1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata...

39
1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco

Transcript of 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata...

Page 1: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

1

The role of elastin in arterial mechanics

Structure function relationships in soft tissues

Namrata Gundiah

University of California, San Francisco

Page 2: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

2

Introduction

Page 3: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

3

Arterial microstructure

Page 4: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

4

Arterial microstructure

Intima Endothelial cells

Page 5: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

5

Arterial microstructure

Media Smooth muscle cells, collagen & elastin

Page 6: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

6

Arterial microstructure

Adventitia Collagen fibers

Page 7: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

7

Complex tissue architecture

Masson’s trichrome

Collagen: blue

Verhoeff’s Elastic

Elastin: black

Page 8: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

8

Diseases affecting arterial mechanics

Atherosclerosis

Abdominal Aortic AneurysmsAortic Dissections

Supravalvular aortic stenosisWilliam’s syndrome

Marfan’s syndrome Cutis laxa etc.

Page 9: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

9

Mechanical properties of arteries

Roach, M.R. et al, Can. J. Biochem. & Physiol., 35: 181-190 (1957).

Page 10: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

10

How do you study the mechanics of materials?

Page 11: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

11

Arterial Behavior

• Arteries are composite structures• Rubbery protein elastin and high strength collagen• Nonlinear elastic structures undergoing large

deformations• Anisotropic

• Viscoelastic

Fung, Y.C. (1979)

• Pseudoelastic

How is stress related to strain: Constitutive equations

Page 12: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

12

Continuum mechanical framework

Page 13: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

13

Biaxial test : Preliminaries

• Material is sufficiently thin such that plane stress exists in samples and top and bottom of sample is traction free

• Kinematics: Deformations are homogeneousAssuming incompressibility

• Equilibrium:

• Constitutive law: 1. Using tissue compressibility and symmetry 2. Phenomenological model

333222111 ;; XxXxXx

1321

0;; 12331

2222

2

1111

TT

HL

FT

HL

FT

Page 14: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

14

Measurement of tissue mechanicsBiaxial stretcher design

Page 15: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

15

Data from biaxial experiment

Page 16: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

16

1. Phenomenological model• Fung strain energy function

1exp2

1 QcW

22111222222

21111 EEcEcEcQ

1: circ 2: long

Eij Green strain; cij material parameters

Cauchy stresses

Best fit parameters obtained using Levenberg-Marquardt algorithm

TFC

CFIT

)(W

p

22221112

2222

221211112111

)exp(

)exp(

EcEcQcT

EcEcQcT

Page 17: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

17

2. Function using material symmetry

• Define strain invariants• For isotropic and incompressible material

• Need to know symmetry in the underlying microstructure.

• Transverse isotropy: 5 parameters• Orthotropy: 9 parameters

21321 ,)1)((),(,)()()( WIIIWWWW CCCCF

Page 18: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

18

Elastin Isolation

• Goal: to completely remove collagen, proteoglycans and other contaminants

1. Hot alkali treatment

2. Repeated autoclaving followed by extraction with 6 mol/L guanidine hydrochloride

1 Lansing. (1952)

2 Gosline. JM (1996).

Page 19: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

19

Elastin architecture

N. Gundiah et al, J. Biomech (2007)

•Axially oriented fibers towards intima and adventitia •Circumferential elastin fibers in media.

Page 20: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

20

Histology Results

• Circumferential sections: Elastin fibers in concentric circles in the media

• Transverse sections: Elastin in adventitia and intima is axially-oriented.Elastin in media is circumferentially-oriented.

• Elastin microstructure in porcine arteries can be described using orthotropic symmetry

Page 21: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

21

Orthotropic material

• Assume orthotropic

29

8

7

6

5

4

3

22

1

)'.()(

.)'.()(

).()(

).()(

).()(

).()(

1)det()(

)(2

1)(

);()(

MMC

CMMMMC

M'CM'C

CM'M'C

MCMC

CMMC

CC

CCC

CC

2

2

2

I

I

I

I

I

I

I

trtrI

trI

,

C=FTF is the right Cauchy Green tensor

=90 for orthogonal fiber families

Page 22: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

22

Theoretical considerations

• Deformation: homogeneous

i are the stretches in the three directions

• Unit vectors

• Strain energy function for arterial elastin networks:

