1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

115
1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals

Transcript of 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Page 1: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

1

EENGR 3810 Chapter 3

Analysis and Transmission of Signals

Page 2: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

2

Chapter 3 Homework

3.1-4b, 3.1-5b, 3.1-6b, 3.1-7b, 3.2-2,

3.3-4b, 3.3-7b

Page 3: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Chapter 3 Homework Continued

RL Low-Pass Filter Problem:

a. Determine the transfer function of the filter.

b. Determine the Matrix for Bode Plot.

c. Build the Bode Plot Program (MATLAB Software).

d. Make the Bode Plot.

3

L = 10mH

R = 1k

Page 4: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Chapter 3 Homework Continued

RC High-Pass Filter Problem:

a. Determine the transfer function of the filter.

b. Build the Bode Plot Program (MATLAB Software).

c. Make the Bode Plot.

4

Page 5: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Active Filter Problem

Make a Bode Plot of the Active Filter shown below using MATLAB.

5

Page 6: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Discrete Fourier Transform (DFT) Problem 1

Estimate the continuous Fourier transform of the signal: g(t) = 4e-6t.

6

Page 7: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Discrete Fourier Transform (DFT) Problem 2

Estimate the continuous Fourier transform of the signal: g(t) = 6te-3t

7

Page 8: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Inverse FFT Problem

Estimate the inverse Fourier transform of G() = 6/(3+J)

8

Page 9: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

9

APeriodic Signals Representation by Fourier Integral

• Let G() = the direct Fourier transform of g(t) and g(t) be the inverse Fourier transform, we have the following:

Page 10: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

10

Example 1 of Direct Fourier Transform Find the Fourier transform of the signal g(t) shown below:

Page 11: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

11

Example 2 of Direct Fourier Transform• Find the Fourier transform of the signal g(t) shown below:

Page 12: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

12

Example 1 of Inverse Fourier Transform

• Find the inverse Fourier transform of the signal G() shown below:

Page 13: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

13

Example 2 of Inverse Fourier TransformFind the inverse Fourier transform of the signal G() shown below:

Page 14: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

14

Unit Gate Functionrect (x)

Page 15: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

15

Unit Gate Functionrect (x/)

Page 16: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

16

Unit Triangle Function

Page 17: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

17

Interpolating Function sinc (x)

Page 18: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

18

Gate Pulse and Its Fourier Spectrum

Page 19: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

19

What is the Fourier transform of a (T-6) Gate pulse

Page 20: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

20

Time Scaling

The scaling property states that time compression of a signal results in its spectral expansion, and time expansion of the signal results in a spectral compression.

Page 21: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

21

Time Shifting

This shows that delaying a signal by t0 seconds does not change its magnitude. The phase spectrum is

changed by -t0.

Page 22: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

22

Time Shifting

(From Page 92)

From Table 3.1

= G()

Page 23: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

23

Frequency Shifting

The signal’s spectrum is shifted by = 0

Page 24: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

24

Frequency Shifting

G() = 2 g(t) cos 0t

= g(t) /2

= G() /2

Page 25: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

25

Page 26: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Exponential Form of Fourier Series

26

Where

f(t)e dt = (an – jbn) / 2 = An/2-n-jn0t

jn0t

Cn = 1/T

e

e

-jn0te

= cos 0t + jsin t

= cos 0t - jsin t

sin 0t =

cos 0t =jn0te -jn0t+ e

2

jn0te -jn0t- e

2j

f(t) = Cnejn0t

Page 27: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Fourier Symbols

• G() Is used in this book and F() is used in most Books. Thus, F() = G() for these problems.

• g(t) Is used in this book and f(t) is used in most Books. Thus, f(t) = g(t) for these problems.

27

Page 28: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Calculating the Fourier Transform F()

If f(t) = 0, t 0 and f(t) = te-at , t 0, a 0

Find: F()

28

Page 29: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Calculating the Fourier Transform F()

If f (t) = -A, -/2 t 0 and f (t) = A, 0 t /2

Calculate the Fourier Transform F().

29

Page 30: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Calculating the Inverse Fourier Transform

If F() = 0, - -3; F() = 4, -3 -2; F() = 1, , -2 2;

F() = 4, 2 3; and F() = 0, 3 0 Find the Inverse Fourier Transform f(t).

