1. Metalation of p -Excessive Heteroaromatics

32
1. Metalation of -Excessive Heteroaromatics S Et 2 N O E +

description

1. Metalation of p -Excessive Heteroaromatics. Thermodynamic Acidities of π - Excessive Heteroaromatics. Kinetic Acidities of π - Excessive Heteroaromatics. Synthetic Use of Metalated non-DMG Furans and Thiophenes. Conversions into other Heterocycles. - PowerPoint PPT Presentation

Transcript of 1. Metalation of p -Excessive Heteroaromatics

Page 1: 1.  Metalation of  p -Excessive Heteroaromatics

1. Metalation of -Excessive Heteroaromatics1. Metalation of -Excessive Heteroaromatics

S

Et2N

O

E+

Page 2: 1.  Metalation of  p -Excessive Heteroaromatics

Thermodynamic Acidities of π - Excessive HeteroaromaticsThermodynamic Acidities of π - Excessive Heteroaromatics

Se H>

S HO H

>>NR

H

pKa < 34 ~ 35 36

(Streitwieser orPolarographic scale)

X

Inductive

empty d orbital (for S and Se)

Lone pair effect

Page 3: 1.  Metalation of  p -Excessive Heteroaromatics

Kinetic Acidities of π - Excessive Heteroaromatics.Kinetic Acidities of π - Excessive Heteroaromatics.

Se HS

H OH

NR

H

H H H H

0.015 0.002 0.002

700 500 1.0

?

?

S H

Z

H

Z

OMe

SMe

Me 0.18

>30

0.05

>200

>100

kexch

t-BuOK / DMSO

Page 4: 1.  Metalation of  p -Excessive Heteroaromatics

Synthetic Use of Metalated non-DMG Furans andThiophenes. Conversions into other Heterocycles

Synthetic Use of Metalated non-DMG Furans andThiophenes. Conversions into other Heterocycles

R

O

O Li

1.

2. H3O+R

HO

O

mCPBA

R

O OH

O

- OH 80 %-OH 20 %

ONH2

ClSi

ClSi

Me2

Me2

Et3N / CH2Cl2O

N

SiMe2

Me2Si1. n-BuLi

2. ArCHO ON

SiMe2

Me2Si

OH

Ar

3. HCl / -78°C

4. refluxN

Ar

OH

Page 5: 1.  Metalation of  p -Excessive Heteroaromatics

Synthetic Use of Metalated non-DMG Furans andThiophenes. Oxidative Pathways

Synthetic Use of Metalated non-DMG Furans andThiophenes. Oxidative Pathways

O

1. n-BuLi

2. TMSClO TMS

1. n-BuLi

2. E+

3. MeCO3H OE

S

1. n-BuLi

2. B(OMe)3

G

S

G

B(OMe)2

H2O2

S

G

O

O

Page 6: 1.  Metalation of  p -Excessive Heteroaromatics

Metalated Furans. Additions on Glycosyl Nitrones

O

N

OR

Bn

OO Li

THF/-80 °C

OO

O

N

OR

Bn

OH

OO

O

(80-90%)

1. TiCl3/MeOH2. SiO2/H2O3. Ac2O or CbzCl

O

NHAc

ORO

O

O

(57-14%)

1. RuO2/NaIO42. CH2N2

O

NHAc

ORO

O

MeO2C

(51-69%)

Page 7: 1.  Metalation of  p -Excessive Heteroaromatics

Use of Metalated non-DMG Thiophenes. Historical Industrial Practice

Use of Metalated non-DMG Thiophenes. Historical Industrial Practice

S

1. n-BuLiTHF / spont reflux

2. +10°CO

keep < 25°CS OH

3. HCl

(79 % 110 mole scale)

1. TsCl /Et3N

2. ArCH2NH2

(71% )S NH

Ar

1. 35 % aq CH2O

2. HCl / DMF

(85 % )

