1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and...

46
1 © Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC Symmetrix VMAX Systems, and EMC Xtrem Server Products EMC Solutions

Transcript of 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and...

Page 1: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

1© Copyright 2013 EMC Corporation. All rights reserved.

Microsoft SQL Server: Best Practices and Design Guidelines for EMC StorageEMC VNX Family, EMC Symmetrix VMAX Systems, and EMC Xtrem Server Products

EMC Solutions

Page 2: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

2© Copyright 2013 EMC Corporation. All rights reserved.

Agenda

Challenges of SQL Server environments today

SQL Server – Architecture overview– Bandwidth characteristics– Storage sizing and provisioning best practices– Protection– Performance and load generation tools

Summary

Page 3: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

3© Copyright 2013 EMC Corporation. All rights reserved.

Challenges of SQL Server Environments Today Maximizing performance

Simplifying management and provisioning

Ensuring protection and recovery

Optimizing SQL Server in data warehouse configurations

High-speed data analytics

Turning data into insight and action

Increasing user and business requirements

Private cloud readiness Best practices and expertise for SQL

Server with private and public cloud

Page 4: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

4© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Architecture OverviewProtocol layer

↑Database engine– Storage engine– Query processor

▪ Query optimizer▪ Query executor

↑SQL OS

Page 5: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

5© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Versions and FeaturesVersion Product highlights Licensing models Virtualization

SQL Server 2005

• Full text search• Failover clustering• Database mirroring• Log shipping• Database snapshot• Hot add memory

StandardServer/CAL or per processor

EnterpriseServer/CAL or per processor

DatacenterPer processor

StandardSingle virtual machine per license

EnterpriseUp to four virtual machines per license

Data centerUnlimited virtual machine per license

SQL Server 2008 R2

• CPU can be added dynamically• Resource governor• Scale-out servers: Large-scale data

center/data warehouse support

SQL Server 2012

• AlwaysOn High Availability• Blazing-fast performance• Optimized for private cloud• Multi-server manageability

StandardServer/CAL or per core

BI Server/CAL

EnterprisePer core

EnterpriseAll physical hardware cores Unlimited virtual machine per license

Standard/EnterpriseLicense a single virtual machine based on virtual processors used

Page 6: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

6© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server I/O and Bandwidth CharacteristicsI/O types and characteristics Online Transaction Processing (OLTP)

Decision support system (data warehouse, OLAP)

User database

data files

• Smaller and random I/Os ( 8 -64 KB)• High read/write ratio ( typically 90/10 ~ 70/30)• High IOPS/low latency and high protection

requirements

• Larger sequential I/Os (>= 64 KB, >256 KB with columnstore index)

• High read/write ratio, sometimes read-only• High bandwidth/low latency and high capacity

requirements

Tempdb

data file

• Varying size depending on usage (usually larger I/Os, typically does not exceed 64 KB)• Serial or random I/Os, concurrent sequential workload may give random I/O appearance• Usually near 50/50 read/write

• Usually not very active with low performance demand

• Can be very active for frequent reporting and large table joins

• Can have high performance demand and may warrant flash storage

Database

log files

• Small, highly sequential I/Os (multiple of 512 bytes up to a max of 61 KB). Typically 8-9.5KB I/Os.• Almost exclusively writes, with occasional reads for large rollbacks or log backups and replications.• RAID 1/0 is the recommended standard. RAID 5 may provide adequate performance.• Being sequential, expect a 2+2 RAID 1/0 SAS 10K configuration to sustain up to 1,500 IOPS.• Write coalescing is expected.

Page 7: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

7© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Design Best Practices

• SQL Server design considerations:– Workload characteristics -OLTP, DW, and OLAP (mixed)– Deployment scenario (SQL Server consolidation, virtualization)– High Availability (Virtualization HA, SQL Server Cluster HA) – Scale of deployment - database size – Performance requirements – Array architecture (RAID, storage pools, thin LUNs, etc.)– Backup/restore, disaster recovery requirements, etc.

Page 8: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

8© Copyright 2013 EMC Corporation. All rights reserved.