30

Page 31: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Numerical Computation of Fourier Transform:Discrete Fourier Transform (DFT)

• We have to use the samples of g(t) to compute G(), the Fourier transform of g(t).– G() must be at some finite number of

frequencies.– Thus, we can only compute samples of G().

• DFT can be computed by the FFT Algorithm – Developed by Tukey and Cooley in 1965.– Known as the Fast Fourier Transform (FFT)

31

Page 32: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

FFT Example 1To Illustrate the FFT, consider the problem of estimating the continuous Fourier transform of the signal: g(t) = 2e-3t.

Analytically, the Fourier Transform is: G() = 2/(3+J)

% This program computes the Fourier Transform Approximation of g(t) = 2e-3t

diary EENG3810.dat

N= 128; % choose a power of 2 for speed

t = linspace(0,3,N); % time points for function evaluation

Fa = 2*exp(-3*t); % evaluate function, minimize aliasing: f(3)- 0

Ts = t(2)- t(1); % the sample period

Ws = 2*pi/Ts ; % the sampling frequency in rad/sec

F = fft(Fa) ; % compute the fft

Fc = fftshift(F)*Ts ; % shift the scale

W = Ws*(-N/2 : (N/2) -1)/N; % frequency axis

fa = 2./(3 + j*W) ; % analytical Fourier Transform

plot(W,abs(Fa),W,abs(Fc),'o') % generate plot, 'o' marks fft

xlabel('Frequency,Rads/s')

ylabel('F(\omega)')

title('Fourier Transform Approximation’)

diary

32

Page 33: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Example 1 FFT Plot

33

Page 34: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

FFT Example 2

Estimate the continuous Fourier transform of the signal: g(t) = 4te-3t.

% This program computes the Fourier Transform Approximation

diary EENG3810b.dat

N= 128; % choose a power of 2 for speed

t = linspace(0,3,N); % time points for function evaluation

Fa = 4*t.*exp(-3*t); % evaluate function, minimize aliasing: f(3)- 0

Ws = 2*pi; % the sampling frequency in rad/sec

F = fft(Fa) ; % compute the fft

Fc = fftshift(F)*Ts ; % shift the scale

W = Ws*(-N/2 : (N/2) -1)/N; % frequency axis

plot(W,abs(Fa),W,abs(Fc),'o') % generate plot, 'o' marks fft

xlabel('Frequency,Rads/s')

ylabel('F(\omega)')

title('Fourier Transform Approximation')

diary

34

Page 35: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Example 2 FFT Plot

35

Page 36: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Inverse FFT Example 1Estimate the inverse Fourier transform of G() = 2/(3+J)

% This program computes the Inverse Fourier Transform Approximation

diary EENG3810.dat

N= 128; % choose a power of 2 for speed

t = linspace(0,3,N); % time points for function evaluation

Fa = 2./(3 + j*W) ; % evaluate function, minimize aliasing: f(3)- 0

Ts = t(2)- t(1); % the sample period

Ws = 2*pi/Ts ; % the sampling frequency in rad/sec

F = ifft(Fa) ; % compute the fft

W = Ws*(-N/2 : (N/2) -1)/N; % frequency axis

plot(W,abs(Fa)) % gnerate plot, 'o' marks fft

xlabel('Frequency,Rads/s')

ylabel('F(t)')

title('Inverse Fourier Transform Approximation')

diary36

Page 37: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Inverse FFT Example 1

37

Page 38: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

38

Passive Filters• Any combination of passive (R, L, and C) and or

active (transistor or amplifier) elements designed to select or reject a band of frequencies is called a filter

• There are two classifications of filters– Passive – composed of series or parallel

combinations of R, L, and C elements– Active – employ active devices such as

transistors and operational amplifiers in combination with R, L, and C elements

• Four broad categories of filters are: low-pass, high-pass, pass-band, and band-reject

Page 39: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Frequency Bands.

