1 Enhancement of the Two-channel Kondo Effect in Single...

35
7 Ktngtiksktz ul znk Z}u3ingttkr Qutju Kllkiz ot Yotmrk3Krkizxut Hu~ky Lxoznpul H4 Gtjkxy [to|kxyozy ul Hxkskt 764 Gvxor 8669 Iurrghuxgzuxy@ G4 Yinorrkx2 K4 Rkhgtut Nkhxk} [to|kxyozy2 Pkx{ygrks2 Oyxgkr iutj3sgz569698:>

Transcript of 1 Enhancement of the Two-channel Kondo Effect in Single...

  • 1

    Enhancement of theTwo-channel Kondo Effectin Single-Electron Boxes

    Frithjof B. AndersUniversity of Bremen

    10. April 2003

    Collaborators:A. Schiller, E. Lebanon

    Hebrew University, Jerusalem, Israel

    cond-mat/0303248

  • 2

    Contents

    1. Introduction

    • Reminder: one and two-channel Kondo effect• Coulomb Blockade in Quantum Dots• Model: Quantum Box coupled to a reservoir of electrons through a single

    resonant level• Low temperature dynamics

    2. Analytical Treatment

    3. Selection of NRG results

    • Effective capacitance• Low temperature energy scale• Finite charging energy on the resonant level

    4. Conclusion and outlook

  • 3

    Single-Channel Kondo Effect

    Local spin ~Sloc

    band

    Jlocal Spin

    H =∑~kσ

    �~kc†~kσc~kσ− JzszbS

    zloc

    −J⊥

    2

    (s

    +b S−loc + s

    −b S

    +loc

    )

    J < 0: IR divergence∫ xnxn+1

    d�

    �= − ln(x)

  • 3

    Single-Channel Kondo Effect

    Local spin ~Sloc

    band

    Jlocal Spin

    H =∑~kσ

    �~kc†~kσc~kσ− JzszbS

    zloc

    −J⊥

    2

    (s

    +b S−loc + s

    −b S

    +loc

    )

    J < 0: IR divergence∫ xnxn+1

    d�

    �= − ln(x)

    =⇒ Screeningcloud

    ☞ J < 0

    −→ IR Problem☞ for T → 0:

    global singlett

    ☞ ω, T < TK :universality

  • 4

    Two-Channel Kondo Effect

    local spin coupled to two channels

    −+s sSloc

    H =∑~kσα

    �~kc†~kσαc~kσα − J~Sloc

    ∑α

    ~sα

    TK ∝ e− 1Jρband

    ☞ J < 0 −→ IR problem☞ at T = 0: no singlett

    ☞ universality:χ(T ), γ(T ) ∝ log(T/TK) =⇒non-Fermi liquid due to mag. scat-tering

    0.1 1.0 10.0�

    T/TK

    0

    0.5

    1

    1.5

    2

    TK *

    χ(T

    )

    magnetic susceptibility

    single channel modeltwo channel model

  • 5

    Single-Channel vs Two-Channel Kondo Effect

    Quantity 1-Channel 2-Channel

    Modell

    band

    Jlocal Spin

    band

    band

    JIsospin (Charge)

    Fixed point Fermi-liquid non-Fermi liquid

    J →∞ J = 1

    S(T = 0) 0 12 ln(2)

    χ(T ) ∝ 1TK ∝ −1TK

    ln(T/TK)

    C(T ) ∝ TTK ∝ −TTK

    ln(T/TK)

  • 6

    Charging of a Quantum Box: the Coulomb-Blockade

    quantum

    V

    boxgaselectron

    b

    Q-Box:∆E � tb, T, TK, D

    Ec = e2/C0

    -1 0 1

    N

    Ebox

    -1 0 1

    N

    Ebox

    1/2 3/2 5/2

    VC0/e

    1

    2

    3

    /e

    Ĥc = Q̂2

    2C0+ VbQ̂

  • 6

    Charging of a Quantum Box: the Coulomb-Blockade

    quantum

    V

    boxgaselectron

    b

    Q-Box:∆E � tb, T, TK, D

    Ec = e2/C0

    -1 0 1

    N

    Ebox

    -1 0 1

    N

    Ebox

    1/2 3/2 5/2

    VC0/e

    1

    2

    3

    /e

    Ĥc = Q̂2

    2C0+ VbQ̂

    tb

    gaselectron quantum

    V

    box

    b

    Question:effectivecapacitancefor tb 6= 0?Nature of thefixed point?

