1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt...

25
1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1 , Walter G. Chapman 1 Collaborators: Colin A. Zelt 2 , Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular Engineering 2 Dept. of Earth Science Rice University, Houston, TX, 77005 Consortium on Processes in Porous Media, 15th, April 26, 2011 Rice University, Houston Seismic Characteristics in Marine Hydrate Systems

Transcript of 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt...

Page 1: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

1

Guangsheng Gu1

Advisors: George J. Hirasaki1, Walter G. Chapman1

Collaborators: Colin A. Zelt2, Priyank Jaiswal2

1 Dept. of Chemical & Biomolecular Engineering2 Dept. of Earth Science

Rice University, Houston, TX, 77005

Consortium on Processes in Porous Media, 15th, April 26, 2011 Rice University, Houston

Seismic Characteristics in Marine Hydrate Systems

Page 2: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

2

• Stable at high pressure and low temperature, typically in deep marine sediments or in permafrost environments

What is Gas Hydrate

• Crystalline compounds, with gas molecules (e.g. CH4, C2H6) captured in water molecular cages

• Dissociation:

1m3 methane hydrate = 168 m3 CH4 + 0.8 m3 H2O

Page 3: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

3

Why Study Hydrates?

World-wide distribution; huge potential amount, as energy resource

Geohazards -Submarine slope failure

Influence on global climate change

T.S. Collett, Offshore Technol. Conf. (OTC) 2008.

Page 4: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

4

Major Seismic Characteristics

• Used to identify hydrates in marine sediments

• Bottom Simulating Reflector (BSR)

• Seismic Blanking in Lateral Strata

• Wipeout in Gas Chimeny

Page 5: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

5

Bottom Simulating Reflector (BSR)

A strong reflector below seafloor Parallel to the seafloor Indicating the abrupt transition from hydrate to free gas phase below In good accordance with 3-phase equilibrium of a pure-methane

system

Taylor et al., 1992; M.W. Lee et al, 2001

Hydrate or Gas Saturation

Abrupt Change

Page 6: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

6

Seismic Blanking in Lateral Strata

• Hydrate accumulation induces blanking

Page 7: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

7

Seismic Blanking

MJ. Hornbach, WS. Holbrook, et al., Geophysics, v. 68, n. 1, 92–100,2003.

Page 8: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

8

Seismic Blanking

• Weak reflection in seismic profiling:

R < RBSR/10

Typically R < 0.02

Page 9: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

9

Geologic Setting

1 ,1 ,1 ,1 1 ,1 1, , , , , ,H W V pS S S V Z

Layer 1

Layer 2 (shale/clay) 2 ,2 ,2 ,2 2 ,2 2, , , , , ,H W V pS S S V Z

In Reflection

12

12

ZZ

ZZR

Reflection Coefficient:

12

22

ZZ

ZT

Transmission Coefficient:

Page 10: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

1010

Estimation of Acoustic Properties

Revised from the Time-average Equation (Pearson et al., 1983).

Average P-wave Velocity:

Average Density:

phase i =w,H,V

Page 11: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

1111

Intrinsic Properties of Phases

Component Vp (m/s) (kg/m3)

Sea Water (w) 1500 1030

Hydrate (H) 3300 900

Mineral1 (sand) 200 ~ 2000 2500

Mineral2 (diatomite) 2000 2000

Reference Mineral (shale/clay) 2000 ~ 2400 2600

Parameter Value

Porosity1 (in sand layer) 0.2 ~ 0.3

Porosity2 (in shale layer) 0.2~0.7

Sh 0~1

Table 1: Acoustic properties of components

Table 2: Porosity and saturation ranges

Acoustic velocities from W.J. Winters and W.F. Waite (2007); Sloan (2007), etc..Nick Barton, Rock Quality, Seismic Velocity, Attenuation and anisotropy, Taylor & % Francis Group, 2007, p. 12.

The ranges of porosity were obtained from Hirasaki (lecture note, 2006), Jenyon (2006), Magara (1980).

Page 12: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

12

(Case 1) Impossible to be blanking

BlankingRange

0 0.2 0.4 0.6 0.8 12.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4x 10

6

Sh, %

Ave

rage

Im

pe

dan

ce,

kg/(

m2 *s)

Average Impedance in Sand Layer

sand

= 0.3 shale

= 0.5

Vpsand

= 1000 Vpshale

= 2400

Sand Layer

Shale Layer

Page 13: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

13

(Case 2) Possible to be blanking

BlankingRange

0 0.2 0.4 0.6 0.8 13.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9x 10

6

Sh, %

Ave

rage

Im

pe

dan

ce,

kg/(

m2 *s)

Average Impedance in Sand Layer

sand = 0.3

shale = 0.5

Vpsand = 1500 Vpshale = 2400

Sand Layer

Shale Layer

Page 14: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

14

(Case 3 ) Impossible to be blanking

BlankingRange

0 0.2 0.4 0.6 0.8 13.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5x 10

6

Sh, %

Ave

rage

Im

pe

dan

ce,

kg/(

m2 *s)

