1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n...

40
1 Report of the TEAP XXIII/9 Task Force

Transcript of 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n...

Page 1: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

1

Report of the TEAP XXIII/9 Task Force

Page 2: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2

Outline

Introduction Banks for Refrigeration and Air Conditioning (RAC) Alternative options and costs for RAC Alternatives for high ambient temperatures Foams, quantities, options and costs Fire protection, quantities, options and costs Solvents, quantities, options and costs

Page 3: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 3

Introduction

Decision XXIII/9 requests a report for consideration by the OEWG-32, which should contain info on 4 elements

TEAP established a Task Force to prepare the report consisting of 15 members (FTOC, RTOC, HTOC, CTOC)

Preliminary draft report discussed at the TEAP meeting in Berlin, 26-30 March 2012

Second draft of Task Force report circulated to TEAP and some other experts in the course of April 2012

Report posted on Ozone Secretariat website in May 2012

Page 4: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

4

Refrigerant banks for A5 and Non-A5 Parties - commercial refrigeration

2015 - Commercial refrigeration sector in non-Article 5 Parties: • HCFCs have largely disappeared• The HFC bank will be about 128,000 tonnes• The non-HFC alternatives bank will be about 14,000 tonnes

2015 - Commercial refrigeration sector in Article 5 Parties: • HCFCs will still be a dominant bank - about 260,000 tonnes• The HFC bank will be around 124,000 tonnes• The total refrigerant bank in Article 5 Parties will be more than 3 times higher than the one in non-Article 5 Parties

Page 5: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

5

Refrigerant banks for A5 and Non-A5 Parties - commercial refrigeration 2000-2015

Page 6: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

6

Refrigerant banks for A5 and Non-A5 Parties - commercial refrigeration 2000-2015

-20 000

-

20 000

40 000

60 000

80 000

100 000

120 000

1995 2000 2005 2010 2015 2020

nA5 Bank: Commercial refrigerationCFC HCFC HFC Others

-50 000

-

50 000

100 000

150 000

200 000

250 000

300 000

1995 2000 2005 2010 2015 2020

A5 Bank: Commercial refrigerationCFC HCFC HFC Others

Page 7: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

7

Refrigerant banks for A5 and Non-A5 Parties - stationary AC

2015: the stationary AC sector in non-Article 5 Parties:• HCFCs will constitute 35% of the bank with 340,000 tonnes• The high GWP HFC bank will be about 550,000 tonnes• The alternatives bank will be about 25,000 tonnes

2015: the stationary AC sector in Article 5 Parties:• HCFCs will be the dominant bank (66% of the total) at a level of 870,000 tonnes• The high GWP HFC bank will be about 400,000 tonnes• The alternatives bank will be a bit larger than 20,000 tonnes• The refrigerant bank in A5 Parties will be 1.4 times larger than the bank in Non-A5 Parties

Page 8: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

8

Refrigerant banks for A5 and Non-A5 Parties - stationary AC 2000-2015

CFC0.01%

HCFC87.72%

HFC12.27%

Others0.00%

nA5 Bank: Stationary air conditioning 2005

CFC

HCFC

HFC

Others

CFC0,00%

HCFC35.47%

HFC59.33%

Others5.21%

nA5 Bank: Stationary air conditioning 2015

CFC

HCFC

HFC

Others

CFC0.00%

HCFC98.63%

HFC1.37%

Others 0.00%

A5 Bank: Stationary air conditioning 2005

CFC

HCFC

HFC

Others

CFC0%

HCFC66%

HFC33%

Others1%

A5 Bank: Stationary air conditioning 2015

Page 9: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

9

Refrigerant banks for A5 and Non-A5 Parties - stationary AC 2000-2015

-100 000

-

100 000

200 000

300 000

400 000

500 000

600 000

700 000

800 000

1995 2000 2005 2010 2015 2020

nA5 Bank: Stationary air conditioningCFC HCFC HFC Others

-200 000

-

200 000

400 000

600 000

800 000

1 000 000

1 200 000

1995 2000 2005 2010 2015 2020

A5 Bank: Stationary air conditioning

CFC HCFC HFC Others

Page 10: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Assessment of the technical, economic and environmental

feasibility of RAC options

The Task Force considered the following aspects:

Technical feasibility: energy efficiency of the equipment, and aspects related to toxicity and flammability

Economic feasibility: investment and operating costs

Environmental feasibility: energy efficiency of the equipment and total greenhouse gas emissions

Page 11: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Assessment of……. (continued) (2)

Present RAC technology using the vapour compression cycle will be dominant for the next decades

