 990 1010 4.95 10 0.109152449 1.091524000 1.632570000 -9.152392241 1% Worst Case w/RT=Nom)

Page 64: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

64

Improved Howland Current PumpGeneral Equation

IL

VP 1RF

RI

RS

RF

RF

RI1

VM

RS 1RI

RF

RL

RF

RS 5

RF 5k

RI 1k

RI 1k

RF 5k

RL 3

VO

VLVM 100m

VP 200m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5

.76

k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

Set RX=RF and RZ=RI

Page 65: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

65

Improved Howland Current PumpSimplified Equation

RS 5

RF 5k

RI 1k

RI 1k

RF 5k

RL 3

VO

VLVM 100m

VP 200m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5

.76

k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

Assume:RF = RXRI = RZRF>>RSRF>>RL

IL

VP VM( )RF

RI

RS

Page 66: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

66

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VLVM 100m

VP 200m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5.7

6k

R4

500

k

R3

500

k

R5

500

k

LL 30m

A+

IL

-

+

Improved Howland AC Analysis

Op Amp sees differential [(-IN) – (+IN)] feedbackb = b- - b+ (Must be positive number else oscillation!)

RF

RI

Page 67: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

67

Improved Howland AC Analysis

+

Aol VOUT

1/ = 1 (-) - (+)

Page 68: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

68

Improved Howland AC AnalysisInclude Effects of RO

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VLVM 100m

VP 200m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569R

set

5.7

6k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

RO 309m

-

+

-

+VCV1LT 1G

CT 1G

VT

+

VG1

VOA

VM

VP

V+

Vbeta

Aol = VO/Vbeta

1/Beta = VT/Vbeta

Loop Gain = VO/VT RO = 6.29 No Load

RO = 0.308 Full Load

RF

RI

Page 69: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

69

Improved Howland b- Calculation

RO 6.29

RF 5k

RI 1k

VO

VM

- = VM/VOSet VO = 1 - = VM

VM = VO * RI RO + RF + RI

VM = 1 * 1k = 0.166492127 6.29 + 5k + 1k

- = 0.166492127

- is constant over frequency since justresistors are in feedback path.

- Calculation

Page 70: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

70

Improved Howland b+ Calculation

+ AC Calculation

+ = VP/VOSet VO = 1 + = VP

1/+ Poles and Zeros:Since RF & RI >> RS & RL then:

fz = RO + RS +RL 2*LL

fz = 6.29 + 5 +3 = 75.8Hz 2*30m

fp = RF + RI 2*LL

fp = 5k + 1k = 31.83kHz 2*30m

+ Hi-f:

VP = RI RF + RI + RO + RS

VP = 1k = 0.166353644 5k + 1k + 6.29 + 5

+ Hi-f = 0.166353644

+ DC Calculation

+ = VP/VOSet VO = 1 + = VP

Since RF & RI >> RS & RL:VL = VO * RL RO + RS + RL

VL = 1 * 3 = 0.2099937018 6.29 + 5 + 3

VP = VL * RI RF+ RI

VP = 0.2099937018 * 1k = 0.03499895 5k +1k

+ DC = 0.03499895

+ Calculation

RO 6.29

RF 5k

RI 1k

VO

VP

RS 5

RL 3

LL 30m

VL

LL Inductor:Short for + DCOpen for + Hi-f

Page 71: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

71

Improved Howland 1/b Calculation

Calculation

DC = -) - + DC) DC = 0.166492127 - 0.03499895 = 0.1314937771/ DC = 7.6 17.62dB

Hi-f = (-) - (+ Hi-f)Hi-f = 0.166492127 - 0.166353644 = 0.0001384831/ Hi-f = 7221.1 77.17dB

1/Poles and Zeros directly from 1/+fz = 75.8Hzfp = 31.83kHz

Page 72: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

72

Improved Howland b- CalculationRO = Full Load

- = VM/VOSet VO = 1 - = VM

VM = VO * RI RO + RF + RI

VM = 1 * 1k = 0.166658111 308m + 5k + 1k

- = 0.166658111

- is constant over frequency since justresistors are in feedback path.

