1 Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte...

62
1 Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms Universität Münster [email protected]
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    212
  • download

    0

Transcript of 1 Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte...

1

Regularisierung mir Singulären Energien

Martin Burger

Institut für Numerische und Angewandte MathematikWestfälische Wilhelms Universität Münster

[email protected]

Regularisierung mit singulären Energien

Göttingen, Januar 2007 2

Stan Osher, Jinjun Xu, Guy Gilboa (UCLA)

Lin He (Linz / UCLA)

Klaus Frick, Otmar Scherzer (Innsbruck)

Carola Schönlieb (Vienna)

Don Goldfarb, Wotao Yin (Columbia)

Collaborations

Regularisierung mit singulären Energien

Göttingen, Januar 2007 3

Classical regularization schemes for inverse problems and image smoothing are based on Hilbert spaces and quadratic energy functionals

Example: Tikhonov regularization for linear operator equations

Introduction

¸2kAu ¡ f k2+

12kLuk2 ! min

u

¸2kAu ¡ f k2+

12kLuk2 ! min

u

Regularisierung mit singulären Energien

Göttingen, Januar 2007 4

These energy functionals are strictly convex and differentiable – standard tools from analysis and computation (Newton methods etc.) can be used Disadvantage: possible oversmoothing, seen from first-order optimality condition Tikhonov yields

Hence u is in the range of (L*L)-1A*

Introduction

¸2kAu ¡ f k2+

12kLuk2 ! min

u

L¤Lu = ¡ ¸A¤(Auf )

Regularisierung mit singulären Energien

Göttingen, Januar 2007 5

Classical inverse problem: integral equation of the first kind, regularization in L2 (L = Id), A = Fredholm integral operator with kernel k

Smoothness of regularized solution is determined by smoothness of kernel For typical convolution kernels like Gaussians, u is analytic !

Introduction

¸2kAu ¡ f k2+

12kLuk2 ! min

u

u= ¸Z Z

k(y;x)(¡ k(y;z)u(z) + f (z)) dy dz

Regularisierung mit singulären Energien

Göttingen, Januar 2007 6

Classical image smoothing: data in L2 (A = Id), L = gradient (H1-Seminorm)

On a reasonable domain, standard elliptic regularity implies

Reconstruction contains no edges, blurs the image (with Green kernel)

Image Smoothing

¸2kAu ¡ f k2+

12kLuk2 ! min

u

¡ ¢ u+¸u = ¸f

u 2 H 2(­ ) ,! C(­ )

Regularisierung mit singulären Energien

Göttingen, Januar 2007 7

Let A be an operator on (basis repre-sentation of a Hilbert space operator, wavelet) Penalization by squared norm (L = Id) Optimality condition for components of u

Decay of components determined by A*. Even if data are generated by sparse signal (finite number of nonzeros), reconstruction is not sparse !

Sparse Reconstructions ?

¸2kAu ¡ f k2+

12kLuk2 ! min

u

2̀(Z)

uk = ¸ (A¤(¡ Au+ f ))k

Regularisierung mit singulären Energien

Göttingen, Januar 2007 8

Error estimates for ill-posed problems can be obtained only under stronger conditions (source conditions)

cf. Groetsch, Engl-Hanke-Neubauer, Colton-Kress, Natterer. Engl-Kunisch-Neubauer. Equivalent to u being minimizer of Tikhonov functional with data For many inverse problems unrealistic due to extreme smoothness assumptions

Error estimates

¸2kAu ¡ f k2+

12kLuk2 ! min

u

9w : u = A¤w

Regularisierung mit singulären Energien

Göttingen, Januar 2007 9

Condition can be weakened to

cf. Neubauer et al (algebraic), Hohage (logarithmic), Mathe-Pereverzyev (general).

