1 The Designs of Scheduling Mechanisms in WDM/TDM PON 分波多工 /...

50
1 The Designs of Scheduling Mec hanisms in WDM/TDM PON 分分分分 / 分分分分分分分分分分分分分分分分分分 Advisor: Ho-Ting Wu Presenter : Ze-Yang Kuo March 14, 2022 Dept. of Computer Science and Information Engineering National Taipei University of Technology
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    2

Transcript of 1 The Designs of Scheduling Mechanisms in WDM/TDM PON 分波多工 /...

1

The Designs of Scheduling Mechanisms in WDM/TDM PON

分波多工 / 分時多工被動式光學網路排程機制之設計

Advisor: Ho-Ting Wu

Presenter : Ze-Yang Kuo

April 18, 2023

Dept. of Computer Science and Information EngineeringNational Taipei University of Technology

2

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

3

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

4

PON History(1)

5

PON History(2)

Standard Structure Speed Protocol Overhead

for IP

Group

APON

(ATM PON)

G.983.1 ATM Based 622Mbps/

155Mbps

Large ITU-T FSAN

BPON

(Broadband PON)

G.983.1~8 APON Extension

1.2Gbps/622Mbps

Large ITU-T FSAN

EPON

(Ethernet PON)

802.3ah

(G.985 for Point-to-Point)

Ethernet Based

(P2P/PMP)

1.25Gbps Small IEEE EFM

GPON

(Gigabit PON)

G.984.1~3 Ethernet/ATM/TDM

2.4Gbps Middle ITU-T FSAN

6

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

7

EPON Architecture(1)

Ethernet Passive Optical Network (EPON)– High Quality and Huge Bandwidth– Passive Equipments– Point to Multipoint

Architecture Device– OLT (Optical Line Terminal)– ONU (Optical Network Unit)– Splitter / Combiner

8

EPON Architecture(2)

TopologyONU 5

ONU 4

ONU 3

ONU 2

ONU 1

OLT

OLT

ONU 1

ONU 2

ONU 3

ONU 4

ONU 5

ONU 1 ONU 3 ONU 5

ONU 2 ONU 4

(a) tree (b) ring

(c) bus

9

EPON Architecture(3)

Downstream

10

EPON Architecture(4)

Upstream

11

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

12

Motivation

近年來由於網路技術的演進加上新興的網路應用服務 (HDTV 、 VoIP 、Video on Demand 等 ) 的普及,所以使得網際網路的頻寬使用量,每年均以倍數或甚至是爆發性的成長,未來 TDM PON 〈 Time-Division-Multiplexing Passive Optical Network 〉勢必無法滿足廣大的頻寬需求。

在 WDM PON PON 〈 Wavelength-Division-Multiplexing Passive Optical Network 〉架構中,成本與擴充性的考量以及頻寬的有效使用是非常重要的,因此我們擬採用 WDM/TDM PON 的架構,是以共享多條波長的頻寬即分配時槽的方式來協調各個 ONUs 避免碰撞,如此一來我們便可以達到有效的升級 TDM PON 的頻寬並且不會增加過多無謂的成本。

由於 WDM/TDM PON 是將 TDM PON 增加上傳或是下載的波長數量,所以在擴充性的方面也有很好的表現。而近年來由於即時影音與多媒體應用服務 (IPTV, P2P, Video Conference 等 ) 的發展,也大幅的提昇了網際網路群播服務的重要性,因此我們所提出的 WDM/TDM PON 中,也加入了支援群播封包的功能以符合現實的網路需求。

13

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

14

AWG (Arrayed Waveguide Grating)

15

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

16

SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON(1)

TL 1

TL 2

TL 3

TL 4

AWG

Splitter

Splitter

Splitter

Splitter

ONU 1

ONU 16ONU 17

ONU 32

ONU 33

ONU 48

ONU 49

ONU 64

TL X = Tunable LaserCH X = WDM filter

CH 1

CH 16CH 1

CH 16

CH 1

CH 16

CH 1

CH 16

1 2 3 4 5 6 7 8 61 62 63 64

λ

User channel 1 User channel 2 User channel 16

AWG channels

17

SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON(2)

Wavelength Reuse: Bandwidth is money Static Routing: Avoid Channel Collision Scalability: Easy to upgrade

18

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

19

WDM/TDM PON(1)

Scheduler

TL 1

TL 2

TL 3

TL 4

AWG

OLT

DispatcherDown stream

Splitter

Splitter

Splitter

Splitter

ONU1TR

ONU16TR

ONU17TR

ONU32TR

ONU33TR

ONU48TR

ONU49TR

ONU64TR

ONUs

HVOQ1

LVOQ1

HVOQ2

LVOQ2

HVOQ3

LVOQ3

HVOQ4

LVOQ4

20

WDM/TDM PON(2)