N

S

Ar

anti-inflammatory,vasodilator,blood plate aggregation inhibitor

Page 8: 1.  Metalation of  p -Excessive Heteroaromatics

Directed ortho Metalation (DoM) Reactivity of Furans and Thiophenes

Directed ortho Metalation (DoM) Reactivity of Furans and Thiophenes

XHDMG

CoordinationInherent Kinetic Acidity

DMG = Directed Metalation GroupX = O, S

Carbon - based DMGs Het Atom - based DMGs

CON-R

CONR2

N

CO2-

NR2

O

CH2OR

CH2O-

OR

SR

OP(NMe2)2SO2N-R

S(O)nR n = 1,2

N-COt-Bu

Page 9: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Chemistry of Furans and Thiophenes. Carbon-Based DMG’s. DMG = 2-oxazolino

DoM Chemistry of Furans and Thiophenes. Carbon-Based DMG’s. DMG = 2-oxazolino

-78°C

SN

O

3

5

LDA / THF or DME

n-BuLi / Et2O-78°C

C3 : C5 Conditions E+

91 : 5

59 : 41

29 : 46

0 : 100

n-BuLi / -78°C / 15 min

n-BuLi / DME / -78°C

n-BuLi / DME / -78°C

n-BuLi / Et2O/ 2 eq HMPA

PhCHO

TMSCl

MeI

TMSCl

ON

O

3

5

C3 : C5 Conditions E+

21 : 74

87 : 9

n-BuLi / Et2O / -78°C 0°C

n-BuLi / DME / -78°C

PhCHO

PhCHO

E+ = DMF, CO2, I2, TsN3, MVK,O Br

,

Thiophene

Furan

Page 10: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Chemistry of Furans. DMG = CON-R. ApplicationDoM Chemistry of Furans. DMG = CON-R. Application

O

OTBDMS

1. n-BuLi / hex

2. O=C=Nt-Bu

61 %

O

OTBDMS

CONHt-Bu O

OTBDMS

CONHt-Bu

Me

1. n-BuLi (2eq)

2. MeI

(69 %)

O CONHt-Bu

Me

MeO2C

1. n-TBAF / HOAc

2. (COCl)2 / DMSOEt3N

3. Ph3PC(Me)CO2Me

O

Me

HO

O

H

H

Kallolidediterpine

(antiinflammatory)

Page 11: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Furans and Thiophenes. Dianion Equivalents with Carbon-based DMGs

DoM Reactivity of Furans and Thiophenes. Dianion Equivalents with Carbon-based DMGs

S

E1+

E2+ (CONEt2)

s-BuLi/ TMEDATHF / -78°C

E1 E2

PhCH(OH)CONEt2

SMeTMS

TMSSMeSMe

SMeTMSCONEt2

26 - 85 %

X

E1+

E2+

N

O

E = CO2H, SMe, TMS, I

88 - 97 %

X = S 3.3 eq s-BuLiTHF / -20°C / 0.5h

X = S 3.3 eq s-BuLi / TMEDATHF / -78°C / 2h

Page 12: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Furans and Thiophenes.“DMG” = CO2

-

DoM Reactivity of Furans and Thiophenes.“DMG” = CO2

-

n-BuLi / TMEDA / THF / -78 °C

X CO2-

X

CO2-

X = S, OLDA / THF / -78 °C

E+ = MeI, EtI, PhCHO, TMSCl, .....

O

CO2-R

R = alkyl, SR, CH(OR)2, Br

E+ = 1. SO2; 2. NH2OSO3; 3. SO2Cl2

S CO2-

X CO2-

XCO2

-

X

CO2-

X = O, S

E+ = MeI, PhCH2Br, (Me)2S, TMSCl, I2

LDA / THF / -90 °C LDA / THF / -78 °C

E+ = RX, RCHO, ArCHO, TMSCl

Page 13: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Chemistry of Furans. DMG = CH2O- DoM Chemistry of Furans. DMG = CH2O-

OTMS SPh

TBDMSO

O

OH1. n-BuLi2. Ph2S2

3. TBDMSCl4. n-BuLi5. TMSCl 2 1

O

OTBDMS

TMS

1. TBDMSClimidazole

2. n-BuLi / DME3. TMSCl

O

OTBDMS

OO

OTBDMS

O

O

OTBDMS n-BuLi / DME

HMPA / -20 °CO

OH

TBDMS O

OH

TBDMS

DME1. 2 eq. n-BuLi /

0 °C2. E+

(90% )

