1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische...

47
1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany Matter to the Deepest: Recent Developments in Physics of Fundamental Interactions, USTRON ’09 Ustron, Poland 11 – 16 September, 2009
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    217
  • download

    0

Transcript of 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische...

Page 1: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

1

Recoilless Resonant Emission and Detection of

Electron Antineutrinos

Walter Potzel

Technische Universität München

Physik-Department E15, Garching, Germany

Matter to the Deepest:

Recent Developments in Physics of Fundamental Interactions,

USTRON ’09

Ustron, Poland

11 – 16 September, 2009

Page 2: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

2

Outline

I) Bound-state -decay: resonant character

3H – 3He system

II) Mössbauer : Basic questions – Principal problems

1) Phononless transition: Recoilfree fraction; lattice expansion and contraction

2) Linewidth: homogeneous and inhomogeneous broadening3) Relativistic effects: Second-order Doppler shift

a) temperatureb) zero-point motion

III) Answers to basic questions

IV) Conclusions

e

Page 3: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

3

I) -decay

I) Bound-state -decay

)()1( eeZAZA

J. N. Bahcall, Phys. Rev. 124, 495 (1961)

Bound-state atomic orbit.Not a capture of e- initially created in a continuum state (less probable).

Example:

33eeHeH

Atomic orbit in 3He

e

end-point energy

2-body process, has a fixed energy:

Rzv EBQEe

where

21 )( cMMQ ZZ

zB binding energy of electron

eHe3RE recoil energy recoils

sourcee mono-energetic

Page 4: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

4

I) -decay

)1(eA(Z) - ZAe

Reverse process (absorption):

in atomic orbit

etarget for

Example:

HHee3-3 e

in atomic orbit of 3He

energy required for : e

''Rz EBQE

e

Bound-state -decay has a resonant character which is (partially) destroyed by the recoil in source and target.

H3 recoils

Page 5: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

5

3H-3He system

resveE

2/1ft CB /Decay

HeH 33 18.60

keV

1132

sec

6.9x10-3

(80% ground state,

20% excited states)

Resonance cross section (without Mössbauer effect): σ ≈ 1x10-42 cm2

Recoil energy:

eVEMc

E

R

rese 06.02

2

2

)(

Thermal motion (in a gas):

Doppler energy profile,width: 0.16 eV

Mössbauer effect: Avoid thermal motion and recoil!3H as well as 3He have to be imbedded in (metallic) lattices.

R.S. Raghavan, hep-ph/0601079v3W. P. Kells and J. P. Schiffer, Phys. Rev. C 28, 2162 (1983)W. M. Visscher, Phys. Rev. 116, 1581 (1959)

Page 6: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

6

A) Preparation of source and target

Source:3H chemically loaded into metals to form hydrides (tritides), e.g., Nb: in tetrahedral interstitial sites (IS).

Target:3He accumulates with time due to the tritium trick:

Nb3Hxtime=200d Nb3Hx-y

3Heyremove Nb3Hey

Remove 3H by isotopic exchange 3HD

R. S. Raghavan, hep-ph/0601079 v3

3H-3He system

Page 7: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

7

How much metal for source and target?

Source:

1 kCi of 3H (~100mg 3H): ~3g of Nb3H

for NMR studies: 0.5 kCi 3H in 2.4g PdH0.6

Target:

100mg of 3He implies ~100g of Nb3H aged for 200 d

3H-3He system

Page 8: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

8

B) Event rates for 3H – 3He recoilless resonant capture of antineutrinos

Base

line 3H 3He

Antineutrino

capture per day

R(t=65d)

per day

5 cm

10 m

1 kCi

1 MCi

100 mg

1 g

~40x103

~103

~40

~10

R(t)/day: Reverse -activity rate after growth period t=65d=0.01

R. S. Raghavan, hep-ph/0601079 v3

3H-3He system

1) only homogeneous broadening, assuming→exp=9 ۠x10-12eV≈8x1012 σres≈ 3x10-33 cm2

2) no lattice expansion and contraction

Page 9: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

9

II) Basic Questions

2

2

xc

E

ef 1f

Example: 3H – 3He

27.0)0( f for Θ≈800Ktypically:

