1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris,...

25
1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric dispersion and chemistry, with different objectives: e.g. microscale models (street canyons), local models (up to tens of km), regional models (hundreds to thousands of km), short term models for episodes, long term models for long term (annual) averages. For damage costs of air pollution, note that the dose-response functions for health (dominant impact) are linear only the long term average concentration matters For agricultural crops and buildings they are nonlinear, but can be characterized in terms of seasonal or annual averages only the long term average concentration is needed Dispersion of most air pollutants is significant up to hundreds or thousands of km need local + regional models for long term average concentrations (they tend to be more accurate than models for episodes)

Transcript of 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris,...

Page 1: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

1

Atmospheric models for damage costs TRADD, part 2

Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013

There are many different models for atmospheric dispersion and chemistry, with different objectives: e.g.

microscale models (street canyons), local models (up to tens of km), regional models (hundreds to thousands of km),short term models for episodes,long term models for long term (annual) averages.

For damage costs of air pollution, note that the dose-response functions for health (dominant impact) are linear only the long term average concentration matters

For agricultural crops and buildings they are nonlinear, but can be characterized in terms of seasonal or annual averages only the long term average concentration is needed

Dispersion of most air pollutants is significant up to hundreds or thousands of km

need local + regional models for long term average concentrations (they tend to be more accurate than models for episodes)

Page 2: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

2

Dispersion of Air Pollutants

Depends on meteorological

conditions:wind speed and

atmospheric stability class (adiabatic lapse rate, see diagrams at

left)

Page 3: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

3

Gaussian plume model for atmospheric dispersion(in local range < ~50 km)

Page 4: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

4

Gaussian plume model, concentration c at point (x,y,z) Underlying hypothesis: fluid with random fluctuations around a dominant

direction of motion (x-direction)

c=concentration, kg/m3

Q=emission rate, kg/sv= wind speed, m/s, in x-directiony=horizontal plume widthz=vertical plume widthhe=effective emission height

Source at x=0,y=0

Plume width parameters y and z increase with x

Page 5: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

5

Gaussian plume width parameters There are several models for estimating y and z as a function of

downwind distance x, for example the Brookhaven model

where

To use model one needs data for wind speed and direction, and for atmospheric stability (Pasquill class); the latter depends on solar radiation and on wind speed.

Page 6: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

6

Gaussian plume with reflection

terms

When plume hits ground or top of

mixing layer, it is reflected

Page 7: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

7

Gaussian plume with reflection terms, cont’d

Page 8: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

8

Effect of stack parameters

Plume rise: fairly complex, depends on velocity and temperature of flue gas, as well as on ambient atmospheric conditions

Page 9: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

9

Effect of stack parameters, examplesInfluence of Emission Source Parameters and Meteorological Data on

Damage Estimates. The Source is Located in a Suburb of Paris.

Page 10: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

10

Removal of pollutants from atmosphere

Mechanisms for removal of pollutants from atmosphere:1) Dry deposition

(uptake at the earth's surface by soil, water or vegetation)2) Wet deposition

(absorption into droplets followed by droplet removal by precipitation)

3) Transformation(e.g. decay of radionuclides, or chemical transformation SO2 NH4)2SO4).

They can be characterized in terms of deposition velocities,(also known as depletion or removal velocities)vdep = rate at which pollutant is deposited on ground, m/s (obvious intuitive interpretation for deposition)

vdep depends on pollutantdetermines range of analysis: the smaller vdep the farther the pollutant travels)

Typical values 0.2 to 2 cm/s for PM, SO2 and NOx

Gaussian plume model can be adapted to include removal of pollutants

Page 11: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

11

Regional Dispersion, a simple model

Far from source gaussian plume with reflections implies vertically uniform concentrations

Therefore consider line source for regional dispersion (point source and line source produce same concentration at large r)

Assume wind speed is always = v, uniform in all directions f

the pollutant spreads over an area that is proportional to r

Page 12: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

12

Simple model for regional dispersion, cont’d

Consider mass balance as pollution moves from r to r+r, if uniformity in all directionsmass flow v c(r) H r across shaded surface at r= mass flow v c(r+r) H (r+r) across shaded surface at r+r+ mass vdep c(r +r/2) r (r+r/2) deposited on ground between r and r+r