TBAF / THF

O

OH

E

E

E = D, M, (CH2)3Cl, CO2Me, CONEt2, TMSO

R

O-

minor majorR = (CH2)nMe

(87 %)

Page 14: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Chemistry of Furans and Thiophenes. Heteroatom - Based DMGs, DMG = SO2R

DoM Chemistry of Furans and Thiophenes. Heteroatom - Based DMGs, DMG = SO2R

X

1. 2 eq. n-BuLi

X = O,S

2. E+

SO2NHt-Bu

X

SO2NHt-Bu

E

E = BrX = S

S

SO2NHt-Bu

R

R = CN, Ph,N

NN

S

SO2NHt-BuBr

1. LDA

2. E+

S

SO2NHt-BuBr

E S

SO2NHt-BuBr

R

R = CN, Ph, Ar, HetAr

Page 15: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of N-DMG PyrrolesDoM Reactivity of N-DMG Pyrroles

NSEM

1. n-BuLi / DME

2. E+

0° CNSEM

E

anhydrTBAF

THF / 0 °C NH

E

SEM = CH2OCH2CH2TMS

E = CO2Me, COPh, i-PrCH(OH), CH2=CHCH(OH), TMS

OMeO OMeH2NNMe2

HOAc NNMe2

1. n-BuLi

2. E+ NNMe2

ECr2(OAc)4

NH

E

E+ = RCHO, ClSnR3

OOH

S

NO

+NNMe2

BrMg OOH

O

NH

Page 16: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of N-DMG PyrrolesDoM Reactivity of N-DMG Pyrroles

NCOHNt-Bu

1. 2.2 eq n-BuLi / THF / -78 °C

2. E+ NCOHNt-Bu

E

E = CO2H, PhCH(OH), TMS, D, (CH3)2CHOH

NH

1. n-BuLi / THF -78 °C -25 °C

2. CO23. n-BuLi / THF

-78 °C -25 °C

NCO2

1. E+

2. H3O+ / 0 °C5 min

NH

E

E = CO2H, CONHPh, CHO, C(OH)Ph2, Ts

Page 17: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Indoles. N - DMGsDoM Reactivity of Indoles. N - DMGs

NDMG

DMG = SO2Pha,b

CO2t-Bua,c

CH2OCH2CH2TMS (SEM)b

CO2- d,e,f

CH2OMea,g

DMG = CH2NMe2h

CONEt2i

CON-t-Buj

OCH2OMek

SO2NMe2l

Page 18: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Indoles. N-DMG = CO2t-Bu.

Indirect C-7 Substitution

DoM Reactivity of Indoles. N-DMG = CO2t-Bu.

Indirect C-7 Substitution

NDMG

NDMG

PG

?

N

1. s-BuLi / TMEDA

Et2O / -78 °C2. E+

(40 - 83 %)OtBuO

X

N

OtBuO

X

E

NH

X

E

X = H, OMe, Cl

E = Me, CO2H, TMS, Bu3Sn, PhS, I, Br, Cl

E = CHO

NH

X

HO

E =

N

RCH(OH)

O OR

Page 19: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Indoles. Non-N DMG Indoles. DMG = CONR2

DoM Reactivity of Indoles. Non-N DMG Indoles. DMG = CONR2

NDMG

CONR1R2NDMG

CONR1R2

E

NHSO2Ph

NR1R2

O

NSO2Ph

N

NSO2Ph

N

COMe

NH

N

OH

n-BuLi

N

NHSO2Ph

1. s-BuLi / TMEDA

2. E+

DMG = CH2OMeR1 = R2 = Et

n-BuLi

DMG = SO2PhR1 = R2 = EtR1 = H R2 = t-Bu

THF / -78 °C

DMG = Me, R1= H, R2 = t-Buno ring opening

2. OHCMe

3. MnO2

1. n-BuLi / -78 °C

1. NaOH

2. I2

-78 °C 50 °C

Page 20: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Indoles. Non-N DMG Indoles. DMG = CH2NR2