39

Page 40: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

40

R-L Low-Pass Filter (Cut-off Frequency)

C = 2fC = R/L

fC = Cut-off Frequency

fC = R / (2L)

XL = jC

Page 41: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

41

R-L Low-Pass Filter

A plot of the magnitude of Vo versus the frequency results in the above curve

fC = R / (2L)

Page 42: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

42

R-L Low-Pass Filter(Transfer Function - H(s))

Vo(s) = (R / R +sL)ViH(s) = Vo / Vi = R / (R + sL)H(s) = (R/L) / (s + RL)

C = R/LH(s) = C / (s + C)

s

Page 43: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

43

R-C Low-Pass Filter (Cut-off Frequency)

XC = 1/jC

C = 2fC = 1/RC

Page 44: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

44

R-C Low-Pass Filter

A plot of the magnitude of Vo versus the frequency results in the above curve

Page 45: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

45

R-C Low-Pass Filter(Transfer Function – H(s))

V0 = (1/sC) / (R + 1/sC)Vi

H(s) = V0 / Vi = (1/sC) / (R + 1/sC)H(s) = 1 / (sRC + 1)H(s) = (1 / RC) / [s + (1/RC)]C = 1/RCH(s) = C / (s + C)

1/s

Page 46: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

46

Any Low-Pass Filter (Transfer Function – H(s))

H(s) = C / (s + C)

For R-C Low-Pass Filter C = 1/RC

For R-L Low-Pass Filter C = R/L

Page 47: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

47

R-L High-Pass Filter (Cut-off Frequency)

C = 2fC = R/L

fC = Cut-off Frequency

fC = R / (2L)

Page 48: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

48

R-L High-Pass Filter

A plot of the magnitude of Vo versus the frequency results in the above curve.

fC = R / (2L)

Page 49: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

49

R-L High-Pass Filter(Transfer Function – H(s))

sL

V0 = (sL) / (R + sL)Vi

H(s) = Vo / Vi = (sL) / (R + sL)H(s) = s / (R/L +s)H(s) = s / s + R/L)H(s) = s / (s + C)

C = R/L

Page 50: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

50

RC High-Pass Filter (Cut-off Frequency)

C = 2fC = 1/RC

Page 51: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

51

R-C High-Pass Filter

A plot of the magnitude of Vo versus the frequency results in the above curve.

Page 52: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

52

R-C High-Pass Filter(Transfer Function – H(s))

V0 = R / (R + 1/sC)Vi

H(s) = Vo / Vi = R / (R + 1/sC)H(s) = RsC / RsC + 1H(s) = s / [s + (1/RC)]H(s) = s / (s + C)

C = 1/RC

Page 53: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

53

Any High-Pass Filter (Transfer Function – H(s))

For R-C High-Pass Filter C = 1/RC

For R-L High-Pass Filter C = R/L

H(s) = s / (s + C)

Page 54: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

54

Band-pass and Band-reject Filters

Band-pass and band-reject filters have two cut off frequencies (C1 and C2), a center frequency 0, a bandwidth ,and a quality factor Q.

These quantities are defined as:

0 = [(C1)(C2)]1/2

= C2 - C1

Q = 0 /

Also:

0 = (1/LC)1/2

C1 = - (R/2L) + [(r/2L)2 + (1/LC)]1/2

C2 = (R/2L) + [(R/2L)2 + (1/LC)]1/2

Page 55: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

55

Pass-Band Filters

Pass-band filters can be constructed using a low-pass and a high-pass filter in series.

Page 56: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

56

Pass-Band Filters

Page 57: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

57

RC Pass-Band Filters

Page 58: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

58

Page 59: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

59

Series Resonant Pass-band Filter

Page 60: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

60

Series Resonant Pass-band Filter

0

Page 61: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

61

Series Resonant Pass-band Filter

Page 62: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

62

Series Band-pass Filter

V(s)

sL

L1

1/sC

C1

R1

H(s) = s / (s2 + s + 02)

+

V0

_

H(s) = (R/Ls) / [s2 + (R/Ls) + (l/LC)]

= R/L 02 = 1/LC

Page 63: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

63

Parallel Resonant Pass-band Filter

Page 64: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

64

Parallel Pass-band Filter

0Vi

R

C L +

V0

_

1/s s

H(s) = (s/RC) / [s2 + (s/RC) + (1/LC)]

H(s) = s / s2 + s + 02

= 1/RC 02 = 1/LC

Page 65: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

65

Series or Parallel Pass-band Filter

H(s) = s / s2 + s + 02

Page 66: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

66

Band-reject Filter

Page 67: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

67

Band-reject Filter

Page 68: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

68

Band-reject Filter(using a series resonant circuit)