Storage Sizing and Provisioning – Performance Layout Five types of LUNs for SQL Server

– OS LUN– System database LUN– User database LUN(s)– Log LUN– Tempdb LUN(s)

Three types of pools*– OS pool– Database pool– Log/Tempdb pool

Design for database profiles– OLTP– OLAP * Best-performance deployment scenario for midrange environment.

In newer EMC storage arrays with FAST technology enabling efficient use of flash drives, it is possible to deploy the user database and log/Tempdb LUNs to the same pool, and pin the log/Tempdb LUNs to the SAS/Fibre Channel (FC) tier of that pool.

Page 9: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

9© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Disks Options

• All disk types are supported for SQL Server

• Deploy SQL Server on:– Flash and SAS/FC drives for better

performance– SATA/NL-SAS drives for lower cost

• Utilize storage virtual provisioning as much as possible:

– FAST VP automatically tiers data on storage with various drive types.

– Thin LUNs can be extended as needed.

Drive types 8 KB IOPS per disk

SSD flash 3,500

15k rpm FC/SAS 180

10k rpm FC/SAS 140

7.2k rpm SATA/NL-SAS 70

EMC XtremSF performance information

Random 8K IOPS

XSF550 MLC *

XSF550 MLC *

XSF2200 MLC *

XSF2200 MLC *

XSF320 SLC

XSF700 SLC

Read only

131,795 128,207 258,838 256,887 376,072 395,906

Write only

23,592 16,235 53,713 35,654 67,635 133,593

R/W 70/30

56,255 42,471 120,162 93,848 171,666 191,169

* In performance mode, IOPS will be lower when configured in default capacity mode.

Page 10: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

10© Copyright 2013 EMC Corporation. All rights reserved.

Storage Pools and RAID Groups Use storage pools for options such as FAST VP, compression, and

deduplication.– Use thin LUNs with pools for:

▪ Easy management ▪ Best space efficiency▪ Energy and capital savings ▪ Databases with changing space consumption over time

– VNX - Use thick LUNs in storage pools for: ▪ Databases with predictable space and high performance requirements

VNX — On exception, use RAID groups and traditional LUNs for:– Databases with fixed size and performance requirements– Precise placement of logical data objects on physical drives – Physical separation of data– Absolute maximum performance instead of taking the advantages of pools

Page 11: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

11© Copyright 2013 EMC Corporation. All rights reserved.

I/O Characteristics for Various RAID Types

I/O characteristics RAID 1/0 RAID 5 RAID 6

Random I/ORead Excellent Excellent Excellent

Write Excellent Moderate Poor

Sequential I/ORead Excellent Good Good

Write Excellent Moderate Moderate

RAID write overhead 2 4 6

Disk capacity utilization1 1/2 4/5 (in 4+1 R5) 4/6 (in 4+ 2 R6)

Minimal drives required2 4 3 6

1 Depends on the size of RAID group2 Depends on the array

Page 12: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

12© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices: Basic Best Practices for SQL Server

Select “Lock pages in memory” policy for SQL Server start account to prevent SQL Server memory swap.

Enable the advanced privilege of “Perform Volume Maintenance Tasks” to the SQL Server Service account to enable instant initialization of database data files.

Avoid Autogrow by pre-allocate data files.

Grow all files in a single filegroup together when possible.

Set Autoshrink to “off” for data and log files.

Make data files with equal size in the same filegroup.

Perform routine maintenance with index rebuild or reorganization with dbcc checkdb.

Format NTFS volumes with 64K allocation unit for SQL Server LUNs.

Volume partition Disk Volume Allocation size Formatting options

MBR Basic NTFS 64 KB Quick format** Required for

thin LUN

Page 13: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

13© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Design Best Practices Filegroup Consideration Performance

– Use filegroups to separate tables/indexes — at the disk level (use with caution)– Separate objects requiring more data files because of the high page allocation

rate

Administration considerations – Backup can be performed at the filegroup or file level – Partial availability

▪ When the primary filegroup is available, other filegroups can be offline.▪ A filegroup is available if all its files are available.