Emission and absorption:

07.033

HeH ff for T0

1) Phononless transition:

Conventional Mössbauer effect (with photons):Source and absorber (target) involve the same type of atoms, e.g., the isotope 57Fe.

recoil energy:

2

2

2

)(

Mc

E

R

reseE

f depends on: transition energy E mass M of the atom Debye temperature Θ

Debye model:

BkMc

ETf

2

3

2exp)0(

2

2

T0:

recoil energy

a) Recoilfree fraction:

Page 10: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

10

II) Basic Questions

Theoretical calculations:David Ceperley, Univ. of Illinois at Urbana-Champaign

Lattice-deformation energies of 3H and 3He in Nb metal:

;099.0)(3 eVHEL eVHeEL 551.0)(3

333

101)()(

exp)0(

B

LLL

k

HEHeETf

62 101)0( Lf and822 107)0()0( Lff

M. J. Puska et al., PRB 29, 5382 (1984)

3H as well as 3He in metallic lattices:Nb metal, tetrahedral interstitial sites

b) Lattice expansion and contraction: in addition to recoil

Nuclear transformations occur when is emitted or captured. 3He and 3H use different amounts of lattice space. This will cause lattice excitations (phonons)!

e

Page 11: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

11

II) Basic Questions

2) Linewidth

minimal width (natural width): / natE lifetime

3H: = 17.81 y eVE nat 241017.1 (extremely narrow)

Two types of line broadening:

a) homogeneous broadening b) inhomogeneous broadening

due to fluctuations, e. g. of magneticfields, stochastic processes

due to stationary effects, e.g. impurities, latticedefects which cause variations of line shifts

How big are these broadening effects?

Raghavan: possible to reach nat. widthPhys. Rev. Lett. 102, 091804 (2009)

Unfortunately: not possibleW. Potzel and F.E. WagnerPhys. Rev. Lett. 103, 099101 (2009)and arXiv: 0908.3985 [hep-ph];J.P. SchifferPhys. Rev. Lett. 103, 099102 (2009)

Page 12: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

12

II) Basic Questions

a) homogeneous broadening: stochastic processes, average rate is not connected to frequency of lattice vibrations; present at all

temperatures

Transitionenergy 18.6keV

10-11eV

Relaxation between the sublevels affectsthe lineshape and the total linewidth.

The linewidth is determined by the relaxation rate.

Magnetic interactions:a) 3H, 3He with nuclei of metallic lattice

b) 3H – 3H magnetic dipolar spin-spin interaction

Measurements: 3H (Pd), 3H (Ti-H),NbH

Typical relaxation times:T2~2ms, 79µs

exp~5x10-11eV ~ 4x1013

exp ~ (67Zn)

Page 13: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

13

Homogeneous Broadening: Frequency Modulation

1)/(

1)( 2

0

2

kA

k

kkJ

0

: max. freq. deviation 00

0

: relaxation frequency

: modulation index

: linewidth

sum of Lorentzians,located at ω=ω0±kΩ

01

10

many sidebandsat ω0 very little intensity

motional narrowing: not possible

motional narrowing: 00 only center line at ω0 survives

For the 3H/3He system: Ω0≈105 s-1and Ω~8x104 s-1

However, not continuous but stochastic oscillations;→time-energy uncertainty relation determines width

M. Salkola and S. Stenholm, Phys. Rev. A 41, 3838 (1990)

Wro

ng m

odel

for

3 H/3 H

e sy

stem

Page 14: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

14

Homogeneous Broadening: Magnetic Relaxation

Simplest magnetic relaxation model

0

Intensity is distributed over a broad pattern, whichextends over the total hf splitting Ω0 as suggestedby the time-energy uncertainty principle. Broad linescan not be decomposed into multiple sharp lines.

0 Motional narrowing: one line at the centerof the hf splitting of practical natural width.Stochastic frequency changes: betweenlines 1 and 2. Averaging process over many shortparts of the lifetime. Not the case for 3H/3He.