Band-reject Filter

Page 69: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

69

Series Band-reject Filter

Vi

R

C

L

+

V0

_

s

1/s

H(s) = [s2 + (1/LC)] / [s2 + (R/Ls) + (l/LC)]

H(s) = (s2 + 02 ) / (s2 + s + 0

2)

= R/L 02 = 1/LC

Page 70: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

70

Band-reject Filter (Using a Parallel Resonant Network)

Band-reject Filter

Page 71: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

71

Parallel Band-reject Filter

Vi R

C

L

H(s) = [s2 + (1/LC)] / [s2 + (R/Ls) + (l/LC)]

H(s) = (s2 + 02 ) / (s2 + s + 0

2)

= R/L 02 = 1/LC

Page 72: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

72

Decibels• The bel, defined as:

• To provide a unit of measure of less magnitude, a decibel is defined:

• The result is the following important equation, which compares power levels P2 and P1 in decibels:

Page 73: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

73

Decibels• Voltage Gain

– Decibels are also used to provide a comparison between voltage levels. By substituting the basic power equation into the equation which compares levels of P2 and P1 in decibels

• Modern VOMs and DMMS have a dB scale designed to provide and indication of power ratios referenced to a standard level of 1mW at 600.

Page 74: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

74

Bode Plots

• The curves obtained from the magnitude and/or phase angle versus frequency are called Bode plots– Through the use of straight-line segments

called idealized Bode plots, the frequency response of a system can be found efficiently and accurately

Page 75: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

75

Bode Plots

• High-Pass R-C Filter– Two frequencies separated by a 2:1 ratio are said to be an octave

apart– For Bode plots, a change in frequency by one octave will result in

a 6-dB change in gain– Two frequencies separated by a 10:1 ratio are said to be a decade

apart– For bode plots, a change in frequency by one decade will result in

a 20-dB change in gain

Page 76: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

76

Bode Plots

Bode plots are straight-line segments because the dB change per decade is constant.At ƒ = ƒc , the actual response curve is 3dB down from Bode plots are straight-line segments because the dB change per decade is constant.At ƒ = ƒc , the actual response curve is 3dB down from the idealized Bode plot, whereas at ƒ = 2ƒc and ƒc/ 2, the actual response curve is 1 dB down from the asymptotic response.The idealized Bode plot, whereas at ƒ = 2ƒc and ƒc/ 2, the actual response curve is 1 dB down from the asymptotic response.

Page 77: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

77

MATLAB Software – Bode Plot Template

n=[0 2];d=[1 2];bode (n,d);w=logspace (-1, 2, 200);[mag,pha]=bode (n,d,w);semilogx (w,20*log10 (mag));gridtitle(‘Bode Plot’)xlabel (‘w (Rad/sec)’)ylabel(‘Decibels (dB)’)

H(s) = 2 / (s + 2)

Page 78: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

78

Bode Plot

10-1

100

101

102

-20

-15

-10

-5

0

5

10Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

X: 2.026Y: -3.066

Page 79: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

79

MATLAB Software For Semi-log Paper

n=[1];

d=[1];

bode (n,d);

w=logspace (0, 4, 200);

[mag,pha]=bode (n,d,w);

semilogx (w,20*log10 (mag));grid

title(‘Bode Plot’)

xlabel (‘w (Rad/sec)’)

xlabel(‘Decibels (dB)’)

Page 80: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

80

Semi-log Paper

10-1

100

101

102

103

104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

Page 81: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

81

RC Low-Pass Filter

F(s) = (1 / RC) / [s + (1/RC)]

F(s) = (83333) / [s + (83333)]

Matrix for Bode Plot:

n=[0 83333];

d=[1 83333];

Page 82: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

82

Bode Plot Program (MATLAB Software)

%%%n=[0 83333];d=[1 83333];bode(n,d);w=logspace(0,6,200);[mag,pha]=bode(n,d,w);semilogx(w,20*log10(mag));gridtitle('Bode Plot')xlabel(‘w (Rad/sec)')ylabel('Decibels (dB)')

Page 83: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

83

Bode Plot

100

101

102

103

104

105

106

-20

-15

-10

-5

0

5

10Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

X: 8.805e+004Y: -3.256

Page 84: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

84

RL High-Pass Filter

R = 5K and L = 3.5 mH

F(s) = s / s + R/L

F(s) = s / s + 1428571

n = [1 0];

d = [ 1 1428571];