Advantage: more realistic conditions

Disadvantage: Estimates get worse with f

Error estimates

¸2kAu ¡ f k2+

12kLuk2 ! min

u

9v : u = f (A¤A)v

Regularisierung mit singulären Energien

Göttingen, Januar 2007 10

Let A be the identity on Nonlinear Penalization by Optimality condition for components of u

If rk is smooth and strictly convex, then Taylor expansion yields

Singular Energies

¸2kAu ¡ f k2+

12kLuk2 ! min

u

2̀(Z)Prk(uk)

r00k (f k)uk +¸uk ¼r00k (f k)f k +¸f k

r0k(uk) +¸uk = ¸f k

Regularisierung mit singulären Energien

Göttingen, Januar 2007 11

Example becomes more interesting for singular (nonsmooth) energy

Take

Then optimality condition becomes

Singular Energies

¸2kAu ¡ f k2+

12kLuk2 ! min

u

rk(t) = jtj

sign (uk) +¸uk = ¸f k

Regularisierung mit singulären Energien

Göttingen, Januar 2007 12

Result is well-known soft-thresholding of wavelets Donoho et al, Chambolle et al

Yields a sparse signal

Singular Energies

¸2kAu ¡ f k2+

12kLuk2 ! min

u

uk =

8<

:

f k ¡ 1¸ f k > 1

¸f k + 1

¸ f k < ¡ 1¸

0 else

Regularisierung mit singulären Energien

Göttingen, Januar 2007 13

Image smoothing: try nonlinear energy

for penalization

Optimality condition is nonlinear PDE

If r is strictly convex usual smoothing behaviour If r is not convex problem not well-posed Try singular case at the borderline

Singular Energies

¸2kAu ¡ f k2+

12kLuk2 ! min

u

Zr(r u)

¡ r ¢((r r)(r u)) +¸u= ¸f

Regularisierung mit singulären Energien

Göttingen, Januar 2007 14

Simplest choice yields total variation method Total variation methods are popular in imaging (and inverse problems), since

- they keep sharp edges- eliminate oscillations (noise)- create new nice mathematics

Total Variation Methodsr(p) = jpj

Regularisierung mit singulären Energien

Göttingen, Januar 2007 15

ROF model for denoising

Rudin-Osher Fatemi 89/92, Acar-Vogel 93, Chambolle-Lions 96, Vogel 95/96, Scherzer-Dobson 96, Chavent-Kunisch 98, Meyer 01,…

ROF Model

Regularisierung mit singulären Energien

Göttingen, Januar 2007 16

Optimality condition for ROF denoising

Dual variable p enters !

Subgradient of convex functional

ROF Model

p+¸u= ¸f ; p2 @jujT V

@J (u) = fp2 X ¤ j 8v 2 X :

J (u) ¡ hp;v ¡ ui · J (v)g

Regularisierung mit singulären Energien

Göttingen, Januar 2007 17

ROF ModelReconstruction (code by Jinjun Xu)

clean noisy ROF

Regularisierung mit singulären Energien

Göttingen, Januar 2007 18

ROF model denoises cartoon images resp. computes the cartoon of an arbitrary image

ROF Model

Regularisierung mit singulären Energien

Göttingen, Januar 2007 19

From Master Thesis of Markus Bachmayr, 2007

Numerical Differentiation with TV

Regularisierung mit singulären Energien

Göttingen, Januar 2007 20

Methods with singular energies offer great potential, but still have some shortcomings

- difficult to analyze and to obtain error estimates- systematic errors (clean images not reconstructed perfectly)- computational challenges- some extensions to complicated imaging tasks are not well understood (e.g. inpainting)

Singular energies

Regularisierung mit singulären Energien

Göttingen, Januar 2007 21

General problem

leads to optimality condition

First of all „dual smoothing“, subgradient p is in the range of A*

Singular energies

¸2kAu ¡ f k2+J (u) ! min

u

p+¸A¤Au= ¸A¤f ; p2 @J (u)

Regularisierung mit singulären Energien

Göttingen, Januar 2007 22

For smooth and strictly convex energies, the subdifferential is a singleton

Dual smoothing directly results in a primal one ! For singular energies, subdifferentials are not usually multivalued. The consequence is a possibility to break the primal smoothing

Singular energies

@J (u) = f J 0(u)g

Regularisierung mit singulären Energien

Göttingen, Januar 2007 23

First question for error estimation: estimate difference of u (minimizer of ROF) and f in terms of

Estimate in the L2 norm is standard, but does not yield information about edges

Estimate in the BV-norm too ambitious: even arbitrarily small difference in edge location can yield BV-norm of order one !