– Tables and indexes▪ Can use separate filegroups for in-row data and large-object data.

– Partitioned tables ▪ Each partition can be in its own filegroup.▪ Partitions can be switched in and out of the table for better archiving strategy.

Page 14: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

14© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices: Filegroup and File Considerations Put data files with similar performance and protection needs to the

same filegroup.

Grow the databases equally to ensure proportional fill.

Filegroups can be accessed in parallel. – Can use different set of disk and storage pool for performance.

Create 0.25-1 data file per filegroup for each CPU to allocate intensive databases such as Tempdb.

Start with a small number of data files. Increase when needed.

Only one log file can be available for the entire database.

Page 15: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

15© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices:Storage Consideration

Check the EMC Support Matrix– Use up-to-date manufacture recommended HBA drivers.

– Ensure storage array firmware is up to date.

Use multipath software such as PowerPath. Do not exceed 80 percent capacity of LUNs for the database file. Put Tempdb, user database, and log files on separate LUNs for recovery considerations. For optimal performance, put

– User database LUNs on faster drives or pools with auto-tiering.

– Log/Tempdb LUNs on FC/SAS drives or pools without auto-tiering.

For easy management with acceptable performance, – Database LUNs and log, and Tempdb LUNs can share the same storage pools (pin the log LUNs

and Tempdb LUNs in the FC/SAS tier if needed).

Page 16: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

16© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices:Storage Sizing (OLTP Databases)

Sizing for performance — Calculate disk numbers for IOPS with:

Sizing for capacity — Calculate disk numbers for capacity with:

Final design:– Choose the number of disks meeting both performance and capacity requirements.– Round up to the next logical drive count with its specific RAID type. – Meet the minimum disk requirement for the RAID type.

Page 17: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

17© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices:OLAP Database Design Considerations For predictable bandwidth and performance, EMC recommends a

building-block approach considering the following:

Configuration 500 GB building block 1 TB building block 2 TB building block

Database size 500 GB 1 TB 2 TB

Target bandwidth (MB/s)

100 200 400

Database LUN design

1 x 2 TB data LUN

8x80 GB data file

2 x 2 TB data LUN

8x126 GB data file

4x 2 TB data LUN

16x126 GB data file

Log design 1 log LUN

Log file: 5 GB

1 log LUN

Log file: 12 GB

1 log LUN

Log file: 12 GB

Tempdb design

Data LUN

1(1x100 GB data file) 1 (2x 100 GB data file) 1 (4x 100 GB data file)

Log LUN

1(1X2 GB log file ) 1 (1X 2 GB log file) 1 (1X 2 GB log file)

Disk configuration 5 SAS disks 10 SAS disks 20 SAS disks

Memory (GB) 8 16 32

CPU (2.4 GHz) 2 4 8

– Targeted bandwidth– Memory consumption– CPU number– Tempdb sizing– Database sizing

Sample building blocks

Page 18: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

18© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Best Practices:Storage Sizing (OLAP Databases)

Calculate the number of disks needed for performance with the following:

Calculate the number of disks needed for capacity with the following:

Final design:– Choose the number of disks meeting both performance and capacity requirements.– Round up to the next logical drive count with its specific RAID type.– Meet the minimum disk requirement for the RAID type.

Page 19: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

19© Copyright 2013 EMC Corporation. All rights reserved.

VMAX Considerations Create fewer larger hypervolumes within metavolumes to improve

performance. Use a minimum of two HBAs/servers; each HBA connects to at least

two direct ports (across multiple VMAX engines, if possible). Use striped metavolumes for thick and thin LUNs. Use Virtual Provisioning with thin LUNs when:

– Storage over-allocation is needed.– Rapid growth over time is expected but downtime is limited.

Monitor pools to avoid running out of space. As an exception, use traditional devices where:

– Shared allocations from a common pool are not desired.– Large amount of deleted space cannot be reclaimed.– An occasional response time increase of approximately 1 millisecond is not

tolerable, because of writes to uninitialized blocks.

Page 20: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

20© Copyright 2013 EMC Corporation. All rights reserved.