• Define subclass

111 Xx 222 Xx 333 Xx

1

2

eM'

eM

),,,,,(ˆ765421 IIIIIIWW

),,(ˆ641 IIIWW

Page 23: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

23

Rivlin Saunders protocol

• Perform planar biaxial experiments keeping I1 constant and get dependence of W1, W4 on I4

• Repeat experiments keeping I4 constant

),(~

),,(ˆ41641 IIWIIIWW

• Constant I1 experiments violates pseudoelasticity requirement

22

21

22

21

23

22

211

1

I

Page 24: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

24

0

02

2

22

132312

23133

22122

214

21111

TTT

WpT

WpT

WWpT

TFFB

FMFMBIT

41 22 WWp

Left Cauchy Green tensor

For biaxial experiments

22

21

22

21

2222

21

21112

221

22

41

2

11

TT

W

22

21

22

221

12

TW

Experimental design

Page 25: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

25

Results from biaxial experiments

Page 26: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

26

Constant I4 experiments: W1 and W4 dependence

Gundiah et al, unpublished

Page 27: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

27

W4 dependence on I4

SEF has second order dependence on I4, hence on I6

We propose semi-empirical form, similar to standard reinforcing model

Coefficients c0, c1 and c2 determined by fitting equibiaxial data to new SEF using the Levenberg-Marquardt optimization

262

24110 113 IcIcIcW

Page 28: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

28

Fits to new Strain Energy Function

c0 = 73.96 ± 22.51 kPa,c1 = 1.18 ±1.79 kPa c2 = 0.8 ±1.26 kPa

Page 29: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

29

Mechanical properties of arteries

Roach, M.R. et al, Can. J. Biochem. & Physiol., 35: 181-190 (1957).

Page 30: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

30

Mechanical Test Results

• Strain energy function for arteries

• Isotropic contribution mainly due to elastin

• Anisotropic contribution due to collagen fiber layout

641 , IIWIWW anisoiso

Page 31: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

31

How do elastin & collagen influence arterial behavior?

Page 32: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

32

Acknowledgements

• Prof Lisa Pruitt, UC Berkeley/ UC San Francisco

• Dr Mark Ratcliffe UCSF/ VAMC for use of biaxial stretcher

• Jesse Woo & Debby Chang for help with histology

• NSF grant CMS0106010 to UC Berkeley

Page 33: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

33

Page 34: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

34

Uniaxial Test Results

Page 35: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

35

• Use uniaxial stress-strain data

• Mooney-Rivlin Strain energy function:

• Uniaxial tension experiments

• Plot of Vs

Is it a Mooney-Rivlin material?

3210

3101

IcIcW

1

1001

1

2111

12

ccT

1

2111

12/

T

1

1

Page 36: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

36

Is Elastin a Mooney-Rivlin material?

01

1

10

1

2111

12 c

cT

Equation:

N. Gundiah et al, J. Biomech (2007)

Page 37: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

37

Mooney-Rivlin material?

c01 kPa c10 kPa

Autoclaving 162.57 ±115.44 -234.62 ± 166.23

Hot Alkali 76.94 ±27.76 -24.89 ± 35.11

• Baker-Ericksen inequalities c01, c10 ≥0

Greater principal stress occurs always in the direction of the greater principal stretch

Not a Mooney-Rivlin material

Page 38: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

38

Constant I1: W1 and W4 dependence

Page 39: 1 The role of elastin in arterial mechanics Structure function relationships in soft tissues Namrata Gundiah University of California, San Francisco.

39

Conclusions

• neo-Hookean term dominant. • elastin modulus is 522.71 kPa• From Holzapfel1 and Zulliger2 models

(obtained by fitting experimental data on arteries), we get elastin modulus of 308.2 kPa and 337.32 kPa respectively which is lower than those experimentally determined.

* Gundiah, N. et al, J. Biomech. v40 (2007) 586-5941 Holzapfel, GA et al, 1996, Comm. Num. Meth. Engg, v12 n8 (1996) 507-517.

2 Zulliger, MA et al, J Biomech, v37 (2004) 989-1000