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 24

We need a better error measure, stronger than L2, weaker than BV Possible choice: Bregman distance Bregman 67

Real distance for a strictly convex differentiable functional – not symmetric Symmetric version

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 25

Bregman distances reduce to known measures for standard energies Example 1:

Subgradient = Gradient = u Bregman distance becomes

Error Estimation

J (u) =12kuk2

DJ (u;v) =12ku ¡ vk2

Regularisierung mit singulären Energien

Göttingen, Januar 2007 26

Bregman distances reduce to known measures for standard energies Example 2: -

Subgradient = Gradient = log u Bregman distance becomes Kullback-Leibler divergence (relative Entropy)

Error Estimation

J (u) =

Zulogu

Zu

DJ (u;v) =

Zulog

uv+Z(v¡ u)

Regularisierung mit singulären Energien

Göttingen, Januar 2007 27

Total variation is neither symmetric nor differentiable Define generalized Bregman distance for each subgradient

Symmetric version

Kiwiel 97, Chen-Teboulle 97

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 28

For energies homogeneous of degree one, we have

Bregman distance becomes

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 29

Bregman distance for singular energies is not a strict distance, can be zero for In particular dTV is zero for contrast change

Resmerita-Scherzer 06

Bregman distance is still not negative (convexity) Bregman distance can provide information about edges

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 30

Let v be piecewise constant with white background and color values on regions Then we obtain subgradients of the form

with signed distance function and

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 31

Bregman distances given by

In the limit we obtain for being piecewise continuous

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 32

For estimate in terms of we need smoothness condition on data

Optimality condition for ROF

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 33

Subtract q

Estimate for Bregman distance, mb-Osher 04

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 34

In practice we have to deal with noisy data f (perturbation of some exact data g)

Estimate for Bregman distance

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 35

Optimal choice of the penalization parameter

i.e. of the order of the noise variance

Error Estimation

Regularisierung mit singulären Energien

Göttingen, Januar 2007 36

Direct extension to deconvolution / linear inverse problems

under standard source condition

mb-Osher 04 Extension: stronger estimates under stronger conditions, Resmerita 05

Nonlinear inverse problems, Resmerita-Scherzer 06

Error Estimation

¸2kAu ¡ f k2+jujT V ! min

u2B V

Regularisierung mit singulären Energien

Göttingen, Januar 2007 37

Natural choice: primal discretization with piecewise constant functions on grid

Problem 1: Numerical analysis (characterization of discrete subgradients) Problem 2: Discrete problems are the same for any anisotropic version of the total variation

Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 38

In multiple dimensions, nonconvergence of the primal discretization for the isotropic TV (p=2) can be shown

Convergence of anisotropic TV (p=1) on rectangular aligned grids Fitzpatrick-Keeling 1997

Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 39

Alternative: perform primal-dual discretization for optimality system (variational inequality)

with convex set

Primal-Dual Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 40

Discretization

Discretized convex set with appropriate elements (piecewise linear in 1D, Raviart-Thomas in multi-D)

Primal-Dual Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 41

In 1 D primal, primal-dual, and dual discretization are equivalent Error estimate for Bregman distance by analogous techniques

Note that only the natural condition is needed to show

Primal / Primal-Dual Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 42

In multi-D similar estimates, additional work since projection of subgradient is not discrete subgradient.

Primal-dual discretization equivalent to discretized dual minimization (Chambolle 03,

Kunisch-Hintermüller 04). Can be used for existence of discrete solution, stability of p

Mb 07 ?

