1-d ideal chain

35
1-d ideal chain 1 N links =Β± 1 Link 1 Link 2 Link N . . .

description

1-d ideal chain. Link 1. Link 2. N links. Link N. 1-d ideal chain. N links. Part 1. Part 2. Part N. Bath. System. Energy can be exchanged between chain and bath. N links. Part 1. Part 2. Part N. Bath. System. Energy can be moved around bath. N links. Part 1. Part 2. - PowerPoint PPT Presentation

Transcript of 1-d ideal chain

Page 1: 1-d ideal chain

1-d ideal chain

1

N links

𝑠𝑖=Β±1

Link 1

Link 2

Link N

. . .

Page 2: 1-d ideal chain

. . .

Part 1

Bath

Part 2 Part N

1-d ideal chain

2

N links

𝑠𝑖=Β±1

. . .

System

Page 3: 1-d ideal chain

Energy can be exchanged between chain and bath

3

System

N links

𝑠𝑖=Β±1

Bath

. . .

Part 1 Part 2 Part N. . .

Page 4: 1-d ideal chain

Energy can be moved around bath

4

N links

𝑠𝑖=Β±1

Bath

Part 1 Part 2 Part N

. . .

. . .

System

Page 5: 1-d ideal chain

Chain can be crinkled in different ways

5

N links

𝑠𝑖=Β±1

Bath

. . .

Part 1 Part 2 Part N. . .

System

Page 6: 1-d ideal chain

Chain can be crinkled in different ways

6

N links

𝑠𝑖=Β±1

Bath

. . .

Part 1 Part 2 Part N. . .

System

Page 7: 1-d ideal chain

Chain can be crinkled in different ways

7

N links

𝑠𝑖=Β±1

Bath

. . .

Part 1 Part 2 Part N. . .

System

Page 8: 1-d ideal chain

Chain can be crinkled in different ways

8

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 9: 1-d ideal chain

Chain can be crinkled in different ways

9

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 10: 1-d ideal chain

Chain can be crinkled in different ways

10

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 11: 1-d ideal chain

Chain can be crinkled in different ways

11

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 12: 1-d ideal chain

Chain can be crinkled in different ways

12

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 13: 1-d ideal chain

Chain can be crinkled in different ways

13

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 14: 1-d ideal chain

Chain can be crinkled in different ways

14

N links

Bath

. . .

Part 1 Part 2 Part N. . .

System

𝑠𝑖=Β±1

Page 15: 1-d ideal chain

Exploring accessible world configurations equally

15

. . .

. . .

. . .

. . .

. . .

Too much total energy

. . .

Too little total energy

X X

Page 16: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

16

Hamiltonian and partition function

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

Expectation of elongation

...

X

World

...

...

...

...

... X

Page 17: 1-d ideal chain

Hamiltonian

17

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑅

STOP𝑅The animation is oscillating between two states with two values of the system energy e. What are the states and energies?

Full downward extension+1, +1, +1, +1, +1

One upward-directed link+1, +1, +1, -1, +1

e = -5F

e = -3F

R = 5

R = 3

...

X

World

...

...

...

...

... X

Page 18: 1-d ideal chain

Partition function

18

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 ) := βˆ‘πœ€ 𝑖=πœ€π‘€πΌπ‘

∞

π‘Š π‘†π‘Œπ‘† (πœ€π‘– )π‘’βˆ’πœ€π‘–πœ

ΒΏ βˆ‘state1

state 𝑓

π‘’βˆ’πœ€ ( state )

𝜏

𝑠1 ,𝑠2 ,β‹― ,𝑠𝑖 ,β‹― ,𝑠𝑁Particular

-1, +1, +1, +1, +1 -1, +1, +1, -1, +1

...

X

World

...

...

...

...

... X

Page 19: 1-d ideal chain

βˆ‘π‘  1 ,𝑠 2

❑

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 )

𝜏 =π‘’βˆ’πœ€ (+1 ,+1 )

𝜏 +π‘’βˆ’πœ€ (+1 ,βˆ’ 1)

𝜏

+π‘’βˆ’πœ€ (βˆ’ 1 ,+1)

𝜏 +π‘’βˆ’πœ€ (βˆ’ 1 ,βˆ’1 )

𝜏

Partition function

19

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

ΒΏ βˆ‘π‘ 1=Β±1

❑

π‘’βˆ’πœ€ (𝑠1 ,+1 )

𝜏 +π‘’βˆ’πœ€ (𝑠1 ,βˆ’ 1)

𝜏

ΒΏ βˆ‘π‘ 1=Β±1

❑

βˆ‘π‘ 2=Β± 1

❑

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 )

𝜏

...

X

World

...

...

...

...

... X

Page 20: 1-d ideal chain

Partition function

20

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

βˆ‘π‘  1 ,𝑠 2

❑

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 )

𝜏 = βˆ‘π‘ 1=Β±1

❑

βˆ‘π‘ 2=Β± 1

❑

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 )

𝜏

𝑍= βˆ‘π‘ 1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

βˆ‘π‘ π‘=Β± 1

❑

π‘’βˆ’πœ€ (𝑠1 ,β‹― , π‘ π‘βˆ’ 1 , 𝑠𝑁 )

𝜏

...