  • 7

    Quantum Dots und Quantum Boxes

    Berman et. al. PRL 81, 161 (1999)

  • 7

    Quantum Dots und Quantum Boxes

    Berman et. al. PRL 81, 161 (1999)

    Hbox =∑kσ

    �Bkσc†BkσcBkσ +

    e2

    2C0

    (Q̂/e−Ng

    )2; Ng = VbC0/e

  • 7

    Quantum Dots und Quantum Boxes

    Berman et. al. PRL 81, 161 (1999)

    Hbox =∑kσ

    �Bkσc†BkσcBkσ +

    e2

    2C0

    (Q̂/e−Ng

    )2; Ng = VbC0/eH =

    α=L,B∑kσ

    �αkσc†αkσcαkσ+Ec

    (Q̂/e−Ng

    )2+ tB

    ∑σ

    {c†B0σcL0σ + c

    †L0σcB0σ

    }

  • 8

    Problem: Charging of the Box

    t Ec(N̂B −Ng)2

  • 8

    Problem: Charging of the Box

    t Ec(N̂B −Ng)2

    N̂tot = N̂L + N̂B

  • 8

    Problem: Charging of the Box

    t Ec(N̂B −Ng)2

    N̂tot = N̂L + N̂B

    = N̂L − N̂B + 2N̂B

  • 8

    Problem: Charging of the Box

    t Ec(N̂B −Ng)2

    N̂tot = N̂L + N̂B

    = N̂L − N̂B + 2N̂B

    T̂ z = Ntot/2 =12

    N̂L − N̂B︸ ︷︷ ︸τzc

    + N̂B︸︷︷︸τzbox

    T̂ z = τzc + τzbox

  • 8

    Problem: Charging of the Box

    t Ec(N̂B −Ng)2

    N̂tot = N̂L + N̂B

    = N̂L − N̂B + 2N̂B

    T̂ z = Ntot/2 =12

    N̂L − N̂B︸ ︷︷ ︸τzc

    + N̂B︸︷︷︸τzbox

    T̂ z = τzc + τzbox

    t

    View τzbox as new degree of freedom which keeps trace of how manyelectrons are on the box =⇒ see talk by E. Lebanon

  • 9

    Low Temperature Dynamics

    H =∑α=L,B

    ∑k,σ

    �kαc†αkσcαkσ +

    ∑σ

    tb{c†0Bσc0Lσ + c

    †0Lσc0Bσ

    }+ Ec(n̂B −N)2

    • if Ec � kBT : only < n|N̂B|n >= n0, n0 + 1 are possible☞ Mapping: τ zbox = 1/2 Isospin represents NB = n0, n0 + 1 (Matveev 91)

    ☞ replace Hc by H ′c = −τzboxeV , V = 2EC∆N/e =

    CbC Vb

  • 9

    Low Temperature Dynamics

    H =∑α=L,B

    ∑k,σ

    �kαc†αkσcαkσ +

    ∑σ

    tb{c†0Bσc0Lσ + c

    †0Lσc0Bσ

    }+ Ec(n̂B −N)2

    • if Ec � kBT : only < n|N̂B|n >= n0, n0 + 1 are possible☞ Mapping: τ zbox = 1/2 Isospin represents NB = n0, n0 + 1 (Matveev 91)

    ☞ replace Hc by H ′c = −τzboxeV , V = 2EC∆N/e =

    CbC Vb

    H =∑k,σα

    �kαc†αkσcαkσ +

    ∑σ

    tb{c†0Bσc0Lστ

    ++ c

    †0Lσc0Bστ

    −}− τ zboxeV

    =⇒ anisotropic two-channel Kondo model: (Spin, Isospin)→ (channel index α, Spin)

  • 10

    Problem:

    tb

    gaselectron quantum

    V

    box

    b

    • condition: ∆E � TK � Ec

    • problem: TK = tB e−1/(tBρ)

    ☞ 2C Kondo effect might not be observable in semiconductors(Zarand et. al. 2000)

  • 11

    Low-Temperature Model

    gaselectron quantum

    t

    V

    tL

    Ed

    SET

    b

    box

    b

    Gramespacher & Matveev PRL 85, 4582 (2000)

    Large U → local momentregime

    SU(4) symmetry ?poster by K. Le Hur and

    P. Simon

    H =∑k,σα

    �kαc†αkσcαkσ + �d

    ∑σ

    d†σdσ + Und↑nd↓ +

    ∑σ

    tL{c†0Lσdσ + h.c.

    }+∑σ

    tB{c†0Bσdστ

    ++ d

    †σc0Bστ

    −}− τ zboxeV

  • 12

    Analytical Treatment for U = 0

    • Diagonalization of lead plus SET level

    HD

    =∑α=L,B

    ∑σ

    ∫�a†�ασa�ασd�− hSz

    +∑σ

    ∫d�

    ∫d�′

    2J(�, �

    ′)[a†�Bσa�′LσS

    ++ h.c.