0Two lines of (almost) natural width:With increasing Ω, the lines broadeneffective lifetime: time-energy uncertainty relation

3H/3He system in Nb metal: Ω0~105 s-1 and Ω~8x104 s-1. exp~5x10-11eV ~4x1013 .

stochasticprocessesaverage rate:Ω

Sudden, irregular transitions (relaxation) between hyperfine-split states due to many magnetic atomsirregular (random) phase changes of transitions to ground state, no correlation to original phaseit might take a long time to come back to the original frequency

Page 15: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

15

II) Basic Questions

Relaxation spectra for 57FeSuperposition of 3 doublets

Average relaxation rate: /2

H.H. Wickman and G.K. Wertheim in:Chemical Applications of MössbauerSpectroscopy, V.I. Goldanskii and R.Herber, editors; pp. 548 (New York:Academic Press, 1968)

Page 16: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

16

II) Basic Questions

b) inhomogeneous broadening: Stationary effects: lattice defects,impurities

Conventional Mössbauer spectroscopy: Different binding strengths due to inhomogeneities affect the energy of the photons in the same type of nucleus in source and target.

Shift of photon energy by typically 10-7 – 10-9 eV (hyperfine interaction)

e

Variation of the energy much larger than neV, typically: meV range.

Binding energies of 3H and 3He in an inhomogeneous metallic latticedirectly influence the energy.

Binding energies per atom: ~eV range (Coulomb interaction).

Variation of the energy by only 10-6 eV → 1018 . ee

In the best single crystals: inhomogeneities cause shifts of 10-13 to 10-12 eV.For : corresp. to 1011 or 1012 or even larger.e

Page 17: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

17

II) Basic Questions

3) Relativistic effects

Second-order Doppler shift due to mean-square atomic velocity <V2>

Time-dilatation effect: 2)/(1

'

cV

tt

moving system

stationary system

2

2'2'

21)/(1

c

VcV Frequencies:

Second-order Doppler shift: 2

2''

2c

V Reduction of frequency (energy)

Page 18: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

18

II) Basic Questions

Within the Debye model:

t

tt

s

ss

Bts

B TfT

TfT

Mc

k

Mc

k

E

E22 2

3

16

9

T

dxx

xTTf

/

0

33

1exp3

where

Zero-point energy

degree 1 ts TTIf 159 106.1109.1 eVE

1 ts degree (0.08meV) →

Low temperatures: 0 ts TT 0..... However, zero-point energyremains!

14102/ EE

14

10

103

104 eVEIf

Similar conclusion as reached from different binding energies.

Page 19: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

19

III) Answers to Basic Questions

A) Principal difficulties

1) Probability for phononless emission and detection: ~ 7x10-8;due to lattice expansion and contraction (not present withconventional Mössbauer effect) and due to recoil.

2) Homogeneous line broadening: exp > 4x1013 ≈ 5x10-11 eV.

3) Inhomogeneous line broadening due to random distribution of 3H and 3He in metal lattice (entropy) → direct influence of binding energies.

exp» 1012 , with much luck exp≈ 1018 ≈ 10-6 eV

(200 times broader than the 57Fe Mössbauer resonance).

4) Relativistic effects (zero-point energy) due to different binding energies:

exp > 3x1014 ≈ 3x10-10 eV.

Page 20: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

20

III) Answers to Basic Questions

B) Technological difficulties (to name only two)

1) Heat production in source of 1kCi is 0.1 W, → temperature gradients ΔT.For natural width , ΔT « 10-11K (relativistic effect).

2) Stability of apparatus for continuous measurement:e.g., mechanical and temperature variations must be negligible for timecomparable to lifetime, i.e. for ~ 20 years.

Page 21: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

21

III) Answers to Basic Questions

C) Age of the source

To use 3H sources produced at different times: The age itself of the 3H source does not influence the linewidth.

For an exponential decay (constant ):

Fourier transform from t=0 to t∞:Fourier transform from t=t0>0 to t∞:Only amplitude is reduced, width is the same.

In an experiment, the clock is started together with the measurementwhen source and target are arranged in their fixed positions.

e

)(F0)2/()( teF

Page 22: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

22

Candidates for recoilless neutrino emission and absorption

W. P. Kells and J. P. Schiffer,Phys. Rev. C 28, 2162 (1983)

Line broadening/br

Recoilless fraction Bound-statefraction

Page 23: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

23

Rare Earth Systems?