X

World

...

...

...

...

... X

Page 21: 1-d ideal chain

Partition function

21

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

𝑍= βˆ‘π‘ 1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

βˆ‘π‘ π‘=Β± 1

❑

π‘’βˆ’πœ€ (𝑠1 ,β‹― , π‘ π‘βˆ’ 1 , 𝑠𝑁 )

𝜏

ΒΏ βˆ‘π‘ 1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

βˆ‘π‘ π‘=Β± 1

❑

𝑒𝐹 (𝑠1+β‹―+π‘ π‘βˆ’1+𝑠𝑁 )

𝜏

𝑒𝐹 𝑠1𝜏 ⋯𝑒

𝐹 𝑠𝑁 βˆ’1

𝜏 𝑒𝐹 π‘ π‘πœ

ΒΏ βˆ‘π‘ 1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

𝑒𝐹 𝑠1𝜏 ⋯𝑒

𝐹 π‘ π‘βˆ’1

𝜏 βˆ‘π‘ π‘=Β±1

❑

𝑒𝐹𝑠𝑁

𝜏

...

X

World

...

...

...

...

... X

Page 22: 1-d ideal chain

Partition function

22

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

ΒΏ βˆ‘π‘ 1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

𝑒𝐹 𝑠1𝜏 ⋯𝑒

𝐹 π‘ π‘βˆ’1

𝜏 βˆ‘π‘ π‘=Β±1

❑

𝑒𝐹𝑠𝑁

𝜏

ΒΏ ( βˆ‘π‘ π‘=Β±1𝑒

𝐹 π‘ π‘πœ ) βˆ‘π‘  1=Β±1

❑

β‹― βˆ‘π‘ π‘βˆ’ 1=Β±1

❑

𝑒𝐹 𝑠1𝜏 ⋯𝑒

𝐹 π‘ π‘βˆ’1

𝜏

ΒΏ ( βˆ‘π‘  1=Β±1 𝑒𝐹 𝑠 1𝜏 )β‹―( βˆ‘

π‘ π‘βˆ’ 1=Β± 1𝑒𝐹 𝑠𝑁 βˆ’1

𝜏 )( βˆ‘π‘ π‘=Β±1𝑒

𝐹 π‘ π‘πœ )

...

X

World

...

...

...

...

... X

Page 23: 1-d ideal chain

Partition function

23

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

ΒΏ (βˆ‘π‘ =Β±1

𝑒𝐹 π‘ πœ )

𝑁

=(π‘’πΉπœ +𝑒

βˆ’ 𝐹𝜏 )𝑁

ΒΏ ( βˆ‘π‘  1=Β±1 𝑒𝐹 𝑠 1𝜏 )β‹―( βˆ‘

π‘ π‘βˆ’ 1=Β± 1𝑒𝐹 𝑠𝑁 βˆ’1

𝜏 )( βˆ‘π‘ π‘=Β±1𝑒

𝐹 π‘ π‘πœ )

...

X

World

...

...

...

...

... X

Page 24: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

24

Expectation of elongation

Hamiltonian and partition function

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏...

X

World

...

...

...

...

... X

Page 25: 1-d ideal chain

ΒΏπ‘πœ2 πœ•πœ•πœln (𝑒

𝐹𝜏 +𝑒

βˆ’πΉπœ )𝑁

Expectation of chain energy and downward elongation

25

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

𝑍 (𝜏 )=(π‘’πΉπœ +𝑒

βˆ’πΉπœ )𝑁

βŸ¨πœ€ ⟩=𝜏 2πœ• ln 𝑍 (𝜏 )πœ•πœ

𝑁

ΒΏπ‘πœ2

πœ•πœ•πœ (𝑒

𝐹𝜏 (βˆ’ 𝐹

𝜏2 )+π‘’βˆ’ 𝐹𝜏 ( 𝐹𝜏2 ))

π‘’πΉπœ+𝑒

βˆ’πΉπœ

βŸ¨πœ€ ⟩=βˆ’π‘ πΉπ‘’πΉπœ βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ +𝑒

βˆ’ 𝐹𝜏

...

X

World

...

...

...

...

... X

Page 26: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

βŸ¨βˆ’πΉβˆ‘π‘–=1

𝑁

π‘ π‘–βŸ©= βŸ¨πœ€ ⟩=βˆ’π‘ πΉπ‘’πΉπœ βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ +𝑒

βˆ’ 𝐹𝜏

Expectation of chain energy and downward elongation

26

πœ€ (𝑠1 ,𝑠2 ,β‹― ,𝑠𝑁 )=βˆ’πΉβˆ‘π‘–=1

𝑁

𝑠𝑖

βŸ¨πœ€ ⟩=βˆ’π‘ πΉπ‘’πΉπœ βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ +𝑒

βˆ’ 𝐹𝜏

βˆ’πΉ βŸ¨π‘… ⟩=βˆ’π‘ πΉπ‘’πΉπœ βˆ’π‘’

βˆ’πΉπœ

π‘’πΉπœ +𝑒

βˆ’ 𝐹𝜏

𝑅

...