Page 85: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

85

Bode Plot Program(MATLAB Software)

%%%n=[1 0];d=[1 1428571];bode(n,d);w=logspace(5,10,200);[mag,pha]=bode(n,d,w);semilogx(w,20*log10(mag));gridtitle('Bode Plot')xlabel(‘w (Rad/sec)')ylabel('Decibels (dB)')

Page 86: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

86

Bode Plot

105

106

107

108

109

1010

-25

-20

-15

-10

-5

0

5

10Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

X: 1.431e+006Y: -3.002

Page 87: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

Active Filters Circuits

87

Page 88: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

88

General Operational Amplifier Circuit

+

Vo

_

X1

Vi

Zf

Zi

H(s) = -Zf / Zi = -K C / (s + C)

C = 1 / R2C

Page 89: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

89

First-order low-pass Filter

+

Vo

_

X1

Vi

R1

R2

C

H(s) = -Zf / Zi = -K C / (s + C)

K = R2 / R1 (Gain)

C = 1 / R2C

Page 90: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

90

First-order low-pass Filter

+

Vo

_

X1

Vi

1

R11

R2

1F

C

H(s) = -K C / (s + C)

K = 1/1 = 1

C = 1 / R2C = 1

H(s) = -1 / (s+1)

Page 91: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

91

First-order low-pass FilterH(s) = -1 /(s+1)

MATLAB Bode Plot Program

n=[0 -1];

d=[1 1];

bode (n,d);

w=logspace (-1, 1, 200);

[mag,pha]=bode (n,d,w);

semilogx (w,20*log10 (mag));grid

title('Bode Plot')

xlabel ('w(Rad/sec)')

ylabel('Decibels (dB)')

Page 92: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

92

First-order low-pass FilterH(s) = -1 /(s+1)

10-1

100

101

-25

-20

-15

-10

-5

0

5

10Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

X: 1.012Y: -3.061

Page 93: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

93

First-order High-pass Filter

+

Vo

_

X1

Vi

1

R11

R2

1F

C

H(s) = -Zf / Zi = -K s / (s + C)

K = R2 / R1 (Gain)

C = 1 / R1C

Page 94: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

94

First-order High-pass Filter

+

Vo

_

X1

Vi

20k

R1200k

R2

0.1uF

C

H(s) = -K s / (s + C)

K = 200k / 20k = 10

C = 1 / R1C = 1 / (20K)(0.1uF) = 500

H(s) = -10s / (s+500)

Page 95: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

95

First-order High-pass FilterH(s) = -10s / (s+50)

n=[-10 0];

d=[1 50];

bode (n,d);

w=logspace (0, 4, 200);

[mag,pha]=bode (n,d,w);

semilogx (w,20*log10 (mag));grid

title('Bode Plot')

xlabel ('w(Rad/sec)')

ylabel('Decibels (dB)')

Page 96: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

96

First-order High-pass FilterH(s) = -10s /(s+50)

100

101

102

103

104

-15

-10

-5

0

5

10

15

20

25

30Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

X: 51.11Y: 17.08

Page 97: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

97

Scaling Factors (kf and km)

Scaling in Magnitude:

R‘ = kmR L‘ = kmL C‘ = C / km

Scaling in Frequency: R‘ = R L‘ = L / kf C‘ = C / kf

Scaling in both Magnitude and Frequency:

Magnitude scaling factor km

Frequency scaling factor kf

Page 98: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

98

Pass-Band Filters

Low-pass Filter High-pass Filter Inverting Ampvi v0

H(s) = v0 / vi = - KC2s / [(s + C1)(s + C2)]

H(s) = -C2 / (s+C2) H(S) = -s / (s + C1) H(s) = -Rf / Ri = K

H(s) = - KC2s / [(s2 + (C1 + C2)s + C!C2]

C2 = 1 / RLCL C1 = 1 / RHCH

+

Vo

_

XH

R2

RH1

RH2

CHXi

XL

Vi

RL1 x

RL2

C1

R1

Page 99: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

99

Pass-Band Filters

+

Vo

_

XH 2k

R2

7958

RH17958

RH2

0.2uF

CHXi

XL

Vi

80

RL180

RL2

0.2uFCL

1k

Ri

H(s) = - KC2s / [(s2 + (C1 + C2)s + C!C2]