HCFC replacement are categorised as low GWP and medium/high GWP alternatives

Low GWP alternatives which are broadly suitable for replacement of HCFC-22 are: HFC-152a, HFC-161, HC-290, HC-1270, R-717, R-744, HFC-1234yf, HFC-1234ze

Refrigerants considered to be in the set of medium/high GWP alternatives are: HFC-134a, R-410A, R-404A and HFC-32; a variety of other mixtures of HFCs also fall into this category

Page 12: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Assessment of……. (continued) (3)

Other than vapour-compression refrigeration, technologies that could be used for HCFC phase-out are: absorption cycles, desiccant cooling and Stirling systems, thermoelectric and a number of other thermodynamic cycles

Most of these technologies are not close to commercial viability for air-cooled air conditioning applications

It is unlikely that they will significantly penetrate these markets, other than for potential niche applications (such as absorption cycle), during the next decade

Alternative technologies other than vapour-compression will therefore have a minimal impact on the HCFC-22 phase-out

Page 13: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.
Page 14: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Costs – refrigerants

Considered a variety of different cost elements for different alternative refrigerants

Divided into direct product/societal costs and ICC/IOC/”other”

Societal

Societal

Societal

Societal

Direct

Direct

Direct

Societal

Direct

Type

×Disposal costs

×Service and maintenance costs

×Technician tooling

×Technician training

×Production line conversion

×Installation costs

×System components (materials)

×Refrigerant cost (price) – service/ maintenance

×Refrigerant cost (price) – manufacturing

OtherIOCICCCost

Page 15: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Costs – refrigerants (2)

Refrigerant price – sourced from UNEP data and intl. suppliers Wide range for all refrigerants fluids; vary depending upon

whether for service ($1 - $70/kg) or manufacture ($<1 - $60/kg); must normalise for relative charge size (refrigerant density)

System component costs – (compressors, evaporator, condenser, piping/valves, safety features)

In most costs cases within ±10% Installation costs – complicated parameter; only qualitative

indicators are estimated Production line conversion – example costs presented for

medium scale/large systems and large scale/small systems Overall cost within ±10% across different refrigerant choices

Page 16: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Costs – refrigerants (3) Technician training – requires extra days for handling

flammability, higher pressure, toxicity characteristics Technician tooling – new tools for handling

flammability, higher pressure, different compatibility Typically unique manifold gauge, gas detector, recovery

machine Service and maintenance costs – negligible

difference for alternative refrigerants Disposal costs – could be negligible difference

between refrigerants, but highly sensitive to local regulations (e.g., waste)

Page 17: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

Costs – refrigerants (4)

In general, it is not possible to estimate specific relative costs for each alternative

Costs generally sensitive to Type of product, range of models/capacity of product,

design options adopted for product, charge quantity of existing models

Size of the enterprise, extent of product development, maturity of the product/option, extent of internal components (heat exchangers, compressors, etc.)

Existing spread penetration and scale of the technology, status of patents/licences, region, etc.

The Task Force report provides tabulated relative cost data from a study on low-GWP alternatives to HFCs

Page 18: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 18

Stationary AC at high ambient temperatures

Small packaged equipment in common usage for air conditioning is mass produced

The refrigerant choice is based on a number of criteria:

cooling capacity at high outdoor (ambient) temperatures energy efficiency input power required refrigerant GWP safety costs

Page 19: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 19

Stationary AC at high ambient temperatures

R-410A, a blend of hydrofluorocarbon (HFC) refrigerants is less efficient than HCFC-22 for ambient temperatures higher than about 45°C (higher condenser temperatures)

Refrigerant Tc (°C) Pcond

(60°C) (Mpa)

Pevap (10°C) (MPa)

asp

(kg/m3) Qov

(kJ/m3) Tdischarge

(°C) COP (*)

HCFC-22 96.1 2.42 0.68 24.7 3760 100 2.8 R-410A 71.4 3.83 1.08 35.7 4830 96 2.3

Page 20: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 20

Stationary AC at high ambient temperatures

Refrigerant Tc (°C) Pcond

(60°C) (Mpa)

Pevap (10°C) (MPa)

asp

(kg/m3) Qov

(kJ/m3) Tdischarge

(°C) COP (*)

HCFC-22 96.1 2.42 0.68 24.7 3760 100 2.8 R-410A 71.4 3.83 1.08 35.7 4830 96 2.3 R-407C 86.0 2.76 0.77 23.2 3250 64 2.8 HC-290 96.7 2.11 0.63 11.9 2985 79 2.6 HFC-32 78.1 3.92 1.10 25.8 5870 117 2.6 R-717 132.3 2.60 0.61 4.1 4750 162 3.1 HFC-134a 101.1 1.67 0.41 19.6 2290 80 2.7 HFC-1234yf 94.7 1.63 0.44 20.6 2030 69 2.4 HFC-1234ze 109.4 1.27 0.30 13.9 1740 72 2.6 HC-1270 91.1 2.52 0.77 16.3 3490 87 2.6 HFC-161 102.2 2.17 0.60 14.1 3600 88 2.9

There are many options one can theoretically choose from, dependent on whether emphasis is on safety, energy efficiency or GWP.