HVOQ: High Priority Virtual Output Queue LVOQ: Low Priority Virtual Output Queue TL: Tunable Laser TR: Tunable Receiver

21

WDM/TDM PON(3)

首先, dispatcher 會將封包以其最多目的端所屬的 group 分配到所屬的 VOQ ,例如 : 某個封包目的端 ID 為 [1,2,21] ,則此封包有兩個目的端屬於 group1 一個目的端屬於 group2 ,所以此封包會被分配到 VOQ1

我們會設定一段 cycle time ,當 cycle time 到達時 scheduler 會開始分配封包給 TL 傳送,我們將此 cycle time設定為剛好可以讓一個 TL 傳送一個 Ethernet 封包

在 cycle time 之前會有一段 control time , 此段時間主要是給予 scheduler 做 schedule 以及讓 TL 傳送 control signal 給 ONU ,讓 ONU 將 TR 調整到適當的波段接收資料

22

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

23

Definition

Unicast Packet: 目的端數目為一的封包

UniPON Packet: 目的端皆位於同一 AWG 輸出端 ( 相同 group) 的封包

Multicast Packet: 目的端位於不同 AWG 輸出端 ( 不同 group) 的封包

AllOutPacket: 目的端在相同 AWG 輸出端 ( 相同 group) 或是目的端沒有與其他已排程的封包有衝突的封包

Receive Collision: 同時有兩個 TL 使用不同的波長傳送到相同的目的端

Partition: 當封包為 multicast packet 或 scheduler 發現 receive collision 會發生時,便會啟動 partition 機制,將位於不同 AWG 輸出端的目的端或是發生 receive collision 的目的端切開 ( 複製封包 ) 至不同 cycle 傳送

LookBackLength: 在 queue 中可以從 HOL (Head Of Line)packet 往後挑選封包的長度

24

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

25

Pure Look BackSTART

Is all TL already Scheduled?

ENDYes

Have any single PON packet coiision

No

Yes

Pick up the packets in the queue

at most L

Have any packet is AllOutPacket?

Find the rank of longest VOQ and correspond TL did not schedule yet

Schedule this packetto the correspond

TL

No

Is this queue is empty?

Find the longest queue(the other

already scheduled)

Yes

No

Yes

Is all packet in whole already

Scheduled?

No

Yes

Choose the first packet we collected

Partition the first packet

No

Have any multi PON packet without

coiision

Yes

No

26

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

27

Emergency And Ratio Look Back(1)

START

Is all TL already Scheduled?

ENDYes

Have any single PON packet coiision

No

Yes

Pick up the packets in the queue

at most L

Have any packet is AllOutPacket?

Find the rank of longest VOQ and correspond TL did not schedule yet

Schedule this packetto the correspond

TL

No

Is this queue is empty?

Find the longest queue(the other

already scheduled)

Yes

No

Yes

Is all packet in whole already

Scheduled?

No

Yes

Run emergency and ratio function to find

the packet

Partition the first packet

No

Have any multi PON packet without

coiision

Yes

No

28

Emergency And Ratio Look Back(2)

29

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

30

Simulation Environment

系統環境參數 說明 參數值

numOfLambda 可使用波長範圍 4

numOfPon AWG 輸出端連接的 PON 個數 4

numOfOnuPerPon 每個 PON 的 ONU Group 裡 ONU 個數 16

cycleTime 系統啓動循環時間 0.0005s

numOfPriority 優先權個數 2

slotSize 時槽大小 1024byte

MCPktGen*.numOfDestOnu 封包目的端數 Intuniform(3,12)

MCPktGen*.multicastRatio Single_PON,Unicast,Multi_PON 封包產生比例 (0%,50%,50%) (0%,40%,60%)

MCPktGen[0].ttl 高優先權封包 TTL 0.005s

MCPktGen[1].ttl 低優先權封包 TTL 0.01s

Total Simulation Time Slot 總模擬時槽數 60000 time slot

31

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

32

Simulation Result(1)

PacketDroppedRatio0_50_50 3-12 Pure

00.020.040.060.080.1

0.109 0.2179 0.3289 0.441 0.5506 0.6611 0.7697 0.876 0.9867 1.097

SystemLoad

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

PacketDroppedRatio0_40_60 3-12 Pure

0

0.05

0.1

0.15

0.12134 0.24263 0.36647 0.48977 0.61216 0.73412 0.85502 0.97486 1.09728 1.22143

SystemLoad

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

33

Simulation Result(2)