FAST VP and FAST Cache

FAST VP FAST Cache

A VMAX and VNX feature that automates the identification of data for allocating or reallocating across various performance and capacity tiers within the storage array

A VNX performance optimization feature that provides performance boost to frequently accessed data by leveraging the use of flash drives to extend cache capacities

SQL Server SQL Server SharePoint

Virtual Server Virtual Server Virtual Server

FC

SQL Server SQL Server SharePoint

Virtual ServerVirtual ServerVirtual Server

SAS

NLSAS

Flash

FAST Cache

Page 21: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

21© Copyright 2013 EMC Corporation. All rights reserved.

FAST VP Tiering Considerations

Size the top tier in FAST VP to ensure the hot areas of the working set(s) can be accommodated in the highest performance tier.

Use at least a small amount of flash rather than no flash in Virtual Provisioning pools to handle wide spectrum of I/O profiles in VNX environment.

Use high capacity drives to optimize total cost of ownership (TCO) where there are large datasets with high skews.

Determine the I/O skew before sizing FAST VP tiers.

The Symmetrix VMAX storage arrays support up to four tiers.

When using FAST VP with AlwaysOn Availability Groups, place Availability Group copies of the database in different pools for better availability.

Page 22: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

22© Copyright 2013 EMC Corporation. All rights reserved.

FAST VP Configuration Recommendations Thin LUNs can be used on VMAX and the latest VNX to provide desired performance.

Data– OLTP random workloads with high skew. High FAST VP benefit.

▪ Typically a 15/85 (hot/cold) or 10/15/75 (hot/warm/code) data skew.– In OLAP, sequential read-only data without skew. Low FAST VP benefit.

▪ Can be in a FC/SAS-only tier without FAST VP or pinned to the tier.

Logs – Sequential data without skew. No FAST VP benefit. – Can be in a separate pool or pinned to the FC/SAS tier.

Tempdb – Mostly sequential data without skew. No FAST VP benefit.– In OLTP, it can be pinned in the FC or SAS tier.– In OLAP, it might need to be in the flash or FC/SAS tier for better performance.

Use dedicated pools for database LUNs for better service-level agreement (SLA) guarantee, fault domain, and most deterministic behavior.

Page 23: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

23© Copyright 2013 EMC Corporation. All rights reserved.

Tools for FAST VP

Tier Advisor for sizing– Historical performance data is needed from storage arrays.

Workload Performance Assessment Tool – It shows FAST VP heat map. For more information, refer to https://

emc.mitrend.com.

VSPEX Sizing Tool (for VNX) – For more information, refer to

http://www.emc.com/microsites/vspex-ebook/vspex-solutions.htm.

EMC Professional Services and qualified partners can assist in properly sizing tiers and pools to maximize investment.

Page 24: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

24© Copyright 2013 EMC Corporation. All rights reserved.

FAST VP versus FAST Cache on EMC VNX StorageFAST VP FAST CacheLeverages pools to provide sub-LUN tiering,enabling the utilization of multiple tiers of storageSimultaneously.

Enables flash drives to extend theexisting caching capacity of the storage system.

Use 1 GB chunks (256 MB in Rockies). Use 64 KB chunks.

Local feature – per storage pool. Assured performance per pool.

Global feature – per storage array. Shared resource, performance for one pool is not guaranteed under FAST Cache performance contention.

Moves data between different storage tiers basedon a weighted average of access statistics collected over a period of time.

Copies data from hard disks to flash disks when accessed frequently.

Uses a relocation window to periodically makestorage tiering adjustments. Default setting is an 8-hour relocation window each day.

Adapts continuously to changes in workload.

While it can improve performance, it is primarilydesigned to improve usability and reduce TCO.

Designed primarily to improve performance.

Page 25: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

25© Copyright 2013 EMC Corporation. All rights reserved.

VNX Considerations for FAST VP and FAST Cache

When the number of flash drives is limited, use flash drives to create FAST Cache first.

– FAST Cache can benefit multiple pools in the storage system.– FAST Cache uses 64 KB chunks, smaller than 1 GB or 256 MB chunks in FAST VP,

which results in higher performance benefits and faster reaction time for changing usage patterns.