C2 = 1 / RLCL= 62500 C1 = 1 / RHCH = 628.3 K = 2k/1k = 2

H(s) = - (2 )(62500) s / [(s2 + (628.3 + 62500)s + (628.3)(62500)]

H(s) = -125000s / s2 + 63128.3s + 39268750

Page 100: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

100

Pass-Band Filtersn=[0 -125000 0];

d=[1 63128.3 39268750];

bode (n,d);

w=logspace (0, 7, 200);

[mag,pha]=bode (n,d,w);

f=w/6.283

semilogx (f,20*log10 (mag));grid

title('Bode Plot')

xlabel ('Frequency (Hz)')

ylabel('Decibels (dB)')

Page 101: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

101

Pass-Band Filters

= fC2 - fC1 = 10,000 – 100 = 9,900 Hz

fC1 = 100 Hz fC2 = 10,000 Hz

101

102

103

104

105

-3

-2

-1

0

1

2

3

4

5

6

7Bode Plot

Frequency (Hz)

Dec

ibel

s (d

B)

X: 103.7Y: 3.166

fs

H(s) = -125000s / s2 + 63128.3s + 39268750

Page 102: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

102

Band-reject Filter

+

Vo

_

XH

R2

RH1

RH2

CH

Xi

XL

Vi

RL1

RL2

CL

Ri1

Ri2

C1 = 1 / RLCL C2 = 1 / RHCH

H(s) = K[(s2 + (C1C2)s + C!C2] / [(s + C1)(s + C2)]

Low-pass Filter

High-pass Filter

Inverting Ampvi

v0

H(s) = K[(s2 + C1s + C!C2] / [s2 + (C1 + C2)s +C1C2 ]

Page 103: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

103

Band-reject Filter

+

Vo

_

XH

3k

Rf

1k

RH11k

RH2

0.5uF

CH

Xi

XL

Vi

20k

RL120k

RL20.5uF

CL

1k

Ri1

1k

Ri2

H(s) = -K[(s2 + C1s + C!C2] / [s2 + (C1 + C2)s +C1C2 ]

C1 = 1 / RLCL = 1 / (20k)(0.5uF) = 100 K = 3k / 1k = 3 C2 = 1 / RHCH = 1 / (1k)(0.5uF) = 2000

H(s) = 3[s2 + 100s + 200000] / [s2 + 2100s + 200000]

H(s) = [3s2 + 300s + 600000] / [s2 + 2100s + 200000]

Page 104: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

104

Band-reject Filter

H(s) = [3s2 + 300s + 600000] / [s2 + 2100s + 200000]

100

101

102

103

104

105

-20

-15

-10

-5

0

5

10

15Bode Plot

w(Rad/sec)

Dec

ibel

s (d

B)

= C2 - C1 = 2000 – 100 = 1900 Rads/s

Page 105: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

105

Higher Order Op Amp Filters

n -order operational amplifier filters will provide: a. A sharper transition from pass-band to stop-band. b. A slope of 20n dB/decade.

H(s) for cascaded low-pass filters can be calculated bymultiplying individual transfer functions:

H(s) = (-1)n / (s + 1)n

A low-pass frequency scale factor (kf) is used to place the cutoff

frequency at any value of c desired for a n th-order unity-gain low-pass filter :

kf = c / cn

cn = [(2)1/n – 1]1/2

Page 106: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

106

4 th-order Unity-gain Low-pass Filter(500 Hz Cutoff Frequency and Gain of 10)

+

Vo

_

1384.6

R1

X1

138.46

R2138.46

R3

1uFC1

X2

138.46

R4

138.46

R4

138.46

R3

V1

X2

138.46

R2138.46

R1

1uFC1

X1

1uFC2

X3

138.46

R5138.46

R6

1uFC3

c4 = [(2)1/4 – 1]1/2 = 0.435 rads/s

Kf = 500/0.435 = 7222.39

H(s) = -10 [(7222.39)4 / (s + 7222.39)4]

Page 107: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

107

4 th-order Unity-gain Low-pass Filter(500 Hz Cutoff Frequency and Gain of 10)