Average Impedance in Sand Layer

sand

= 0.3 shale

= 0.5

Vpsand

= 2000 Vpshale

= 2400

Sand Layer

Shale Layer

Page 15: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

15

Reflection Coeffiecient

Layer porosity Vp (m/s) Density (kg/m3)Layer 1 (quartz) 0.3 1000 2650

Layer 2 (Clay/Shale) 0.4~0.7 2400 2600

Blanking region

-0.26

-0.26-0.24

-0.24

-0.24-0.22

-0.22

-0.22-0.2

-0.2

-0.2-0.18

-0.18

-0.18-0.16

-0.16

-0.16-0.14

-0.14

-0.14-0.12

-0.12

-0.12-0.1

-0.1

-0.1-0.08

-0.08

-0.08-0.06

-0.06

-0.06-0.04

-0.04

-0.04

-0.02

-0.02

-0.02

0

0 0.02

Sh

o

f cl

ay

Reflection Coefficient from A certain layer to Clay Layer

0 0.2 0.4 0.6 0.8 10.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

-0.25

-0.2

-0.15

-0.1

-0.05

0

Just possible to be

blanking

Sh in sand layer

Page 16: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

16

Reflection Coeffiecient

Layer porosity Vp (m/s) Density (kg/m3)Layer 1 (quartz) 0.3 1500 2650

Layer 2 (Clay/Shale) 0.4~0.7 2400 2600

Very possible to be blanking

-0.12 -0.1

-0.1

-0.08

-0.08

-0.08

-0.06

-0.06

-0.06

-0.04

-0.04

-0.04

-0.02

-0.02

-0.02

0

0

0

0

0.02

0.02

0.02

0.04

0.04

0.04

0.06

0.06

0.06

0.08

0.08

0.08

0.1

0.1

0.1

0.12

0.12

0.12

0.14

0.14

0.14

0.16

0.16 0.18

Sh

o

f cl

ay

Reflection Coefficient from A certain layer to Clay Layer

0 0.2 0.4 0.6 0.8 10.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

-0.1

-0.05

0

0.05

0.1

0.15

Blanking region

Page 17: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

17

Reflection Coeffiecient

Layer porosity Vp (m/s) Density (kg/m3)Layer 1 (quartz) 0.3 2000 2650

Layer 2 (Clay/Shale) 0.4~0.7 2400 2600

Just Possible to be blanking

-0.02 0

00.02

0.02

0.04

0.04

0.04

0.06

0.06

0.06

0.08

0.08

0.08

0.1

0.1

0.1

0.1

0.12

0.12

0.12

0.14

0.14

0.14

0.16

0.16

0.16

0.18

0.18

0.18

0.2

0.2

0.2

0.2

0.22

0.22

0.22

0.24

0.24

0.24

0.26

0.26 0.280.3

Sh

o

f cl

ay

Reflection Coefficient from A certain layer to Clay Layer

0 0.2 0.4 0.6 0.8 10.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0

0.05

0.1

0.15

0.2

0.25

Blanking region

Page 18: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

18

Different Layer (Diatomite vs. Clay)

Layer porosity Vp (m/s) Density (kg/m3)Layer 1 (Diatomite) 0.65 2000 2000Layer 2 (Clay/Shale) 0.4~0.7 2400 2600

-0.22

-0.2

-0.18

-0.18

-0.16

-0.16

-0.14

-0.14

-0.14

-0.12

-0.12

-0.12

-0.1

-0.1

-0.1

-0.08-0.08

-0.08

-0.08

-0.06

-0.06

-0.06

-0.06

-0.04-0.04

-0.04

-0.04

-0.02

-0.02

-0.02

0

0

0

0.02

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08 0.10.12

0.14

Sh

o

f cl

ay

Reflection Coefficient from Diatomite to Clay Layers

0 0.2 0.4 0.6 0.8 10.4

0.45

0.5

0.55

0.6

0.65

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Blanking region

Very possible to be blanking

Page 19: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

19

Conclusion

Hydrate accumulation in marine sediment is helpful for blanking; Sensitive to parameters and stratum lithology;Hydrate accumulation doesn’t guarantee a blanking.

Page 20: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

20S. Horozal et al., Marine Geology 258: 126–138, 2009.

KIGAM data showing BSR in debris-flow deposits (DFD). BSR is weak and discontinuous. Seismic chimneys look very narrow due to vertical exaggeration (ca. 14×). Seismic chimney, marked by S, is about 820 m wide and 110 m tall above the BSR, forming a rather horizontal zone of amplitude reduction. DFD, debris-flow deposits; THS, turbidite/hemipelagic sediments.

Wipeout in gas chimneyWipe outin vertical columnar regions

Page 21: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

21

gas chimney

Geological Society of America Bulletin, Riedel, 2006.

Northern Cascadia margin near Ocean Drilling Program (ODP) Site 889/890.

Page 22: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

22Riedel, 2006.

Page 23: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

23

chimney

S. Horozal et al., Marine Geology 258: 126–138, 2009.

Page 24: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

24

Mechanisms

• Due to gas bubbles in the GHSZ in the Cascadia Margin (Wood et al., 2002). These gas bubbles may be coated with hydrate that prevents the inflow of water (Riedel et al., 2006).

• Due to a thermal (Wood et al., 2002) or a thermo-chemical effects (Hornbach et al., 2005)

• Due to presence of gas hydrate, and intrinsic acoustic properties in sediments (Chand and Minshull, 2003.).

Page 25: 1 Guangsheng Gu 1 Advisors: George J. Hirasaki 1, Walter G. Chapman 1 Collaborators: Colin A. Zelt 2, Priyank Jaiswal 2 1 Dept. of Chemical & Biomolecular.

25

Acknowledgement• DOE Grant (No. DE-FC26-06NT42960)• Rice University, Hirasaki Group, Chapman Group• Colleagues in Earth Science Department