Next-best case: 163Ho/163DyW. P. Kells and J. P. Schiffer,Phys. Rev. C 28, 2162 (1983)

Advantages: a) large mass → relativistic effects are smaller comp. to 3H/3He

b) low Q value, 2.6 keV, → high recoilfree fraction

c) More similar chemical behaviour of Rare Earth → lattice expansion and contraction more favourable → larger probability of phononless transitions in source and target.

Disadvantages: a) Rare Earth atoms have large magnetic moments (4f electrons)→ magnetic relaxation phenomena are decisive

b) less technological knowledge concerning fabrication of high-purity materials and of single crystals.c) large amounts of 163Ho (kg) and 163Dy (100kg) necessary.

Page 24: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

24

IV) Interesting experiments

1) Do Mössbauer (anti)neutrinos oscillate?

2) Determination of mass hierarchy andoscillation parametersm2

32 and m212: 0.6% and sin2213: 0.002

3) Search for sterile neutrinos

4) Gravitational redshift experiments (Earth).

Page 25: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

25

IV) Interesting experiments

1) Do Mössbauer neutrinos oscillate?

S.M. Bilenky et al., Phys. Part. Nucl. 38, 117 (2007)S.M. Bilenky, arXiv: 0708.0260S.M. Bilenky et al., J. Phys. G 34, 987 (2007)E.Kh. Akhmedov et al., arXiv: 0802.2513; JHEP 05 (2008) 005S.M. Bilenky et al., arXiv: 0803.0527 v2; J. Phys. G 35 (2008) 095003E.Kh. Akhmedov et al., arXiv: 0803.1424 v2; J. Phys. G 36 (2009) 078001S.M. Bilenky et al., arXiv: 0804.3409; J. Phys. G 36 (2009) 078002S.M. Bilenky et al., arXiv: 0903.5234J. Kopp, arXiv: 0904.4346

Page 26: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

26

V) Interesting experiments

1) Do Mössbauer neutrinos oscillate?Different approaches to neutrino oscillations

IV) Interesting experiments

A) Evolution of the neutrino state Ψ(t) in time:

Neutrino oscillations occur if Ψ(t) is a superposition of states ofneutrinos with different energies→ non-stationary phenomenon→ No oscillations for Mössbauer neutrinos, since very narrow energy distribution

B) Evolution of the neutrino wave function in space and time:

→ Oscillations are possible in both the non-stationaryand also in the stationary case (Mössbauer neutrinos)

Page 27: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

27

IV) Interesting experiments

Ultra-short base lines for neutrino-oscillation experiments

A) Determination of Θ13: E=18.6 keV instead of 3 MeV.

Base line L of 9.3 m instead of 1500 m with reactor neutrinos

2) If Mössbauer neutrinos do oscillate:

Chooz experiment:1

132 1022sin Oscillation base line: L0/2~9.3 m

23223 105.2 eVm observed with atmospheric neutrinos

)/(sin2sin)( 022 LLP ba For only two flavors:

Oscillatory term: )/(sin 02 LL

2220/

/480.24

eVm

MeVE

m

EcL

Oscillation length: [m]

Amplitude: 2sin 2

Page 28: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

28

IV) Interesting experiments

invertedhierarchy

normalhierarchy

2

1

3

m2atm

m2sol

m2atm

e

3

21

Ue32

m2

? ?0

m2sol

H. Nunokawa et al., hep-ph/0503283

To determine mass hierarchy:Measurem2 in reactor-neutrino andmuon-neutrino (accelerator long-baseline) disappearance channels to better than a fraction of 1%

H. Minakata et al., hep-ph/0602046

For sin22=0.05 and 10 differentdetector locations one can reachuncertainties:in m2

31 and m212: 0.6%,

in sin2213: 0.002

B) Mass hierarchy and oscillation parameters

H. Minakata et al.: hep-ph/0701151S. Parke et al.: 0812.1879 (hep-ph)Phase changes of atmosph. w.r. to solar oscill.

by3231

3231

advances

retardedPhase of atm. osc. 12

2sin2 for every solar osc.