- CalculationRO = Full Load

RO 308m

RF 5k

RI 1k

VO

VM

Page 73: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

73

Improved Howland b+ CalculationRO = Full Load

+ AC Calculation

+ = VP/VOSet VO = 1 + = VP

1/+ Poles and Zeros:Since RF & RI >> RS & RL then:

fz = RO + RS +RL 2*LL

fz = 308m + 5 +3 = 44.08Hz 2*30m

fp = RF + RI 2*LL

fp = 5k + 1k = 31.83kHz 2*30m

+ Hi-f:

VP = RI RF + RI + RO + RS

VP = 1k = 0.166519352 5k + 1k + 308m + 5

+ Hi-f = 0.166519352

+ DC Calculation

+ = VP/VOSet VO = 1 + = VP

Since RF & RI >> RS & RL:VL = VO * RL RO + RS + RL

VL = 1 * 3 = 0.361054278 309m + 5 + 3

VP = VL * RI RF+ RI

VP = 0.361054278 * 1k = 0.060175713 5k +1k

+ DC = 0.060175713

+ CalculationRO = Full Load

LL Inductor:Short for + DCOpen for + Hi-f

RO 308m

RF 5k

RI 1k

VO

VP

RS 5

RL 3

LL 30m

VL

Page 74: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

74

Improved Howland 1/b CalculationRO = Full Load

CalculationRO = Full Load

DC = -) - + DC) DC = 0.166658111 - 0.060175713 = 0.1064823981/ DC = 9.39 19.45dB

Hi-f = (-) - (+ Hi-f)Hi-f = 0.166658111 - 0.166519352 = 0.0001387591/ Hi-f = 7206.7 77.15dB

1/Poles and Zeros directly from 1/+fz = 44.08Hzfp = 31.83kHz

Page 75: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

75

Improved Howland 1/b CalculationNo Load & Full Load

IL RO fz fp DC 1/b Hi-f 1/b

No Load 0A 6.29W 75.8Hz 31.83kHz

17.62dB

77.17dB

Full Load 1A 0.308W

44.08Hz

31.83kHz

19.45dB

77.15dB

Change in RO from No Load to Full Load has nosignificant impact on the 1/b Plot

Page 76: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

76

OPA569 Data Sheet Aol

Page 77: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

77

Improved Howland 1/b Plot - Full Load

1 10 100 1K 10K 100K 1M 10M

Frequency (Hz)

Gai

n (d

B)

0

20

40

60

80

100

120

OPA569 Aol

fz44.08Hz

fp31.83kHz

1/RO=Full Load

STABLE

Page 78: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

78

Improved Howland 1/b Tina SPICE Plot - Full Load

T

OPA569 Aol

1/BetaRO=Full Load

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Aol A:(44; 89.51) B:(31.34k; 32.47) beta1 A:(44; 22.98) B:(31.34k; 74.07)

1/BetaRO=Full Load

OPA569 Aol

a b

STABLE

Page 79: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

79

Improved Howland Loop Gain Tina SPICE Plot - Full Load

T

Loop Gain

Loop Gain

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

0.00

45.00

90.00

Loop Gain

Loop Gain

Gain : LoopGain A:(2.4k; 110.92m)

Phase : LoopGain A:(2.4k; 5.29)

a

STABLE

Page 80: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

80

Improved Howland Tina Transient Analysis Circuit

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VL

VP 500m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5

.76

k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

+VG2

+/-10mV

100Hz

RF

RI

Page 81: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

81

Improved Howland Tina Transient Analysis Results

T

Time (s)

0.00 5.00m 10.00m 15.00m 20.00m

IL

476.55m

514.33m

VG2

-10.00m

10.00m

VL

-2.94

2.57

VO

-414.75m

4.97

STABLE

Page 82: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

82

Improved HowlandModified 1/b for Stability

1 10 100 1K 10K 100K 1M 10M

Frequency (Hz)

Gai

n (d

B)

0

20

40

60

80

100

120

OPA569 Aol

fz44.08Hz

fp31.83kHz

1/RO=Full Load

+ FB#2 toModify 1/

Modified 1/

fz1

Page 83: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

83

b+ FB#2 Calculation to Modify 1/b for Stability

RO 308m

RF 5k

RI 1k

VO

VP

RS 5

RL 3

VL

Rd 13k

Cf 270n

LL 30m Inductor is open

for Hi-f Analysis

+ FB#2 Calculation

Capacitor is short for Hi-f Analysis

+ FB#2

If

Ii

Id

(0.15658111)

(1)+ FB#2 Calculation: Hi-f Analysis

Desired 1/ = 40dB x100Desired = 0.01- = 0.166658111

+ = (-) - + = 0.166658111 - 0.01+ = 0.15658111 = VP

If = VO - VP [set VO = 1, RF >> RO, RS] RFIf = 1 - 0.15658111 = 168.68377A 5k

Ii = VP RI

Ii = 0.15658111 = 156.58111A 1k

Id = If - IiId = 168.68377A - 156.58111A Id = 12.10266A

Rd = VP IdRd = 0.15658111 = 12.937743k 12.10266A

Rd = 13k (standard value)

+ FB#2 fz1 Calculation

fz1 = 1 2RdCf

Cf = 1 fz1*2*Rd

Cf = 1 = 0.2782429F 44Hz*2*13k

Cf = 0.27F (standard value)