Use flash drives to create the FAST VP performance tier for a specific pool. This ensures the performance of certain mission-critical data.

– The FAST VP tier is dedicated to a storage pool and cannot be shared with other storage pools in the same storage array.

Page 26: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

26© Copyright 2013 EMC Corporation. All rights reserved.

VNX Considerations for FAST VP

Control the relocation window for FAST VP to prevent any impact on host I/O requests during known periods of high system usage.

Database LUNs:– Apply FAST VP to all pool-based database LUNs.– Use default FAST policy “Start High then Auto Tier.”

For log LUNs: – Pin to the SAS tier logs (lowest available tier in a flash/SAS pool).

For Tempdb:– In OLTP workloads, pin to the SAS tier and do not allow data relocation for these

LUNs.– In OLAP workloads, put Tempdb in a faster tier.

Page 27: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

27© Copyright 2013 EMC Corporation. All rights reserved.

Server Flash – XtremSF Considerations

Use eMLC NAND XtremSF where – High performance is required at an attractive cost per bit

Use SLC NAND XtremSF where– It is less cost sensitive, seeking higher performance over time

In the OLAP/data warehouse environment,– XtremSF can be used as Tempdb storage with high demand to reduce the

contention of Tempdb, which improves the bandwidth

XtremSF is a good choice for environments with– Extreme performance requirements– Current SAN latency issues– SQL Server databases with high read ratio

Page 28: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

28© Copyright 2013 EMC Corporation. All rights reserved.

Server Flash - EMC XtremSW Cache Considerations

Use XtremSW Cache predictor tool – For initial benefit analysis of the SQL Server database with XtremSW Cache

Use XtremSW Cache for – Read acceleration– Smaller working sets (higher skews)

Set the page size to 64 KB or higher in the XtremSW Cache– To accommodate the I/O sizes achieved for the SQL Server data file reads

In the OLTP database environment:– Use XtremSW Cache for read-intensive user data LUNs with heavy workload– XtremSW Cache is not beneficial for write-intensive log and Tempdb LUNs

Page 29: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

29© Copyright 2013 EMC Corporation. All rights reserved.

Server Flash - EMC XtremSW Cache (Continued)

Secondary databases need to be accelerated on AlwaysOn Availability Groups only when required performance is desired.

– Example: Secondary databases used for OLAP (read-only) workloads

If the workload is not expected to be increased, additional system resources such as memory or CPU are not needed.

Have at least two XtremSF cards within the server infrastructure when redundancy is required.

XtremSW Cache deduplication is generally not beneficial to the I/O pattern of SQL Server.

Page 30: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

30© Copyright 2013 EMC Corporation. All rights reserved.

Server Flash - Sizing

Application Database workload type

Read-to-write ratio

Recommended XtremSW Cache-to-storage ratio

SQL Server OLTP 90:10 1:10

SQL Server OLTP 70:30 1:5

SQL Server OLAP 100% read 1:5 (Tempdb on XtremSF: database size)

SharePoint Content/crawl 100% read 1:5

Page 31: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

31© Copyright 2013 EMC Corporation. All rights reserved.

Server Flash - Virtual Environment Considerations Use at least two XtremSF cards within the hypervisor server

infrastructure for redundancy if required (one per server).

Calculate the XtremSF capacity and placement for VMware vMotion support.

– The remaining server and XtremSF capacity is still able to serve the configured XtremSW Cache settings of all virtual machines when vMotion occurs.

Share XtremSF card among virtual machines on the same host.– On exception for extreme performance, the option to dedicate the card to a single

virtual machine is possible.

On exception, it is possible to install multiple XtremSF cards on the same server.

Page 32: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

32© Copyright 2013 EMC Corporation. All rights reserved.

Storage Consideration for Protection Need Sizing for protection — Calculate disk needs for clone or snapshot

– Clone needs to have the same size of the production LUN, but they can be on the storage pool with a different RAID group and disk type.

– The snapshot size depends on the change rate of the database, which is usually much smaller.