DoM Reactivity of Indoles. Non-N DMG Indoles. DMG = CH2NR2

NZ

DMG

Z = DMG or non DMG

NMe

NMe2

t-BuLi / EtO2

-78 °C / 1 h

N

NMe2

Si

1. t-BuLi / EtO20 °C / 1 h

2. E+

(57 - 88%)

N

NMe2

Si

E

E = CHO, TMS, Bu3Sn, PhS, I, Br, Cl, NH2, (N3CH2TMS)

e.g. E = Cl

TBAFTHF / rt

NH

Cl

CO2H

plant growth hormone

Page 21: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Non-N DMG Indoles.

DMG = OCONEt2. Benzenoid Ring Functionalization

DoM Reactivity of Non-N DMG Indoles.

DMG = OCONEt2. Benzenoid Ring Functionalization

NTBS

AmO

E

NTBS

AmORR = H

1. s-BuLi / TMEDA

THF/ -78 °C2. E+

(43 - 99%)

R = CH2CH2OH, CH2CH2OTBS

1. s-BuLi / TMEDA

THF/ -78 °C2. E+

(57 - 70%)

NTBS

AmOR

E

1. s-BuLi / TMEDATHF/ -78 °C

2. ZnBr2 / THF

3. Pd(PPh3)4 / THF / ArBr

R'MgX / Ni(acac)2

PhMe / refluxNTBS

AmO

Ar

NTBS

R'

R' = TMSCH2, PhAm = CONEt2

E+ = TMSCl, MeI, DMF, ClCO2Et,

C2Cl6, I2, t-BuSSO2Ph

R = H

Page 22: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of -Excessive Heteroaromatics. Pyrrazoles. N DMGs

DoM Reactivity of -Excessive Heteroaromatics. Pyrrazoles. N DMGs

NN

R

base

NN

Me

R

H5

n-BuLi minor

major

NN

H

H

n-BuLi

major

minor

NN

R

H

R = SO2NMe2 : n-BuLiR = Ts : t-BuLi

NN H

N

R

R

n-BuLi

NN H

O

n-BuLi

NN H

N

N

HHLDA / 0 °C

n-BuLi / 25 °CE+ = RX

n-BuLi /25 °C

E+ = RCOX,RCO2R'

Page 23: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Pyrrazoles. Non-N DMGs.DMG = SO2N-R

DoM Reactivity of Pyrrazoles. Non-N DMGs.DMG = SO2N-R

NN

Me

1. n-BuLi

2. DMFN

N

Me

CHO

SO2NHt-Bu

NN

Me

X

SO2NHt-Bu

X = CF2H, CH=NOMe,N

O

SO2NHt-Bu

Page 24: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Pyrrazoles. Total Synthesis Application

DoM Reactivity of Pyrrazoles. Total Synthesis Application

N

N

SO2Ph

1. t-BuLi / 0 °C

2. Br

( 30 %)

N

N

SO2Ph

1. BH3 / Me2S

2.H2O2 / NaOH

N

N

SO2Ph

HO

1. TsCl / Py

2. MeONa

N

N

Withasomnineex Withania

somnifera (Solanaceae)

Page 25: 1.  Metalation of  p -Excessive Heteroaromatics

Metalation Reactivity of ImidazolesMetalation Reactivity of Imidazoles

N

NR

H

n-BuLi

N

NMe

Me

major

H

minor

N

NMe

MeMe3Sn

n-BuLi / Et2O / 20 °Cn-BuLi / Et2O / 20 °C

N

NMe

Me

100%

TMS

n-BuLi

N

NMe

H

n-BuLi

Br

Page 26: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Imidazoles. DMG = N-SO2NR2.

Silicon Protection

DoM Reactivity of Imidazoles. DMG = N-SO2NR2.

Silicon Protection

N

NSO2NMe2

N

NSO2NMe2

E+TMS+ H+

F-

1. n-BuLi THF / -78 °C

2. TBDMSCl

3. n-BuLiMe

Me

Cl

O

4.