MulticastFailedRatio0_50_50 3-12 Pure

0

0.02

0.04

0.06

0.08

0.1

0.20051 0.39875 0.60032 0.80355 1.00317 1.20471 1.40222 1.59839 1.80009 2.00047

OfferedLoadAsSource

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

MulticastFailedRatio0_40_60 3-12 Pure

0

0.05

0.1

0.15

0.2019 0.40078 0.60488 0.80674 1.00742 1.20731 1.40508 1.60303 1.80336 2.00681

OfferedLoadAsSource

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

34

Simulation Result(3)

TotalDroppedRcvr0-50-50 Pure

0

200

400

600

800

1000

1200

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,HP

L = 3,HP

L = 5,HP

TotalDroppedRcvr0-50-50 Pure

0

5000

10000

15000

20000

25000

30000

35000

40000

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,LP

L = 3,LP

L = 5,LP

35

Simulation Result(4)

TotalDroppedRcvr0-40-60 Pure

0

200

400

600

800

1000

1200

1400

1600

1800

0.023 0.047 0.07 0.093 0.117 0.14 0.163 0.186 0.209 0.233

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,HP

L = 3,HP

L = 5,HP

TotalDroppedRcvr0-40-60 Pure

0

10000

20000

30000

40000

50000

60000

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfRe

ceiver

L = 1,LP

L = 3,LP

L = 5,LP

36

Simulation Result(5)

PacketDroppedRatio0_50_50 3-12 ER

0

0.05

0.1

0.15

0.109 0.2179 0.3289 0.441 0.5506 0.6611 0.7697 0.876 0.9867 1.097

SystemLoad

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

PacketDroppedRatio0_40_60 3-12 ER

0

0.05

0.1

0.15

0.2

0.12134 0.24263 0.36647 0.48977 0.61216 0.73412 0.85502 0.97486 1.09728 1.22143

SystemLoad

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

37

Simulation Result(6)

MulticastFailedRatio0_50_50 3-12 ER

0

0.02

0.04

0.06

0.08

0.1

0.20051 0.39875 0.60032 0.80355 1.00317 1.20471 1.40222 1.59839 1.80009 2.00047

OfferedLoadAsSource

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

MulticastFailedRatio0_40_60 3-12 ER

0

0.05

0.1

0.15

0.2019 0.40078 0.60488 0.80674 1.00742 1.20731 1.40508 1.60303 1.80336 2.00681

OfferedLoadAsSource

(%)

L = 1,HP

L = 1,LP

L = 3,HP

L = 3,LP

L = 5,HP

L = 5,LP

38

Simulation Result(7)

TotalDroppedRcvr0-50-50 3-12 ER

0

200

400

600

800

1000

1200

1400

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,HP

L = 3,HP

L = 5,HP

TotalDroppedRcvr0-50-50 3-12 ER

0

5000

10000

15000

20000

25000

30000

35000

40000

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,LP

L = 3,LP

L = 5,LP

39

Simulation Result(8)

TotalDroppedRcvr0-40-60 3-12 ER

0

200

400

600

800

1000

1200

1400

1600

1800

0.023 0.047 0.07 0.093 0.117 0.14 0.163 0.186 0.209 0.233

OfferedLoadAsReceiver

Numb

erOfR

eceive

r L = 1,HP

L = 3,HP

L = 5,HP

TotalDroppedRcvr0-40-60 3-12 ER

0

10000

20000

30000

40000

50000

60000

0.02 0.05 0.07 0.09 0.12 0.14 0.16 0.19 0.21 0.23

OfferedLoadAsReceiver

Numb

erOfRe

ceiver

L = 1,LP

L = 3,LP

L = 5,LP

40

Simulation Result(9)

TotalDroppedRcvr0-50-50 3-12

0

200

400

600

800

1000

1200

1400

0.0234 0.0465 0.0703 0.0935 0.1168 0.1403 0.1632 0.1861 0.2094 0.2331

OfferedLoadAsReceiver

Num

berO

fRec

eive

r

ER,L = 1,HP

ER,L = 3,HP

ER,L = 5,HP

Pure,L = 3,HP

Pure,L = 5,HP

41

Simulation Result(10)

TotalDroppedRcvr0-50-50 3-12

0

5000

10000

15000

20000

25000

30000

35000

40000

0.0234 0.04655 0.07025 0.0935 0.1168 0.14025 0.16319 0.18608 0.20942 0.23309

OfferedLoadAsReceiver

Num

berO

fRec

eive

r

ER,L = 1,LP

ER,L = 3,LP

ER,L = 5,LP

Pure,L = 3,LP

Pure,L = 5,LP

42

Simulation Result(11)

