1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid....

24
1

Transcript of 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid....

Page 1: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

1

Page 2: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

2

1. Which of the following is (are) important in determining whether a reaction occurs?

I. Energy of the molecules

II. Orientation of the molecules

A. I only

B. II only

C. Both I and II

D. Neither I nor II

2. Consider the reaction between solid CaCO3 and aqueous HCl. The reaction will be speeded up by an increase in which of the following conditions?

I. Concentration of the HCl

II. Size of the CaCO3 particles

III. Temperature

A. I only

B. I and III only

C. II and III only

D. I, II and III

Page 3: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

3

3. Excess magnesium was added to a beaker of aqueous hydrochloric acid on a balance. A graph of the mass of the beaker and contents was plotted against time (line 1).

Mass

1

2

Time

What change in the experiment could give line 2?

I. The same mass of magnesium but in smaller pieces

II. The same volume of a more concentrated solution of hydrochloric acid

III. A lower temperature

A. I only

B. II only

C. III only

D. None of the above

4. The rate of a reaction between two gases increases when the temperature is increased and a catalyst is added. Which statements are both correct for the effect of these changes on the reaction?

Increasing the temperature Adding a catalyst

A. Collision frequency increases Activation energy increases

B. Activation energy increases Activation energy does not change

C. Activation energy does not change Activation energy decreases

D. Activation energy increases Collision frequency increases

Page 4: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

4

5. Which of the following is (are) altered when a liquid at its boiling point is converted to a gas at the same temperature?

I. The size of the molecules

II. The distance between the molecules

III. The average kinetic energy of the molecules

A. I only

B. II only

C. III only

D. I and II only

6. Based on the definition for rate of reaction, which units are used for a rate?

A. mol dm–3

B. mol time–1

C. dm time–1

D. mol dm–3 time–1

7. Which of the quantities in the enthalpy level diagram below is (are) affected by the use of a catalyst?

I II

III

Enthalpy

Time

A. I only

B. III only

C. I and II only

D. II and III only

Page 5: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

5

8. In the Haber process for the synthesis of ammonia, what effects does the catalyst have?

Rate of formation of NH3(g) Amount of NH3(g) formed A. Increases Increases B. Increases Decreases C. Increases No change D. No change Increases

9. Which statement is correct about the behaviour of a catalyst in a reversible reaction?

A. It decreases the enthalpy change of the forward reaction.

B. It increases the enthalpy change of the reverse reaction.

C. It decreases the activation energy of the forward reaction.

D. It increases the activation energy of the reverse reaction.

10. Which statement is correct for a collision between reactant particles leading to a reaction?

A. Colliding particles must have different energy.

B. All reactant particles must have the same energy.

C. Colliding particles must have a kinetic energy higher than the activation energy.

D. Colliding particles must have the same velocity.

11. Which change of condition will decrease the rate of the reaction between excess zinc granules and dilute hydrochloric acid?

A. increasing the amount of zinc

B. increasing the concentration of the acid

C. pulverize the zinc granules into powder

D. decreasing the temperature

Page 6: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

6

12. The table shows the concentrations of reactants and products during this reaction.

2A + B → C + 2D

[A] / mol dm–3 [B] / mol dm–3 [C] / mol dm–3 [D] / mol dm–3

at the start 6 3 0 0

after 1 min 4 2 1 2

The rate of reaction can be measured by reference to any reactant or product. Which rates are correct for this reaction?

I. rate = –2 mol dm–3 min–1 for A II. rate = –1 mol dm–3 min–1 for B III. rate = –1 mol dm–3 min–1 for C

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

13. In general, the rate of a reaction can be increased by all of the following except

A. increasing the temperature.

B. increasing the activation energy.

C. increasing the concentration of reactants.

D. increasing the surface area of the reactants.

14. At 25°C, 100 cm3 of 1.0 mol dm–3 hydrochloric acid is added to 3.5 g of magnesium carbonate. If the sample of magnesium carbonate is kept constant, which conditions will not increase the initial rate of reaction?