Page 84: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

84

Improved Howland AC AnalysisFinal Design for Stability

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VLVM 100m

VP 200m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569R

set

5.7

6k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

RO 309m

-

+

-

+VCV1LT 1G

CT 1G

VT

+

VG1

VOA

VM

VP

V+

Vbeta

Rd

13

kC

f 2

70

nAol = VO/Vbeta

1/Beta = VT/Vbeta

Loop Gain = VO/VT RO = 6.29 No Load

RO = 0.308 Full Load

RF

RI

Page 85: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

85

Improved Howland AC Analysis1/b - Final Design for Stability

T

OPA569 Aol

1/Beta

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

OPA569 Aol

Aol A:(43.22; 89.66) B:(417.02; 69.97) Beta1 A:(43.22; 23.15) B:(417.02; 37.01)

1/Beta

a b

fcl

Page 86: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

86

Improved Howland AC AnalysisLoop Gain - Final Design for Stability

T

Loop Gain

Loop Gain

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-45.00

0.00

45.00

90.00

Gain : Loop A:(13.43k; -38.44m)

Phase : Loop A:(13.43k; 87.84)

Loop Gain

Loop Gain

a

fcl

Page 87: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

87

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VL

VP 500m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5

.76

k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

+

VIN

Rd

13

kC

d 2

70

n

Improved Howland AC Transfer AnalysisIL/VIN - Final Design for Stability

RF

RI

Page 88: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

88

Improved Howland AC Transfer AnalysisIL/VIN - Final Design for Stability

T

IL/VIN

IL/VIN

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ga

in (

dB

)

-140.00

-120.00

-100.00

-80.00

-60.00

-40.00

-20.00

0.00

20.00

Frequency (Hz)

1 10 100 1k 10k 100k 1M 10M

Ph

ase

[de

g]

-90.00

-45.00

0.00

45.00

90.00

135.00

180.00

Gain : IL A:(393.63; -2.18)

Phase : IL A:(393.63; 135.34)

IL/VIN

IL/VIN

a

Page 89: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

89

Improved Howland Transient AnalysisIL/VIN - Final Design for Stability

RS 5

RF 5k

RI 1k

RZ 1k

RX 5k

RL 3

VO

VL

VP 500m

Vs+ 5

+

-

+

Iset

En

Imon IflagIflag

Tflag

U1 OPA569

Rse

t 5

.76

k

R4

50

0k

R3

50

0k

R5

50

0k

LL 30m

A+

IL

+VIN

Rd

13

kC

f 2

70

n

+/-10mV

100Hz

RF

RI

Page 90: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

90

Improved Howland Transient AnalysisIL/VIN - Final Design for Stability

T

Time (s)

0.00 5.00m 10.00m 15.00m 20.00m

IL

489.03m

510.68m

VIN

-10.00m

10.00m

VL

12.44m

2.50

VO

2.55

4.96

Page 91: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

91

High Current V-I General Checklist

Large Signal & Transient SOA Considerations (V=L*di/dt)

Bipolar Output Stages & Oscillations

High Current Grounding

High Current PCB Traces

High Current Supply Issues

Power Supply Bypass (Low f & High f)

Transient Protection (Supply, VIN, VOUT)

Power Dissipation Considerations (see “V-I Circuits Using External Transistors” section)

Consider:

Short Circuit to Ground Power Dissipation

Heatsink Selection

Current Sense Resistor (RS) Power Dissipation

Page 92: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

92

V-I Large Signal Limits: V=Ldi/dt

Laws of Physics dictate:V=Ldi/dtdt = Ldi/V

Rule of Thumb:VLL = VOA - VRL - VRSVLL = VOA - IL*RL - IL*RS

VLL = 12 - 1*1.5 - 1*0.330 = 10.17V

IL dt = LL*dIL/VLLIL dt = 15m*1/10.17 = 1.47msFastest IL/VIN Slew Rate = 1A/1.47msLimit VIN Slew Rate x V-I Gain to match IL/VIN Slew Rate

OPA548 Slew Rate = 10V/usVOA dt = VOA/(Slew Rate)VOA dt = 12V/(10V/us) = 1.2us

Rule of Thumb:VOA dt < (IL dt)/101.2us < 1470us/101.2us < 147usOp Amp Slew Rate < (IL/VIN Slew Rate)/10

V+ 15

V- 15

LL 15m

RL 1.5

RS 330m

+

-

+

Il im

E/S

U2 OPA548 VOA

A+

IL

(12V)

(1A)

Page 93: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

93

+15V

-15V

RL

LL

RS

1.5

0.33

30mH

IL

3A

13.17V

+

-

4.5V

+

-0.99V

Instant Current ChangeSteady State Current Flow

+15V

-15V

RL

LL

RS

1.5

0.33

30mH

IL3A

+

-

15V

-15V

+15V

30V

Violate the Laws of Physics and Pay the Price!