SQL Server AlwaysOn Availability Group requires separate storage for secondary copy of the database.

Page 33: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

33© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Data ProtectionContinuous Availability

Tool/System Features DescriptionRecoverPoint CDP Synchronous

Local recovery protectionCRR Asynchronous

Continuous remote replicationCLR Concurrent local and remote data

Combines CDP and CRR

VMAX/VNX with RecoverPoint splitter build-in

CDP/CRR/CLR Both VMAX and VNX arrays have options with built-in RecoverPoint splitter that can function as native continuous availability

VMAX SRDF Continuous replication

Page 34: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

34© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Data ProtectionPoint-in-time Rapid Replication RecoveryTool/System Features DescriptionAppSync Snapshot only

replication on VNX

A simple, SLA-driven, self-service data protection, and storage management for SQL Server. No agent is needed.

Replication Manager

Snapshot/clone, SAN copy for VMAX and VNX

A comprehensive data protection software. An agent on SQL Server is needed.

VMAX TimeFinder

Mirror BCV monitors and controls operations for business continuance volumes.

Clone Clone sessions generally consume the same size of production LUNs, but do not have any impact once created.

Snap Snapshot sessions consume less space than clone and have more impact on production LUNs if the data changes frequently on production LUNs.

VNX Clone Clone sessions generally consume the same size of production LUNs, but do not have any impact once created.

Snap Snapshot sessions consume less space than clone and have more impact on production LUNs if the data changes frequently on production LUNs.

Page 35: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

35© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Data ProtectionPoint-in-time Efficient Backup and RestoreTool/System Features DescriptionEMC Avamar Complete software and

hardware solutionVariable-length deduplication significantly reduces the backup time by only storing unique daily changes while maintaining daily full backups for immediate, single-step restore.

EMC Networker Traditional backup and restore software

Centralizes, automates, and accelerates data backup and recovery. A wide range of data protection options.

With medium to high workloads, do not take backups directly from the production SQL Server.

– Mount a point-in-time snapshot or clone with replication manager on a different server and take the backup from that server.

– Take a backup with a secondary copy in an AlwaysOn Availability Group.

Schedule backups to take place during off hours, whenever possible.

Page 36: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

36© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Data ProtectionDisaster Recovery Offerings for SQL Server

Offering Replication method

Description

AlwaysOn Availability Groups

SQL Server native continuous replication

Built into SQL Server 2012 for high availability and disaster recovery.

Database portability EMC RecoverPoint Only SQL Server data is replicated. Requires DNS changes when it is failed over to the secondary replica.EMC VPLEX

Server/site move EMC RecoverPoint* SQL Server data (some time OS data too) are replicated. Failover includes server start, IP change, and DNS update.

EMC VPLEXEMC Cluster EnablerEMC Replicator

For the VMware environment, vCenter Site Recovery Manager (SRM) provides automated disaster recovery for fast and efficient recovery of critical applications such as SQL Server.

*RecoverPoint can also work with Cluster Enabler for automatic failover.

Page 37: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

37© Copyright 2013 EMC Corporation. All rights reserved.

ESI Considerations Use EMC Storage Integrator (ESI) for storage provisioning and monitoring

whenever possible.

ESI– Simplifies the storage management for Windows. – Automatically applies some best practices with the storage configuration.– Simplifies the storage deployment for Windows.

Page 38: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

38© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Performance Tools for Monitoring, Tuning, and Sizing — Application Level Tool Source/Links DescriptionDBclassify EMC http://

www.emc.com/domains/zettapoint/index.htm

Constantly monitors data, learns its patterns and past behavior, and then classifies and moves it according to business priorities.

Perfcollect EMC http://emc.ms/Perfcollect

Automates SQL Server related performance data collection. Mainly used for storage and virtual environment sizing.

EMC Workload Performance Assessment

EMC https://emc.mitrend.com

Also known as “Mitrend.” An automated online workload performance assessment tool, which correlates and displays key performance information related to sizing.

PAL Open source http://www.codeplex.com/PAL

Performance Analyzer of Logs. Useful for troubleshooting performance issues.