Volume of HCl / cm3 Concentration of HCl / mol dm–3 Temperature / °C

A. 200 1.0 25

B. 100 2.0 25

C. 100 1.0 35

D. 200 2.0 25

Page 7: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

7

15. At 25°C, 100 cm3 of 1.0 mol dm–3 hydrochloric acid is added to 3.5 g of magnesium carbonate. If the sample of magnesium carbonate is kept constant, which conditions will not increase the initial rate of reaction?

Volume of HCl / cm3 Concentration of HCl / mol dm–3 Temperature / °C

A. 200 1.0 25

B. 100 2.0 25

C. 100 1.0 35

D. 200 2.0 25

16. Which statement is correct with regard to the catalysed and uncatalysed pathways for a given reaction?

A. The enthalpy change of the catalysed reaction is less than the enthalpy change for the uncatalysed reaction.

B. The enthalpy change of the catalysed reaction is greater than the enthalpy change for the uncatalysed reaction.

C. The enthalpy change of the catalysed reaction is equal to the enthalpy change for the uncatalysed reaction.

D. The activation energy of the catalysed reaction is greater than the activation energy for the uncatalysed reaction.

17. Which changes increase the rate of a chemical reaction?

I. Increase in the concentration of an aqueous solution

II. Increase in particle size of the same mass of a solid reactant

III. Increase in the temperature of the reaction mixture

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Page 8: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

8

18. Excess magnesium, was added to a beaker of aqueous hydrochloric acid. A graph of the mass of the beaker and contents was plotted against time (line 1).

Mass

Time

2

1

What change in the experiment could give line 2?

A. The same mass of magnesium in smaller pieces

B. The same volume of a more concentrated solution of hydrochloric acid

C. A lower temperature

D. A more accurate instrument to measure the time

19. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

II

III

IEnthalpy

Time

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Page 9: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

9

20. (i) Draw a graph to show the distribution of energies in a sample of gas molecules. Label the axes and label your curve T1. Using the same axes, draw a second curve to represent the distribution of energies at a higher temperature. Label this curve T2.

(3)

(ii) State and explain, with reference to your graph, what happens to the rate of a reaction when the temperature is increased.

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

………………………………………………………………………………………….. (2)

(Total 5 marks)

21. The graph below shows the volume of carbon dioxide gas produced against time when excess calcium carbonate is added to x cm3 of 2.0 mol dm–3 hydrochloric acid.

Volume of CO2

Time

(i) Write a balanced equation for the reaction.

…………………………………………………………………………………………..

………………………………………………………………………………………….. (1)

Page 10: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

10

(ii) State and explain the change in the rate of reaction with time. Outline how you would determine the rate of the reaction at a particular time.

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

………………………………………………………………………………………….. (4)

(iii) Sketch the above graph on an answer sheet. On the same graph, draw the curves you would expect if:

I. the same volume (x cm3) of 1.0 mol dm–3 HCl is used.

II. double the volume (2x cm3) of 1.0 mol dm–3 HCl is used.

Label the curves and explain your answer in each case.

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

………………………………………………………………………………………….. (5)

(Total 10 marks)

Page 11: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

11

22. When excess lumps of magnesium carbonate are added to dilute hydrochloric acid the following reaction takes place.

MgCO3(s) + 2HCl(aq) → MgCl2(aq) + CO2(g) + H2O(l)

(a) Outline two ways in which the rate of this reaction could be studied. In each case sketch a graph to show how the value of the chosen variable would change with time.

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

…………………………………………………………………………………………… (4)

(b) State and explain three ways in which the rate of this reaction could be increased.

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

…………………………………………………………………………………………… (6)

Page 12: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

12

(c) State and explain whether the total volume of carbon dioxide gas produced would increase, decrease or stay the same if

(i) more lumps of magnesium carbonate were used.

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… (2)

(ii) the experiments were carried out at a higher temperature.

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… (2)

(Total 14 marks)

23. Carbon dioxide gas in the atmosphere reacts slightly with rainwater as shown below.

CO2(g) + H2O(l) H+(aq) + HCO3–(aq)

(i) State the meaning of the sign.