TotalDroppedRcvr0-40-60 3-12

0

200

400

600

800

1000

1200

1400

1600

1800

0.0234 0.0465 0.0703 0.0935 0.1168 0.1403 0.1632 0.1861 0.2094 0.2331

OfferedLoadAsReceiver

Num

berO

fRec

eive

r

ER,L = 1,HP

ER,L = 3,HP

ER,L = 5,HP

Pure,L = 3,HP

Pure,L = 5,HP

43

Simulation Result(12)

TotalDroppedRcvr0-40-60 3-12

0

10000

20000

30000

40000

50000

60000

0.0234 0.0465 0.0703 0.0935 0.1168 0.1403 0.1632 0.1861 0.2094 0.2331

OfferedLoadAsReceiver

Num

berO

fRec

eive

r

ER,L = 1,LP

ER,L = 3,LP

ER,L = 5,LP

Pure,L = 3,LP

Pure,L = 5,LP

44

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

45

Conclusion And Feature Work(1)

LookBack 機制在我們的架構中有效的降低了packet drop 以及 multicast failed rate

Emergency And Ratio 機制有效的提高了 low priority 的 throughput 而不會降低太多 high priority 的 performance

我們所提出的 algorithm 的確適合在 video streaming 或是 P2P 等應用中使用

46

Conclusion And Feature Work(2)

Enhance more performance Compare with DP(Distribute Pure Lookback)

and DER(Distribute Emergency And Ratio Lookback)

Upgrade Mechanisms

Combine with WiMax Upstream Algorithm

47

Conclusion And Feature Work(3)

Mux

AWG

Splitter

Splitter

Splitter

Splitter

ONU 1

ONU 32ONU 33

ONU 64

ONU 65

ONU 96

ONU 97

ONU 128

TL X = Tunable LaserMux = Multiplexer

TL 1

Mux

Mux

Mux

TL 2

TL 3

TL 4

TL 5

TL 6

TL 7

TL 8

AWG

Splitter

Splitter

Splitter

Splitter

ONU 1

ONU 16ONU 17

ONU 32

ONU 33

ONU 48

ONU 49

ONU 64

Splitter

Splitter

Splitter

Splitter

ONU 65

ONU 80ONU 81

ONU 96

ONU 97

ONU 112

ONU 113

ONU 128

TL 1

TL 2

TL 3

TL 4

TL 5

TL 6

TL 7

TL 8

48

Conclusion And Feature Work(4)

OLT

Splitter

BS

SS

ONU

SSBS

ONU

49

Outline

Introduction– Passive Optical Network (PON) History– EPON(TDM PON) Architecture– Motivation

Relate Work– AWG (Arrayed Waveguide Grating)– SUCCESS DWA (Stanford University Access Dynamic Wavelength Allocate) PON– The Proposed WDM/TDM PON

The Proposed Multicast Algorithm– Definition– Pure Look Back– Emergency And Ratio Look Back– Simulation Environment– Simulation Result

Conclusion And Feature Work Reference

50

Reference

[1] IEEE Standards for Information technology: Standard for port based network access control. IEEE Draft 802.3ah, July.2004

[2] An, F.-T., Kim, K.S., Gutierrez, D., Yam, S., Hu, E., Shrikhande, K., Kazovsky, L.G., “SUCCESS: A next-generation hybrid WDM/TDM optical access network architecture” (2004) Journal of Lightwave Technology, 22 (11), pp. 2557-2569

[3] Yu-Li Hsueh, Rogge M.S., Wei-Tao Shaw, Kazovsky L.G., Yamamoto S., “SUCCESS-DWA: a highly scalable and cost-effective optical access network”, Communications Magazine, IEEE, Volume 42, Issue: 8, Aug.2004 Page(s): S24-S30

[4] Yu-Li Hsueh , Wei-Tao Shaw , Kazovsky, L.G., Agata, A., Shu Yamamoto  “Success pon demonstrator: experimental exploration of next-generation optical access networks“, Communications Magazine, IEEE, Volume 43,  Issue: 8, Aug. 2005 Page(s): S26- S33

[5] Maier, M., Scheutzow, M., Reisslein, M. “AWG-base metro WDM networking“, Communication Magazine ,IEEE , Volume:42, Issue: 11, Nov. 2004 Page(s): S19-S26

[6] 洪博信 , ” 適用於光學互連網路中群播分割機制之設計” , 2007 June [7] 林澤賢 , “ 能支援群播服務之分波多工被動式光纖網路的架構” , 2005 July