Primal / Primal-Dual Discretization

Regularisierung mit singulären Energien

Göttingen, Januar 2007 43

For most imaging applications Cartesian grids are used. Primal dual discretization can be reinterpreted as a finite difference scheme in this setup. Value of image intensity corresponds to color in a pixel of width h around the grid point. Raviart-Thomas elements on Cartesian grids particularly easy. First component piecewise linear in x, pw constant in y,z, etc. Leads to simple finite difference scheme with staggered grid

Cartesian Grids

Regularisierung mit singulären Energien

Göttingen, Januar 2007 44

ROF minimization has a systematic error, total variation of the reconstruction is smaller than total variation of clean image. Image features left in residual f-u

g, clean f, noisy u, ROF f-u

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 45

Idea: add the residual („noise“) back to the image to pronounce the features decreased to much. Then do ROF again. Iterative procedure

Osher-mb-Goldfarb-Xu-Yin 04

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 46

Improves reconstructions significantly

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 47

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 48

Simple observation from optimality condition

Consequently, iterative refinement equivalent to Bregman iteration

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 49

Choice of parameter less important, can be kept small (oversmoothing). Regularizing effect comes from appropriate stopping. Quantitative stopping rules available, or „stop when you are happy“ – S.O. Limit to zero can be studied. Yields gradient flow for the dual variable („inverse scale space“)

mb-Gilboa-Osher-Xu 06, mb-Frick-Osher-Scherzer 06

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 50

Non-quadratic fidelity is possible, some caution needed for L1 fidelityHe-mb-Osher 05, mb-Frick-Osher-Scherzer 06

Error estimation in Bregman distance mb-He-Resmerita 07

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 51

MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06

PenalizationTV + Wavelet

Iterative Refinement

Regularisierung mit singulären Energien

Göttingen, Januar 2007 52

MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06

Iterative Refinement

Regularisierung mit singulären Energien

Göttingen, Januar 2007 53

MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06

Iterative Refinement

Regularisierung mit singulären Energien

Göttingen, Januar 2007 54

Smoothing of surfaces obtained as level sets

3D Ultrasound, Kretz / GE Med.

Surface Smoothing

Regularisierung mit singulären Energien

Göttingen, Januar 2007 55

Inverse Scale Space

Regularisierung mit singulären Energien

Göttingen, Januar 2007 56

Application to other regularization techniques, e.g. wavelet thresholding is straightforward

Starting from soft shrinkage, iterated refinement yields firm shrinkage, inverse scale space becomes hard shrinkageOsher-Xu 06

Bregman distance natural sparsity measure, source condition just requires sparse signal, number of nonzero components is smoothness measure in error estimates

Iterative Refinement & ISS

Regularisierung mit singulären Energien

Göttingen, Januar 2007 57

Difficult to construct total variation techniques for inpainting Original extensions of ROF failed to obtain natural connectivity (see book by Chan, Shen 05)

Inpainting region , image f (noisy) given on Try to minimize

Inpainting

Regularisierung mit singulären Energien

Göttingen, Januar 2007 58

Optimality condition will have the form

with A being a linear operator defining the norm

In particular p = 0 in D !

Inpainting

Regularisierung mit singulären Energien

Göttingen, Januar 2007 59

Different iterated approach (motivated by Cahn-Hilliard inpainting, Bertozzi et al 05) Minimize in each step

First term for damping, second for fidelity (fit to f where given, and to old iterate in the inpainting region), third term for smoothing

Inpainting

Regularisierung mit singulären Energien

Göttingen, Januar 2007 60

Continuous flow for damping parameter to zero

Fourth order flow for H-1 norm

Stationary solution (existence ?) satisfies

Inpainting

Regularisierung mit singulären Energien

Göttingen, Januar 2007 61

Result: Penguins

Inpainting

Regularisierung mit singulären Energien

Göttingen, Januar 2007 62

Download and Contact

Papers and Talks:

www.math.uni-muenster.de/u/burger

e-mail: [email protected]