…………………………………………………………………………………………… (1)

(ii) Predict the effect, if any, of the presence of a catalyst on the acidity of rainwater. Give a reason for your answer.

……………………………………………………………………………………………

……………………………………………………………………………………………

…………………………………………………………………………………………… (2)

Page 13: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

13

(iii) Use Le Chatelier’s principle to predict the effect of the addition of a small quantity of an alkali on the acidity of rainwater. Explain what effect, if any, this would have on the equilibrium constant, Kc.

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

……………………………………………………………………………………………

…………………………………………………………………………………………… (3)

(Total 6 marks)

24. Excess 0.100 mol dm–3 nitric acid is added to a certain mass of powdered calcium carbonate at 20°C. The rate of reaction is monitored by measuring the change in mass over time due to the loss of carbon dioxide.

2HNO aq CaCO s Ca NO aq H O l CO g23 3 3 2 2( ) ( ) ( ) ( ) ( ) ( )+ → + +

Mass loss / g

Time / minutes

(a) Define the term rate of reaction.

....................................................................................................................................

.................................................................................................................................... (1)

(b) Explain why the mass loss remains constant after a certain time.

....................................................................................................................................

.................................................................................................................................... (1)

Page 14: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

14

(c) Draw a line on the graph above, to show what the graph would look like if the same mass of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid.

(1)

(d) Explain in terms of the collision theory what would happen to the rate if the reaction was conducted at 50°C.

....................................................................................................................................

....................................................................................................................................

....................................................................................................................................

....................................................................................................................................

....................................................................................................................................

.................................................................................................................................... (3)

(e) Determine the rate of formation of carbon dioxide when the nitric acid reacts at a rate of 2.00×10–3 mol cm–3 s–1.

....................................................................................................................................

.................................................................................................................................... (1)

(Total 7 marks)

25. (i) Draw a graph that shows the distribution of molecular energies in a sample of a gas at two different temperatures, T1 and T2, such that T2 is greater than T1.

(2)

(ii) Define the term activation energy. (1)

(iii) State and explain the effect of a catalyst on the rate of an endothermic reaction. (2)

(Total 5 marks)

26. (i) Magnesium is added to a solution of hydrochloric acid. Sketch a graph of acid concentration on the y-axis against time on the x-axis to illustrate the progress of the reaction.

(1)

(ii) Describe how the slope of the line changes with time. (1)

(iii) Use the collision theory to state and explain the effect of decreasing concentration on the rate of the reaction.

(2) (Total 4 marks)

Page 15: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

15

27. The reaction between ammonium chloride and sodium nitrite in aqueous solution can be represented by the following equation.

NH4Cl(aq) + NaNO2(aq) → N2(g) + 2H2O(l) + NaCl(aq)

The graph below shows the volume of nitrogen gas produced at 30 second intervals from a mixture of ammonium chloride and sodium nitrite in aqueous solution at 20°C.

140

120

100

80

60

40

20

00 20 40 60 80 100 120 140 160 180

Time / s

Volume of N / cm23

(a) (i) State how the rate of formation of nitrogen changes with time. Explain your answer in terms of collision theory.

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................ (2)

(ii) Explain why the volume eventually remains constant.

............................................................................................................................

............................................................................................................................ (1)

Page 16: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

16

(b) (i) State how the rate of formation of nitrogen would change if the temperature were increased from 20°C to 40°C.

............................................................................................................................

............................................................................................................................ (1)

(ii) State two reasons for the change described in (b)(i) and explain which of the two is more important in causing the change.

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................ (3)

(iii) The reaction between solid ammonium chloride and aqueous sodium nitrite can be represented by the following equation.

NH4Cl(s) + NaNO2(aq) → N2(g) + 2H2O(l) + NaCl(aq)

State and explain how the rate of formation of nitrogen would change if the same amount of ammonium chloride was used as large lumps instead of as a fine powder.

............................................................................................................................

............................................................................................................................