NH:

IH:

IV) Interesting experiments

Page 29: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

29

IV) Interesting experiments

V. Kopeikin et al. : hep-ph/0310246

3) Search for conversion of e sterile

Possibility: e sterile

Test: Disappearance experiment with 18.6 keV antineutrinos

Oscillation length L0 ~5cm!

Ultra-short base line, difficult to reach otherwise

LSND experiment: 22 1eVm sin22θ~0.1 to 0.001and

(largely excluded by MiniBooNE)

Page 30: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

30

IV) Interesting experiments

Can not be used to determine the neutrino mass

Gravitational spectrometer

For eV6exp 10 unrealistic

4) Gravitational redshift experiments (Earth)

h

Gravitational redshift: 2c

gh

E

E

Experimental linewidth: eV11exp 105

ghc2

where is height corresponding to 1 experimental linewidth

mh 25

Are mass and energy affected by gravitation in the same way?

mh 6105.2

Page 31: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

31

V) Conclusions

A) Phononless resonant emission and detection of antineutrinos:3H – 3He system.

B) Experiment is very difficult, if not impossible.

Not possible to reach natural width.

1) Principal difficulties:

a) Probability for phononless emission and detection might be smaller than expected due to lattice expansion and contraction after the transformation of the nucleus:

Additional reduction factor of 1x106.

b) Homogeneous broadening (stochastic processes) and inhomo-geneous broadening (variation of binding energies and of zero-point energies).

exp≈ 1018 ≈ 10-6 eV

W. Potzel and F.E. WagnerPhys. Rev. Lett. 103, 099101 (2009)and arXiv:0908.3985 [hep-ph]

J.P. SchifferPhys. Rev. Lett. 103, 099102 (2009)

Page 32: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

32

V) Conclusions

2) Many technological difficulties, for example:

a) Production of 3H source and 3He target in Nb metalb) Temperature differences within the source and between source and

target (temperature shift)c) Stability (mechanical and temperature) of apparatus for continuous

measuring times of several years.

C) Rare Earth Systems, e.g., 163Ho/163Dy ?

→ Larger probability of phononless transitions in source and target→ Smaller relativistic effects, experiment at room temperature→ However, magnetic relaxation phenomena are critical

D) Interesting experiments:

a) Do Mössbauer neutrinos oscillate?b) Mass hierarchy and accurate determination of oscillation parametersc) Search for sterile neutrinos (LSND experiment, MiniBooNE?)d) Gravitational redshift experiments (Earth).

Page 33: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

33

Extra slides

Page 34: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

34

Papers

Earlier papers:

W. M. Visscher, Phys. Rev. 116, 1581 (1959)

W. P. Kells and J. P. Schiffer, Phys. Rev. C 28, 2162 (1983)

More recent papers:

R. S. Raghavan, hep-ph/0601079 v3, 2006

W. Potzel, Phys. Scrip. T127, 85 (2006) and J. Phys. Conf. Series 136, 022010 (2008);

S. M. Bilenky, F. von Feilitzsch, and W. Potzel,J. Phys. G: Nucl. Part. Phys. 34, 987 (2007);

E. Kh. Akhmedov, J. Kopp, and M. Lindner, 0802.2513 (hep-ph)

Page 35: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

35

I) -decay

Resonance cross section

2

2/1

20

41)(

1018.4 cmft

Eg

res

e

32

3

0 13744

Z

mcg

for low Z, hydrogen-like ψm: electron mass ψ 2: probability density of e in A(Z)

)( resveE : resonant spectral density, i.e., number of in an

energy interval of 1MeV around e

resveE

2/1ft value: reduced half-life of decay

10002/1 ft : super-allowed transition

L.A. Mikaélyan, et al.: Sov. J. Nucl. Phys. 6, 254 (1968)

Page 36: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

36

II) Recoilless antineutrino emission and detection: Mössbauer neutrinos

1) Recoilfree fraction

Stop thermal motion!Make ER negligibly small!

recoil energy:

2

2

2

)(

Mc

E

R

reseE

3H as well as 3He in metallic lattices:freeze their motion →no Doppler broadening.M→Mlattice>>MLeave lattice unchanged, leave phonons unchanged.