Page 21: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 21

Commercial refrigeration at high ambient temperatures

The refrigerant choices for commercial refrigeration are directly related to the cooling capacity and the evaporation temperature required

HFC-134a, which has a relatively low volumetric capacity, is still the preferred refrigerant for small equipment

HCFC-22 or R-404A, both having higher refrigeration capacities, are used in large commercial systems but also in small systems with low evaporation temperatures

Page 22: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 22

Commercial refrigeration at high ambient temperatures

High ambient temperatures lead to the choice of “medium pressure” refrigerants such as HFC-134a (or HFC-1234yf in near future) for low capacity single stage systems

HC-290 is only applicable in smaller systems due to safety concerns

Currently there is a lack of low GWP refrigerants with a large refrigeration capacity to replace R-404A or HCFC-22 in single stage refrigeration systems

Page 23: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 23

Commercial refrigeration at high ambient temperatures

Cascade systems with CO2 used at the low evaporation temperature and refrigerants (such as HFC-134a, HFC-1234yf or HC-290) used at the high condensation temperature

are energy efficient designs for high ambient temperatures

Med. temp.refrigerant

CO2 at low temperature

Cascade system

Page 24: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 24

Foams

Page 25: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 25

Foams

The main market segments using HCFCs are 1) rigid polyurethane insulating foam (PUR), including polyisocyanurate (PIR), and 2) extruded polystyrene (XPS) foam

Hydrocarbons (HCs), mainly pentanes, are the preferred choice for HCFC replacement in rigid PU foams in large enterprises (annual consumption > 50 tonnes)

For very stringent applications in terms of thermal insulation, such as appliances, HCs are sometimes blended with saturated HFCs to enhance the foam performance

Page 26: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 26

Foams (2)

The incremental capital cost (ICC) for the conversion to HCs in small and medium enterprises (SMEs) is, in most of the cases, not cost effective

Saturated HFCs are used in significant amounts in Article 2 Parties for PUR -- mostly in North America

This well proven technology using saturated HFCs has two drawbacks: high incremental operating cost (IOC) because of the blowing agent cost and high GWP. This constitutes a barrier for the conversion away from HCFCs in Article 5 Parties

Page 27: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 27

Foams (3)

There are current and emerging options to replace HCFCs in the different foam market segments that exhibit GWP values lower than 50: HCs, oxygenated hydrocarbons (HCOs), CO2 (water) and unsaturated HFCs & HCFCs (HFOs)

Small quantities of HCOs, specifically methyl formate and methylal, both low GWP options, are being used in integral skin foam and some PUR applications where thermal performance is not critical. Compared to HCFC-141b, operational costs are higher and thermal efficiency is lower

Page 28: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 28

Foams (4)

A new generation of CO2 (all water blown) formulations have shown an improved dimensional stability relative to the traditional applied technology but they still provide foams with higher thermal conductivity than HCFC-141b

Recent evaluations of unsaturated HFCs and HCFCs, commercially known as HFOs, done in a commercial household refrigerator/freezer line, showed improved thermal performance compared to saturated HFCs

It is estimated that HFOs with GWP values lower than 10 will be commercially available in 2014/ 2015. The major obstacle for their use at SMEs will be the high unit cost compared to HCFC-141b

Page 29: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 29

Fire protection

Page 30: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G – 3 2 m e e t i n g, 2 3 – 2 7 J u l y 2 0 1 2, B a n g k o k 30

Fire protection

HCFCs and their blends were one of several options marketed as replacements for halon 1301 and halon 1211 in total flood and local/streaming applications respectively

It has been estimated that clean agent alternatives, i.e. those that leave no residue, comprise approximately 51% of the former halon market

Of this, HCFCs are used in approximately 1% of the applications, and therefore the use of HCFCs in fire protection is very small compared to other alternatives

This is primarily due to tradition, market forces and cost compared with CO2 and not-in-kind alternatives

Page 31: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G – 3 2 m e e t i n g, 2 3 – 2 7 J u l y 2 0 1 2, B a n g k o k 31