H(s) = -10 [(7222.39)4 / (s + 7222.39)4]

Let a = 7222.39 Thus, H(s) = -10 [(a)4 / (s + a)4]

H(s) = -10 [(a)4 / (s + a)4]

H(s) = -10a4 / (s4 + 4as3 + 6a2s2 + 4a3s + a4)

H(s) = -27.2 x 1015 / (s4 + 2.89 x 104s3 + 3.13 x 108s2+ 1.51 x 1012s+ 2.72 x 1015)

Page 108: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

108

Bode Plot

n=[0 0 0 -27.2*10^15];

d=[1 2.89*10^4 3.13*10^8 1.51*10^12 2.72*10^15];

bode (n,d);

w=logspace (2, 4, 200);

[mag,pha]=bode (n,d,w);

f=w/6.283

semilogx (f,20*log10 (mag));grid

title('Bode Plot')

xlabel ('Frequency (Hz)')

ylabel('Decibels (dB)')

Page 109: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

109

Bode Plot

101

102

103

104

10

12

14

16

18

20

22Bode Plot

Frequency (Hz)

Dec

ibel

s (d

B)

X: 500.4Y: 16.96

Page 110: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

110

Second-order Butterworth Filters

+

Vo

_

X1

V1

R1 R2

C1

1u

C2

H(s) = 1/ s + b1s + 1

b1 = 2 / C1 1 = 1 / C1C2

Order of a Butterworth Filter: n = -0.05As / log10 (s / p)

Gain (K) = 20 log10 [1 / (1 + ( / C)2n]

Page 111: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

111

Forth-order Butterworth Filters

From Table 15.1H(s) = 1/ (s2 + 0.765s + 1)(s2 + 1.848s + 1)

Normalizes values for C = 1 rad/s:C1 = 2 / b1 = 2 / 0.765 = 2.61 FC2 = 1 / C1 = 1 / 2.61 = 0.38 FC3 = 2 / b2 = 2 / 1.848 = 1.08 FC4 = 1 / C3 = 1 / 1.08 = 0.924 F

+

Vo

_

X1

Vi

R1 R2

C1

1u

C2

X2X3

R3 R4

C3 2k

R5

1u

C4

1k

R6

Page 112: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

112

Fourth-order Butterworth Filters

Scaling factors for fC = 500 Hz:

kf = 2fC = C =(6.2832)(500) = 3141.6

Km = 1000 if resistors = 1k

Kfkm = 3.1416 x 106

C = Cn / kfkm

C1 = 2.61 / 3.1416 x 106 = 831 nFC2 = 0.38 / 3.1416 x 106 = 121 nFC3 = 1.08 / 3.1416 x 106 = 3.44 nFC4 = 0.924 / 3.1416 x 106 =294 nF

Page 113: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

113

Fourth-order Butterworth Filters

+

Vo

_

X1

Vi

1k

R1

1k

R2

831nF C1

121nF

C2

X2X3

1k

R3

1k

R4

344nF C3 10k

R5

294nF

C4

1k

R6

Scalled up H(s):H(s) = -10 / [(s\kf)2 + 0.765(s/kf) + 1)(s/kf)2 + 1.848(s/kf) + 1)] = -10 / [ (s2/9.87 x106) + = -10 / [(1 x10-7s2 + 2.44 x 10-4s +1)(1 x 10-7s2 + 5.88 x 10-4 + 1)] = -10 / (1 x 10-14s2 + 8.32 x 10-11s3 + 3.33 x 10-7s2 + 8.32 x 10-4s + 1

Page 114: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

114

Bode Plot

n=[0 0 0 0 -10];

d=[1*10^-14 8.32*10^-11 3.43*10^-7 8.32*10^-4 1];

bode (n,d);

w=logspace (2, 4, 200);

[mag,pha]=bode (n,d,w);

f=w/6.283

semilogx (f,20*log10 (mag));grid

title('Bode Plot')

xlabel ('Frequency (Hz)')

ylabel('Decibels (dB)')

Page 115: 1 EENGR 3810 Chapter 3 Analysis and Transmission of Signals.

115

Bode Plot

101

102

103

104

-10

-5

0

5

10

15

20

Bode Plot

Frequency (Hz)

Dec

ibel

s (d

B)

X: 500.4Y: 16.99