Page 94: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

94

Instant V-I Reversal SOA Violations

Page 95: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

95

Output Stages

-VS

LOAD

fosc > UGBW oscillates unloaded? -- no oscillates with VIN=0? -- no

Some Op Amps use composite output stages, usually on the negative output, that contain local feedback paths. Under reactive loads these output stages can oscillate.

The Output R-C Snubber Network lowers the high frequency gain of the output stage preventing unwanted oscillations under reactive loads.

+

-

+

-

VIN

RF

RI100k

100k

VOUT

RSN

CSN

10 to 100

F to 1F

PROBLEM SOLUTION

Page 96: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

96

Ground Loops

+

-+

- -VS

+VS

RL

RGyRGx

RGv

RGw

RFRI

“Ground”

IL

VIN

VOUT

fosc < UGBW oscillates unloaded? -- no oscillates with VIN=0? -- yes

+

-+

- -VS

+VS

RL

RFRI

RG“Star”

GroundPoint

VIN

VOUT

Ground loops are created from load current flowing through parasitic resistances. If part of VOUT is fed back to Op Amp +input, positive feedback and oscillations can occur.

Parasitic resistances can be made to look like a common mode input by using a “Single-Point” or “Star” ground connection.

SO

LU

TIO

N

PR

OB

LE

M

Page 97: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

97

PCB Traces fosc < UGBW oscillates unloaded? -- may or may not oscillates with VIN=0? -- may or may not

DO NOT route high current, low impedance output traces near high impedance input traces.

DO route high current output traces adjacent to each other (on top of each other in a multi-layer PCB) to form a twisted pair for EMI cancellation.

+

-

+

-

VIN VOUT

RI RF

Rs

GND

Page 98: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

98

Supply Lines

GainStage

PowerStage

RLIL

-vs

Rs

+

-

+vs

Ls

CL

Load current, IL, flows through power supply resistance, Rs, due to PCB trace or wiring. Modulated supply voltages appear at Op Amp Power pins. Modulated signal couples into amplifier which relies on supply pins as AC Ground.

Power supply lead inductance, Ls, interacts with a capacitive load, CL, to form an oscillatory LC, high Q, tank circuit.

fosc < UGBW oscillates unloaded? -- no oscillates with VIN=0? -- may or may not

PROBLEM PROBLEM

Page 99: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

99

Proper Supply Line Decouple

+

-

RHF

RHF

CHF

CHF

CLF

CLF

+VS

-VS

< 4 in<10 cm

< 4 in<10 cm

CLF: Low Frequency Bypass

10μF / Amp Out (peak)

Aluminum Electrolytic or Tantalum

< 4 in (10cm) from Op Amp

CHF: High Frequency Bypass

0.1μF Ceramic

Directly at Op Amp Power Supply Pins

RHF: Provisional Series CHF Resistance

1Ω < RHF < 10Ω

Highly Inductive Supply Lines

SOLUTION

Page 100: 1 Tim Green High Current V-I Circuits. 2 Review - Essential Principles  Poles, Zeros, Bode Plots  Op Amp Loop Gain Model  Loop Gain Test  β and 1/β.

100

Transient Protection

V+ 15

V- 15

+

-

+

Ilim

E/S

U2 OPA548

Z1 1N5246

Z2 1N5246

D1 MUR140

D2 MUR140LL 30m

RL 3

C1

10

0n

C3

10

0n

C4

22

uC

2 2

2u

D3 1N4148

D4 1N4148

D5 1N4148

D6 1N4148

D7 1N4148D8 1N4148

T1 2N3369

Anode

Cathode

VIN+

VIN-

CF 100n

+

+

For lower leakage & lowercapacitance use diodeconnected JFET

OUTPUTProtectionINPUT

Protection

POWER SUPPLYProtection

Fast reverse-recovery flybackdiodes rate at least 2x Vsupply

Stack diodes to allow fordifferential overdrive toachieve fastest slew rate

Zeners or Semiconductor Transient Suppressorsprevent Power Supply overvoltage, reverse polarityprotection, low impedance for transient energy fromouptut flyback diodes.

Semiconductor Transient Suppressors have largerjunction areas than zeners and can diddpate largeramounts of power for short periods of time.

High frequency bypass, ceramic (0.1F)Low frequency bypass, Tantalum or Aluminum Electrolytic, (10F per peak amp of output current)

POWER SUPPLYBypass