    ]J(�, �′) = 2tB

    √ρB(�)ρ

    effL (�

    ′)

    • Limit of large band width ρeffL (�) =1

    π

    ΓL

    (�− �d)2 + Γ2Lwith ΓL = πt2LρL(0)

    Ed

    transistorsingle electronquantum box

    ΓL

    Per. RG in weak coupling (tB/tL � 1): TK = tB√π

    2e−π

    2

    4tLtB

  • 13

    Analytical Treatment for PH-Asymmetry

    Definition:

    δQ(V ∗) = Q(V ∗)− 1/2 = 〈τzbox〉(V ∗) = 0

    Poor man’s scaling

    V ∗(�d) = −(ΓB/π) ∗ [1 + 2 ∗ ln(0.5 +D/2|�d|)]

  • 13

    Analytical Treatment for PH-Asymmetry

    Definition:

    δQ(V ∗) = Q(V ∗)− 1/2 = 〈τzbox〉(V ∗) = 0

    Poor man’s scaling

    V ∗(�d) = −(ΓB/π) ∗ [1 + 2 ∗ ln(0.5 +D/2|�d|)]

    transistorsingle electronquantum box

    EdΓL

  • 14

    Effective Capacitance of the Quantum Box

    10−7

    10−5

    10−3

    10−1

    101

    T/TK

    0

    0.2

    0.4

    0.6

    0.8

    C(V

    B,T

    )kBT

    K/e

    2

    0

    0.01

    0.03

    0.1

    0.3

    1

    ΓL/D = 0.0157

    ΓB/D = 0.0157

    TK/D = 0.0063

    → TK/ΓB ≈ 0.4

    SETLEAD Q−BOX 0

    dε = 0

    C(T ) = −1

    20TKlog

    (T

    TK

    )+ b

  • 15

    Kondo Temperature

    0 2 4 6 8 10

    (ΓL/ΓB)1/2

    10−12

    10−10

    10−8

    10−6

    10−4

    10−2

    100

    k BT

    K

    � /D

    (2ΓB/D)1/2

    exp[−π2(ΓL/ΓB)1/2

    /4]

    NRG: Ns=1400

    NRG: Ns=1500

    NRG: Ns=2300

    ΓL/D = 0.098

    Weak coupling RG

    TK = tB

    √π

    2e−π

    2

    4tLtB

  • 16

    Kondo Temperature

    tL constant

    0 0.1 0.2 0.3 0.4 0.5

    (2ΓB/πD)1/2

    0

    0.5

    1

    1.5

    2

    k BT

    K/ Γ

    L

    tB constant

    0 0.05 0.1 0.15 0.2

    (2ΓL/πD)1/2

    0

    0.2

    0.4

    k BT

    K/Γ

    B

    ΓB/D=0.0039

  • 17

    Single-Electron-Transistor: �d 6= 0

    10−7

    10−5

    10−3

    10−1

    101

    T/TK

    0

    0.25

    0.5

    0.75

    1

    C(V

    2CK,T

    )kBT

    K/e

    2

    −1.75 −1.5 −1.25 −1

    eVB/�ΓL

    −0.3

    −0.2

    −0.1

    0

    0.1

    −δQ

    (VB,T

    )/e

    εd=ΓL=ΓB=0.01D

    −0.8 −0.6 −0.4 −0.2 0

    εd/D

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    eV*/

    D

    1600 states

    1400 states

    (2ΓB/πD)ln[1+D/|εd|]

    −0.1 −0.05 0

    ΓL/D=ΓB/D=0.01

    0

    0.01

    0.02

    εd

    LEAD Q−BOX 0

    SET Poor man’s scalingV∗(�d) = −(ΓB/π) ∗ [1 + 2 ∗ ln(0.5 +D/2|�d|)]

  • 18

    Coulomb-Blockade on the SET ( �d = −U/2)

    ΓB/ΓL = 0.36

    10−4

    10−3

    10−2

    10−1

    10� 0

    10� 1

    10� 2

    T/TK

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    TKC

    eff

    Ed=−U/2, ΓB/�ΓL=0.36

    U/ΓL=1U/ΓL=2U/ΓL=4U/ΓL=6U/ΓL=8U/ΓL=16

    0�

    10 20 30 40U/ΓL

    10−4

    10−3

    10−2

    10−1

    100

    TK

    10−4

    10−3

    10−2

    10−1

    100

    101

    T/TK

    0.0

    0.5

    1.0

    1.5

    2.0

    C(0

    ,T)k

    BT

    K/e

    2

    00.0250.050.10.150.2

    U/D

    ΓL/D=ΓB/D=0.0039

  • 18

    Coulomb-Blockade on the SET ( �d = −U/2)