Me

Me

Me

N

NH

Me

Me

O

NSO2NMe2

N

TBDMS

1.5 N HCl

reflux

( 79% overall)

Page 27: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Imidazoles in Context of NucleosidesDoM Reactivity of Imidazoles in Context of Nucleosides

O

OPG OPG

RON

N

N

NH

X

O

OPG OPG

RON

N

N

NE

X

ArCHODMFR2COCO2R

O

OPG OPG

PGON

N

Cl

CO2Me

O

OPG OPG

PGON

N

Cl

CO2Me

OHO

HO OH

HON

N NH

O

1. LDA / THF -78 °C

2. E+

R= or TBDMSX = Cl, NH2

X= NH2, Cl

E+= RXAlkylCHO

1. LDA / THF2. HCO2Et

3. NaBH4

NH2

3-deazaguanosine

(antiviral)

Page 28: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of OxazolesDoM Reactivity of Oxazoles

N

O H

N

O CH3

N

O CH2R2

R1=R2= H

R1= t-BuR2= SO2Ph

N

O CH3

HO2C1. 2.5 eq. t-BuLi

2. 5 eq. TMSClN

O CH3

HO2C

TMS

1. 2.5eq. t-BuLi

2. E+

3. CsF

N

O

HO2C

E

E = D, Me, RCH(OH), R2C(OH)

R1OOC

Page 29: 1.  Metalation of  p -Excessive Heteroaromatics

Metalation Reactivity of ThiazolesMetalation Reactivity of Thiazoles

N

S H

n-BuLi

N

S CH3

n-BuLi

H

major minor

N

S

n-BuLi / Et2O / -78 °C

E2+ E1

+

E1 = TMS, E2 = SnMe3

Ipso chemistry

N

STMS

1.O

OCHO

CH2Cl22. TBAF

OO

S

N

HO

anti > 95

OO

HO

CHO

CHOPhCH2O

O

OH

PhCH2O

O

OH

OCH2PhOH

OCO2Ph

S

N

Page 30: 1.  Metalation of  p -Excessive Heteroaromatics

Metalation and DoM Reactivity of Methyl Substituted Oxazoles and Thiazoles

Metalation and DoM Reactivity of Methyl Substituted Oxazoles and Thiazoles

N

X CH3O2C

X = O, SLDA or n-BuLi

-78 °C or 0 °C

N

S PhH3C

-78 °Cn-BuLi

O2C

N

S PhO2C

H3C

LDA-30 °C

N

X CH3H3C

n-BuLi / -78 °C

O2C

X = O, SLDA or n-BuLi

various tempmixtures

N

X CH3H3C

Et2NOC

only

X = O, S

Page 31: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of Aminoisoxazoles

N O

MeBocHN

N O

MeBocN

N O

MeBocHN

25 °C

E+

25 °C

LiLi E

N O

NHBocMe

N O

NHBocMes-BuLi / TMEDA

- 50 °C

E+

25 °C

E

E+ E yield (%)

CO2 then CH2N2MeIEtIallyl bromideTMSClDMFbenzyl bromidePhSSPh

CO2MeMeEtallylTMSCHObenzylSPh

8192929750776567

E+ E

CO2 then CH2N2MeI

CO2Me (80%)MeI (76%)

n-BuLi

Page 32: 1.  Metalation of  p -Excessive Heteroaromatics

DoM Reactivity of 1-Substituted 1,2,4-Triazoles

N

NN

n-Bu

N

NN

n-C8H17

N

NN

N

NN

N

NN

N

A = 1. BuLi 2. E+

B = 1. BuLi 2. E+

3. BuLi 4. E+

C = 1. BuLi (2 eq) 2. E+ (2 eq)D = 1. BuLi (2 eq) 2. E+ (1 eq)

3. H2OE = 1. BuLi (3 eq) 2. E+ (1 eq)

3. H2O

A A A A

A

N

NN

n-C8H17

B

N

NN

B

N

NN

C,D

N

NN

C,D

N

NN

E

N

N

B

N