Fire Protection - total flood applications

Only HCFC Blend A is still produced, and its use today is primarily for re-charge of exiting systems. Even this is diminishing because of changes to national regulations in countries where it has been accepted

Clean agent alternatives to HCFC Blend A include inert gases and their blends, HFCs, and a fluoroketone (FK)

The inert gases have no environmental impact and the FK has almost negligible environmental impact

However, the system cost of these alternatives are approximately one third more than the two closest HFC alternatives, and the footprint of the cylinders necessary for the inert gases is three times that of its competitors

Page 32: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G – 3 2 m e e t i n g, 2 3 – 2 7 J u l y 2 0 1 2, B a n g k o k 32

Fire protection – local/streaming applications

Only HCFC Blend B is marketed in both non-A5 and A5 Parties, with a market ratio of 4 to 1 respectively. HCFC Blend E and neat HCFC-123 (the primary agent of the blends) have limited acceptance in some A5 Parties

Clean agent, HCFC or HFC, based portable extinguishers are significantly more expensive (3-10 times) than traditional options (e.g. multi-purpose dry powder, water, CO2) for the same fire rating (extinguisher performance). Thus they are only used where cleanliness is a necessity

HCFC Blend B has a very low ODP whereas its main competitor, HFC-236fa, has an ODP of zero. However, the climate impact of HFC-236fa is 40 times higher than that of HCFC Blend B

Page 33: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G – 3 2 m e e t i n g, 2 3 – 2 7 J u l y 2 0 1 2, B a n g k o k 33

Fire protection – future options Development and Testing of alternatives to ODS in fire

protection continues, as detailed in the 2010 Assessment Report of the Halons Technical Options Committee

With the exception or aircraft cargo bays, alternatives to ODS in the form of zero ODP gases, gas-powder blends, and other not-in-kind technologies (i.e. non-gaseous), exist for virtually every total flood application once served by ODS. However, retrofit of existing ODS based systems may not be technically or economically feasible

For local/streaming applications, an unsaturated HBFC, 3,3,3-trifluoro-2-bromo-prop-1-ene, is undergoing final testing for commercialization, and if approved it would be an effective substitute for HCFC Blend B

Page 34: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 34

Solvents

Page 35: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 35

Solvents - ODSs and HCFCs

1,1,1-Trichloroethane (TCA), carbon tetrachloride and CFC-113 were ODSs used in solvent applications

Over 90% of the ODS solvent uses have been reduced through conservation and substitution by not-in-kind technologies

Remaining uses are shared by in-kind solvents such as chlorinated solvents, one brominated solvent, HCFCs, HFCs and HFEs

Many options are available with various levels of acceptance to eliminate HCFCs in solvent applications

No single option, however, can replace HCFCs completely

Page 36: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 36

Solvents - Not-In-Kind alternatives

Aqueous and semi-aqueous cleaning can be good substitutes for metal degreasing or even precision cleaning when corrosion of the materials is not an issue

The capital investment can be high, but operating cost is generally inexpensive

Hydrocarbons and alcohols are effective solvents but flammable. Explosion proof equipment is necessary. Most of the commonly used hydrocarbons are VOCs

Not-In-Kind alternatives have no ODP and low GWP

Aqueous HydrocarbonSemi-aqueous Alcoholic

Page 37: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 37

Solvents - In-Kind alternatives

Chlorinated solvents and nPB are applicable in a variety of cleaning applications due to their high solvency. Retrofitting is available to lower the investment. Operating costs are also low. Their ODP and GWP are small

Allowable Exposure Limits (AELs) of these chlorinated and brominated solvents are very low

Chlorinated : Brominated : nPB

CH2Cl2, CCl2=CCl2, CHCl=CCl2 Fluorinated: HFC, HFE, (HFO)

Page 38: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 38

Solvents - In-Kind alternatives (2)

HFC and HFEs are similar to HCFCs except for their degreasing performance. Due to their mild solvency, additional ingredients may be necessary

HFCs and HFEs are expensive; they have no ODP but a middle to high GWP

Page 39: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 39

Solvents - future options

Unsaturated HCFCs and HFCs (HFOs) are under development

They have extremely small GWP values due to their very short atmospheric lifetimes. They also could be the candidates to replace the normal HCFCs

They would be as expensive as HFCs and HFEs

Page 40: 1 Report of the TEAP XXIII/9 Task Force. M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 2 Outline.

M o n t r e a l P r o t o c o l O E W G - 3 2 m e e t i n g, 2 3 - 2 7 J u l y 2 0 1 2, B a n g k o k 40

Thank you !