Page 39: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

39© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Performance Tools for Monitoring, Tuning, and Sizing — SQL Server Level

Tool Source/Links DescriptionVSPEX SQL sizing tool

EMC http://express.salire.com/go/emc

Can be used to determine the recommended VSPEX Proven Infrastructure for virtualized SQL Server based on the user requirements.

T-SQL Microsoft SQL server Provides stored procedures to create traces on SQL Server instance.

SQL Server profiler

Microsoft SQL Server analysis Services

Provides SQL Trace capture and replay in a graphic user interface.

DTA Microsoft SQL Server analysis Services

SQL Database Tuning Advisor provides SQL Server tuning suggestion such as indexing and partitioning.

DMVs Microsoft SQL Server analysis Services

Dynamic Management Views are query structures that expose information about local server operations and server health.

Page 40: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

40© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Performance Tools for Monitoring, Tuning, and Sizing — Host/Hypervisor Level

Level Tool Source/Links Description

Windows host

Perfmon Windows server installation

Windows Performance monitor can track the performance characteristics of SQL Server workloads.

Hypervisor

VMware

vSphere client GUI interface

VSphere client GUI

The primary tool for observing performance and configuring data for one or more ESX/ESXi hosts.

Resxtop/Esxtop ESX/ESXi Provides more performance matrix, but needs root access.

Hyper-V Perfmon

Windows performance monitor

Provides both hyper-V and virtual machine level performance matrix.

Page 41: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

41© Copyright 2013 EMC Corporation. All rights reserved.

SQL Server Performance Tools for Monitoring, Tuning, and Sizing — Storage Level

Tool Source/Links Description

Unisphere Analyzer Comes with EMC storage array

Performance monitoring tool for EMC storage arrays.

XtremSW Cache performance predictor tool

https://support.emc.com/search/?product_id=25208&text=predictor

Performance predictor tool for EMC XtremSW Cache; can be used to assess and evaluate the SQL Server environment for the XtremSW Cache.

EMC Storage Configuration Advisor

Available through EMC pre- and post-sales

Assists in defining tiering policies for an existing environment. Tier Advisor monitors your I/O and recommends tiering policy settings.

Page 42: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

42© Copyright 2013 EMC Corporation. All rights reserved.

Perfmon in Details

Key counters to monitor for OLTP database

SAN environment NAS environment Measured featureAverage disk second/transfer

Average second/data request

Overall storage latency

Average disk second/read Average second/read Read latency

Average disk second/write Average second/write Write latency

Average disk bytes/transfer Avg data bytes/request I/O size

Disk bytes/second Data requests/second Throughput

Disk reads/second Read requests/second Read I/O/second

Disk writes/second Write requests/second Write I/O/second

Page 43: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

43© Copyright 2013 EMC Corporation. All rights reserved.

Perfmon in Details (Continued)

Workload Ideal Average latency Peak latency

Database

OLTP <10ms 5-20ms read <50ms read

DSS/DW

OLAP

<=25ms 25-30ms read <50ms read

Transaction logs <1ms 1-5ms write <50ms write

System/Page partition

<10ms <10ms read/write <10ms read/write

Guide line latency for OLTP database

Page 44: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

44© Copyright 2013 EMC Corporation. All rights reserved.

Summary

Because storage technologies are evolving rapidly, traditional best practices may not apply to all configurations.

Understand the I/O and bandwidth characteristics of SQL Server; use proper tools to determine the workloads.

Apply best practices for SQL Server with VNX family, VMAX series storage, and Xtrem Server flash products.

Utilize SQL Server storage building blocks if possible.

Calculate storage I/O, capacity, and bandwidth requirements.

Validate your overall storage design.

Become familiar with various data protection options for SQL Server.

Page 45: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

45© Copyright 2013 EMC Corporation. All rights reserved.

Q&A

Page 46: 1© Copyright 2013 EMC Corporation. All rights reserved. Microsoft SQL Server: Best Practices and Design Guidelines for EMC Storage EMC VNX Family, EMC.

46© Copyright 2013 EMC Corporation. All rights reserved.

THANK YOU