    ΓB/ΓL = 0.36

    10−4

    10−3

    10−2

    10−1

    10� 0

    10� 1

    10� 2

    T/TK

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    TKC

    eff

    Ed=−U/2, ΓB/�ΓL=0.36

    U/ΓL=1U/ΓL=2U/ΓL=4U/ΓL=6U/ΓL=8U/ΓL=16

    0�

    10 20 30 40U/ΓL

    10−4

    10−3

    10−2

    10−1

    100

    TK

    10−4

    10−3

    10−2

    10−1

    100

    101

    T/TK

    0.0

    0.5

    1.0

    1.5

    2.0

    C(0

    ,T)k

    BT

    K/e

    2

    00.0250.050.10.150.2

    U/D

    ΓL/D=ΓB/D=0.0039

    0 0.05 0.1 0.15 0.2 0.25U/D

    10−6

    10−5

    10−4

    10−3

    10−2

    TK/D

    1000 2000 3000N

    0

    2

    4

    6

    103 T

    K/D

    ΓL/D=ΓB/D=0.0039

    particle-hole symmetry

  • 19

    Energy Flow: Symmetric case

    0 10 20 30 400

    0.5

    1

    1.5

    2

    U=0U=20Γ

  • 20

    Coulomb-Blockade on the SET ( �d = −U/2)

    0.5 0.5

    1 1

    1.5 1.5

    ΓL/ΓB=1

    10−11

    10−9

    10−7

    10−5

    10−3

    10−1

    kBT/D

    0 0

    0.5 0.5

    1 1

    1.5 1.5ΓL/ΓB=16

    0.5

    1

    1.5

    C(0

    ,T)k

    BT

    K/e

    2

    ΓL/ΓB=4

    0.5

    1

    1.5

    χ(T

    )/χ(

    0)

    ΓL/D = 0.0157, U/D = 0.3, λ = 2.3, N = 2300

    particle-holesymmetry:�d = −U/2

    andsymmetric bands

    Two Kondo-effectsSET: single

    channelQuantum Box:two-channel

  • 21

    Coulomb-Blockade on the SET ( �d = 0, U = 6)

    1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10T

    0

    0.5

    1

    1.5

    2

    Cef

    f(T

    )/e2

    VB=-1.22

    VB=-1.23

    VB=-1.23555

    VB=-1.25

    VB=-1.26

    tL=t

    B=0.1779, U=6, D=20, ε

    d=0 ph asymmetry:

    �d = 0, U/D = 0.3

  • 22

    Conclusion and Outlook

    • The charging of a quantum box, coupled to a lead by tunneling through a single reso-nant level can be solve exactly by Wilson’s NRG for arbitrary parameters

    • The degeneracy point is governed by a two-channel Kondo fixed point• The associated Kondo scale is enhanced up to resonant level width close to unitary

    transmission• The Coulomb-blockade on the SET generates a second Kondo scale, the magnetic

    Kondo scale• We find that the two-channel fixed point is stable upon increasing U for �d = 0 and�d = −U/2

    Outlook• The problem can be solved with NRG away from the degeneracy point for arbitrary

    charging energy Ec• The model is under investigation in the parameter regime suggested by Y. Oreg and

    D. Goldhaber-Gordon

  • 23

    Numerical Renormalization Group Method

    • Logarithmic discretisation of the energy mesh [D 1λn+1

    , D 1λn ], n = 0, 1 · · ·☞ logarithmically divergent terms constant on each intervall

    Λ0Λ−1Λ−20−Λ −Λ−1 −Λ−2 0• exact mapping of the Hamiltonian onto a semi-infinite chain:

    (Wilson 1975, Krishnamurty et. .al 80)

    HN−1

  • 24

    Numerical Renormalization Group Method

    ☞ Recursion relation:

    HN−1

    HN =√λHN−1 +

    ∑ασ

    ξN−1[c†N−1ασcNασ + c

    †NασcN−1ασ]

    ☞ If all eigenstates of HN−1 are known, i. e. HN−1|L〉 = EL|L〉, the matrix-elementsof HN

    〈γ′L′|HN |γL〉 = ELδLL′δγγ′ +∑ασ

    ξN−1〈γ′L′|c†N−1ασcNασ + c†NασcN−1ασ|γL〉

    can be calculated, and HN diagonalized

    TitelContentsSingle Channel Kondo EffectTwo-Channel Kondo Effecttable Two channel Kondo EffektCharging of a Quantum Box: the Coulomb-BlockadeExperiment und HamiltonianProblem: Charging of the BoxLow temperature dynamicsProblem with original modellLow-Temperature ModelAnalytical Treatment U=0Analytical Treatment PH ass. U=0Effektive Kapazität der QuantenboxKondotemperaturKondotemperatur IISingle-Elektron Transistor Ed >0Coulomb-Blockade: finite UCoulomb-Blockade: finite U two-kondo-effectsCoulomb-Blockade: finite U two-kondo-effectsConclusionSymmertic Energy FlowNRGNRG II: Recursion