Energy of lattice with N particles:

N

sssL nE

3

1

)2/1( ,...2,1,0sn

max

0

)(2/1)(

dZnEL with 1)/exp(/1)( Tkn B

zero-point energy

:)( dZ number of oscillators with frequency ω between ω and ω + dω

3N normal modes

Page 37: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

37

II) Recoilless antineutrino …What does this mean for the effective values s and t ?

SO

D 0

3He 3He

3H 3H

Source Target

3He 3He3H 3H

),( 33

HMf He ),( 33

HeMf H

Lot of 3H Lot of 3He

The differences of these SOD values in source and target have to be the same. In a practical experiment this means:

The Debye temperature for 3H has to be the same in source and target. The same holds for 3He. The Debye temperatures of 3H and 3He in the

metal matrix do not have to be equal.

Page 38: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

38

Phonon density of states

Zn metal

Page 39: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

39

II) Recoilless antineutrino …

b) inhomogeneous broadening

In the best single crystals: (1 +a) ~10-13 eV corresp. to 1011 or larger

Both types of broadening reduce the resonant reaction intensity

Many individual resonancesdisplaced from the nonper-turbed resonance energy E0

Page 40: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

40

II) Recoilless antineutrino …

B. Balko, I. W. Kay, J. Nicoll, J. D. Silk, and G. Herling,Hyperfine Interactions 107, 283 (1997).

H

H

Page 41: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

41

IV) Consequences …

R.S. Raghavan:hep-ph/0601079revised v3; calcu-lations: Sandia Natl.Lab., USA

3He generated in Nb:c1: concentration ininterstitial sites fordifferent temperaturesand times. The He inthe T-free absorber be-low 200K is almost allinterstitial.

Page 42: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

42

IV) Consequences …

6 TIS3 OIS

EST: self-trapping energyZPE: zero-point energy

Little difference betweenDeuterium and Tritium

theoretical

experimentalactivation energies

Page 43: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

43

V) Interesting experiments

Schrödinger equation for evolution of any quantum system:

III) Interesting experiments

)()(

tHt

ti

)0()( iHtet

A) Evolution in time

23

1

*)('')(

k

lktEEi

klll UeUP ik

Question: What will be the state of the neutrino after some time (at some distance L)?

1 tEIf Ek are different, neutrino state is non-stationary.→time-energy uncertainty relation holds:

t is the time interval during which the state of the system is significantly changed

If Ek=Ei, there will be no neutrino oscillations:The neutrino state is stationary

llllP '')(

If Ek≠Ei, the uncertainty relation takes the form: tE

mtEE k

k 2)(

21

1

No matter what theneutrino momenta are !

Page 44: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

44

V) Interesting experimentsIII) Interesting experiments

B) Evolution in time and space

:),( xtx

Mixed neutrino state at space-time point

23

1

*)(''

1)(

k

lkxppi

klll UeUP kkk

lkxip

xl Ue k

3

1

*

with LpptEE

EEpp k

k

kk )()( 1

1

21

2

1

222iii mpE and

23

1

*2''

21

)(

klk

E

Lmi

klll UeUPk

a) Lt LE

mxpp k

k 2)(

21

1

oscillatory phase

b) neutrinos: different masses have the same energy

neutrino state is stationary

:ik pp LE

mxpp k

ik 2)(

21

Page 45: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

45

III) Interesting experiments

5) Real-time, 3H-specific signal of resonance e

a) sudden change of the magnetic moment from -2.1nm (3He)+2.79nm (3H)

transient (~0.1ms) magnetic field which couples toelectron moment of 3H via hyperfine interaction

Read-out by SQUID

b) new electrons appear in the Nb bands when 3H is formed. These electrons cause additional specific heat that grows linearly with 3H concentration.

detectable by ultra-sensitive (micro)-calorimeters ?

Page 46: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

46

Red(blue)shift 67ZnO-Mössbauer exp.

gravitational redshift

gravitational blueshift

difference in height: 1min gravitational field of Earth

accuracy: (≤ 1x10-18

W. Potzel et al., Hyp. Interact.72, 197 (1992)

Page 47: 1 Recoilless Resonant Emission and Detection of Electron Antineutrinos Walter Potzel Technische Universität München Physik-Department E15, Garching, Germany.

47

Gravitational Redshift Experiment