............................................................................................................................

............................................................................................................................ (2)

(Total 9 marks)

28. (a) Define the term average bond enthalpy, illustrating your answer with an equation for methane, CH4.

.....................................................................................................................................

.....................................................................................................................................

..................................................................................................................................... (3)

Page 17: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

17

(b) The equation for the reaction between methane and chlorine is

CH4(g) + Cl2(g) → CH3Cl(g) + HCl(g)

Use the values from Table 10 of the Data Booklet to calculate the enthalpy change for this reaction.

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

..................................................................................................................................... (3)

(c) Explain why no reaction takes place between methane and chlorine at room temperature unless the reactants are sparked, exposed to UV light or heated.

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

..................................................................................................................................... (2)

(d) Draw an enthalpy level diagram for this reaction.

(2)

(Total 10 marks)

29. (a) Identify two features of colliding molecules that react together in the gas phase.

.....................................................................................................................................

.....................................................................................................................................

..................................................................................................................................... (2)

Page 18: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

18

(b) For many reactions, the rate approximately doubles for a 10°C rise in temperature. State two reasons for this increase and identify which of the two is the more important.

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

..................................................................................................................................... (3)

(Total 5 marks)

30. (a) Define the term rate of reaction.

...................................................................................................................................

................................................................................................................................... (1)

(b) The reaction between gases C and D is slow at room temperature.

(i) Suggest two reasons why the reaction is slow at room temperature.

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... (2)

(ii) A relatively small increase in temperature causes a relatively large increase in the rate of this reaction. State two reasons for this.

.........................................................................................................................

......................................................................................................................... (2)

(iii) Suggest two ways of increasing the rate of reaction between C and D other than increasing temperature.

.........................................................................................................................

.........................................................................................................................

.........................................................................................................................

......................................................................................................................... (2)

(Total 7 marks)

Page 19: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

19

Answers 1. C 2. B 3. B 4. C 5. B

6. D

7. C

8. C 9. C 10. C

11. D

12. A

13. B 14. A 15. A

16. C

17. B

18. B

19. A

20. (i)

Numberof

molecules /frequency

Ea

1

2

Energy

T

T

both axes correctly labelled;

T2 peak/lower; and to right of T1; 3

Area under graph is not important.

(ii) rate increased/changes;

Page 20: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

20

as more molecules with ≥ Ea; 2 No explicit reference to graph required.

[5]

21. (i) CaCO3(s) + 2H+(aq) → Ca2+(aq) + H2O(l) + CO2(g) 1 States not required, accept molecular equation.

(ii) rate decreases with time; as concentration decreases so fewer (successful) collisions; draw tangent to the curve at time t; rate = slope or gradient; 4

(iii)

original

II

I

Time

Volume ofCO produced2

I. (less CO2 because) amount of HCl is limiting and half the orginal/OWTTE;

II. (same amount of CO2 because) amount of HCl is the same; curve less steep because less frequent (accept fewer) collisions 5

Awarded last mark if in either I or II. [10]

22. (a) measure volume of carbon dioxide/CO2/gas produced/measure pH; 4

starts at origin and levels off

measure mass of chemicals/apparatus;

Page 21: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

21

starts high and decreases Graph should show increase as reaction progresses (as HCl is consumed).

(b) Method 1 use powdered MgCO3/OWTTE; particles collide more frequently/increased surface area/OWTTE;

Method 2 increase (reaction) temperature/heat/warm; more of the collisions are successful/more particles with E > Ea/OWTTE;

Method 3 increase acid concentration; more frequent (reactant) collisions;

Method 4 add catalyst; lowers activation energy/Ea/OWTTE; 6 max

Award [2] each for any three methods

(c) (i) stays the same; MgCO3 was already in excess; 2

(ii) stays the same; same quantities of reactants used; 2

[14]

23. (i) reversible reaction/reaction may proceed in either direction (depending on reaction conditions) equilibrium/dynamic equilibrium; 1

(ii) no effect; catalyst will speed up both forward and reverse reactions (equally)/ increase the rate at which equilibrium is achieved; 2

(iii) acidity: no effect; equilibrium shifts to the right; Kc: no change; 3

[6]

24. (a) change of concentration/mass/amount/volume/of a reactant/product with time; 1 Do not accept “substance”.