X

World

...

...

...

...

... X

Page 27: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

Expectation of chain energy and downward elongation

27

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

...

X

World

...

...

...

...

... X

Page 28: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

28

𝑦 (π‘₯ )=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯=0

0 0

0 001 1

1 1

𝑦 (π‘₯ )=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯If x < 0, y(x) < 0

(-)ve (+)ve

If x > 0, y(x) > 0

(-)ve

(+)ve (-)ve

(+)ve

...

X

World

...

...

...

...

... X

Page 29: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

29

(+)ve

(-)ve

𝑑 𝑦𝑑π‘₯

= 𝑑𝑑π‘₯ (𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯ )ΒΏ

(𝑒π‘₯βˆ’π‘’βˆ’π‘₯(βˆ’1)) (𝑒π‘₯+π‘’βˆ’π‘₯ )βˆ’ (𝑒π‘₯βˆ’π‘’βˆ’π‘₯ ) (𝑒π‘₯+π‘’βˆ’π‘₯ (βˆ’1))(𝑒π‘₯+π‘’βˆ’π‘₯ )2

ΒΏ(𝑒π‘₯+π‘’βˆ’π‘₯ ) (𝑒π‘₯+π‘’βˆ’π‘₯)βˆ’ (𝑒π‘₯βˆ’π‘’βˆ’π‘₯ ) (𝑒π‘₯βˆ’π‘’βˆ’π‘₯ )

(𝑒π‘₯+π‘’βˆ’π‘₯ )2ΒΏ

(𝑒π‘₯+π‘’βˆ’π‘₯ )2βˆ’ (𝑒π‘₯βˆ’π‘’βˆ’π‘₯ )2

(𝑒π‘₯+π‘’βˆ’π‘₯ )2

ΒΏ1βˆ’(𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯ )2

=1βˆ’ 𝑦2

...

X

World

...

...

...

...

... X

Page 30: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

30

(+)ve

(-)ve

𝑑 𝑦𝑑π‘₯

=1βˆ’π‘¦ 2>0

𝑑 𝑦𝑑π‘₯

(π‘₯ )=1βˆ’ 𝑦 (π‘₯ )2=10 0

𝑦 2=(𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯ )2

=(π‘Žβˆ’π‘ )2

(π‘Ž+𝑏)2=π‘Ž2βˆ’2π‘Žπ‘+𝑏2

π‘Ž2+2π‘Žπ‘+𝑏2<1

increasing

increasing

0

denominator

den

numerator

num(<1)

...

X

World

...

...

...

...

... X

Page 31: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

31

(+)ve

(-)ve

𝑑 𝑦𝑑π‘₯

=1βˆ’π‘¦ 2

increasing

increasing

𝑑2 𝑦𝑑 π‘₯2

= 𝑑𝑑π‘₯

(1βˆ’ 𝑦2 )

𝑑2 𝑦𝑑 π‘₯2

=0βˆ’2 𝑦 𝑑 𝑦𝑑π‘₯(1βˆ’ 𝑦2 )

(-)ve (+)ve(-), 0, (+)

(+), 0, (-)

x x

...

X

World

...

...

...

...

... X

Page 32: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

32

(+)ve

(-)ve

𝑑 𝑦𝑑π‘₯

=1βˆ’π‘¦ 2

increasing

increasing

𝑑2 𝑦𝑑 π‘₯2

=βˆ’2 𝑦 (1βˆ’ 𝑦2 ) (+), 0, (-)

limπ‘₯β†’+∞

𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯= lim

π‘₯β†’+∞

1βˆ’π‘’βˆ’2π‘₯

1+π‘’βˆ’ 2π‘₯=+1

limπ‘₯β†’βˆ’βˆž

𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯= lim

π‘₯β†’βˆ’βˆž

𝑒2π‘₯βˆ’1𝑒2 π‘₯+1

=βˆ’1

...

X

World

...

...

...

...

... X

Page 33: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

33

increasing

increasing

(+)ve

(-)ve

...

X

World

...

...

...

...

... X

Page 34: 1-d ideal chain

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

34

SaturationUnbiased Partialstretch

PartialstretchSaturation

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯...

X

World

...

...

...

...

... X

Page 35: 1-d ideal chain

𝑦=⟨ 𝑅 βŸ©π‘

=𝑒

𝐹𝜏 βˆ’π‘’

βˆ’ 𝐹𝜏

π‘’πΉπœ+𝑒

βˆ’ 𝐹𝜏

=𝑒π‘₯βˆ’π‘’βˆ’π‘₯

𝑒π‘₯+π‘’βˆ’π‘₯

1-1 0 π‘₯=𝐹 /𝜏

1

-1

𝑦=⟨ 𝑅 βŸ©π‘

Expectation of chain energy and downward elongation

35

Expectation of elongation

...

X

World Hamiltonian and partition function

𝑍 (𝜏 )= βˆ‘state 1

state 𝑓

π‘’βˆ’πœ€ (𝑠1 , 𝑠2 ,β‹― , 𝑠𝑁 )

𝜏

...

...

...

...

... X