(b) all the CaCO3(s) has been consumed/no further CO2(g) is produced/reaction is complete; 1

Do not accept reaction has stopped or all reactants used up.

(c) line on graph should be initially less steep/a smaller gradient and should plateau at the same mass loss; 1

Page 22: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

22

Time / minutes

Mass loss / g

(d) there are more particles with KE greater than or equal to Ea; collisions more frequent/more collisions per unit time/more

successful/forceful collisions per unit time; the rate increases; 3

(e) 1.00×10−3 (mol cm−3 s−1) 1 Ignore units even if wrong. Apply −1(sf).

[7]

25. (i)

Num

ber/F

ract

ion

of M

olec

ules

Energy/speed

T

T

2

2

> T1

1

T

T2 peak lower/T1 higher; T2 peak at higher energies/T1 curve at lower energies; 2

Maximum if axes not labeled correctly

(ii) minimum energy required to react/energy difference between reactants and transition state; 1

(iii) makes the reaction go faster; because it lowers the activation energy/Ea; 2

[5]

Page 23: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

23

26. (i) a curve showing concentration decreases with time; 1

i.e.

[acid]

Time No penalty if curve reaches x axis Do not accept a straight line

(ii) slope decreases; 1

(iii) rate decreases; fewer collisions per unit time; 2

[4]

27. (a) (i) it is decreasing; less frequent collisions/fewer collisions per second or (unit) time; 2

(ii) reactant(s) used up/reaction is complete; 1 Do not accept reaction reaches equilibrium.

(b) (i) it would increase; 1 Accept a quantitative answer such as “doubles”.

(ii) more frequent collisions; collisions or molecules have more energy (OWTTE); more molecules with energy ≥ Ea; 3

(iii) rate would be lower; smaller surface area; 2

[9]

28. (a) energy for the conversion of a gaseous molecule into (gaseous) atoms; (average values) obtained from a number of similar bonds/compounds/OWTTE; CH4(g) → C(g) + 4H(g); 3

State symbols needed.

(b) (bond breaking) = 1890/654; (bond formation) = 2005/769; enthalpy = –115(kJ mol–1) 3

Allow ECF from bond breaking and forming. Award [3] for correct final answer. Penalize for correct answer with wrong sign.

(c) molecules have insufficient energy to react (at room temperature)/

Page 24: 1....of calcium carbonate in larger pieces were reacted with excess 0.100 mol dm–3 nitric acid. (1) (d) Explain in terms of the collision theory what would happen to the rate if

24

wrong collision geometry/unsuccessful collisions; extra energy needed to overcome the activation energy/Ea for the reaction; 2

(d)

energy reactants

reaction path

products

Ea

exothermic shown;

activation energy/Ea shown; 2 Allow ECF from (b).

[10]

29. (a) molecules must have sufficient/minimum energy/energy ≥ activation energy; appropriate collision geometry/correct orientation; 2

(b) increased frequency of collisions/collisions more likely; Not just “more collisions”, there must be a reference to time.

increased proportion of molecules with sufficient energy to react/E ≥ Ea; Not “activation energy is reduced”.

Proportion of molecules with E ≥ Ea is more important; (dependent on correct second marking point); 3

[5]

30. (a) increase in product concentration per unit time/decrease in reactant concentration per unit time; 1

Accept change instead of increase or decrease.

(b) (i) high activation energy/not enough molecules have Ea/OWTTE; incorrect collision geometry/OWTTE; infrequent collisions; 2

Award for any two reasons.

(ii) more energetic collisions/more molecules have (energy ≥) Ea; more frequent collisions/collide more often; 2

(iii) add a catalyst; increase the (total) pressure/decrease the volume of the container; increase the concentration of C (or D); 2

Do not accept surface area. Award for any two.

[7]