Taylor expand c(r+r) = c(r) + c’(r) r and neglect higher order terms Differential equation c’(r) = - ( + 1/r) c(r) with = vdep/(v H)

Solution c(r) = c0 exp(- r)/r with constant c0 to be determined

Page 13: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

13

Simple model for regional dispersion, cont’d

Determination of c0 by considering integral of flux v c(r) over cylinder of height H and radius r in limit of r 0

This integral must equal to emission rate Q [in kg/s].Hence

Therefore final result

with

This model can readily be generalized(i) To case where wind speeds in each direction are variable with a distribution f(v(), )with normalization

(ii) To case where trajectories of puffs meander instead of being straight lines: then exp(- r) is replaced by exp(- t(r)) where t(r) = transit time to r;all else remains the same.

Page 14: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

14

Impact vs cutoff rmax

Total impact I = integral of sER c(r) with = receptor density and sER = slope of exposure-response function

Simple case: and sER independent of r and

with

with

If cutoff rmax for integralRange 1/ = v H/vdep = 800 kmfor mixing layer height H = 800 mwind speed v = 10 m/sdepletion velocity vdep = 0.01 m/s

Page 15: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

15

Chemical Reactions

Primary pollutants (emitted) secondary pollutants aerosol formation from NO, SO2 and NH3 emissions.

Note: NH3 background,mostly from agriculture

Page 16: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

16

UWM: a simple model for damage costs

Product of a few factors (dose-response function, receptor density, unit cost, depletion velocity of pollutant, …),

Exact for uniform distribution of sources or of receptors

UWM (“Uniform World Model”) for inhalation • verified by comparison with about 100 site-specific calculations by

EcoSense software (EU, Eastern Europe, China, Brazil, Thailand, …);

• recommended for typical values for emissions from tall stacks, more than about 50 m (for specific sites the agreement is usually within a factor of two to three; but for ground level emissions the damage of primary pollutants is much larger: apply correction factors).

UWM for ingestion is even closer to exact calculation, because food is transported over large distances average over all the areas where the food is produced effective distributions even more uniform.

Most policy applications need typical values (people tend to use site specific results as if they were typical

precisely wrong rather than approximately right)

Page 17: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

17

UWM: derivation

Total impact I = integral of sER c(x) over all receptor sites x = (x,y)

withc(x) = c(x,Q) = concentration at surface due to emission Q Q(x) = density of receptors (e.g. population)

sER = slope of exposure-response function Total depletion flux (due to deposition and/or transformation)F(x) = Fdry(x) + Fwet(x) + Ftrans(x)Define depletion velocity vdep(x) = F(x)/c(x) [units of m/s]Replace c(x) in integral by F(x)/k(x) If world were uniform with uniform density of receptors and uniform depletion velocity vdep

then

By conservation of mass

“Uniform World Model” (UWM) for damage

Page 18: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

18

UWM: example

Page 19: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

19

UWM and Site Dependence, example

dependence on site and on height of source for a primary pollutant: impact I from SO2 emissions with linear exposure-response function, for five sites in France, in units of Iuni for uniform world model (the nearest big city, 25 to 50 km away, is indicated in parentheses). The scale on the right indicates YOLL/yr (mortality) from a plant with emission 1000 ton/yr. Plume rise for typical incinerator conditions is accounted for.

Page 20: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

20

Validation of UWM, for primary pollutants

Comparison with detailed model (EcoSense = official model of ExternE)

Factor of two

Page 21: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

21

UWM for secondary pollutants

Same approach: add a subscript 2 to indicate that concentration, dose-response function and damage refer to the secondary pollutant

Page 22: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

22

UWM for secondary pollutants, cont’d

Let us relate Q2 to the emission Q1 of the primary pollutant: define a creation flux F1-2(x) as mass of secondary pollutant created per s and per m2 of horizontal surface

F1-2(x) = v1-2(x) c1(x)

where v1-2(x) is a factor defined as local ratio of F1-2(x) and c1(x).

Therefore UWM for secondary pollutants

with

Page 23: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

23

Dependence site and on stack height

Strong variation for primary pollutants but little variation for secondary pollutants,

because created far from source (hence less sensitive to local detail)

Page 24: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

24

Correction factors for UWM for dependence on site and on stack height

No variation with site for CO2 (long time constants, globally dispersing)

Example: the cost/kg of PM2.5 emitted by a car in Paris is about 15 times Duni.

Page 25: 1 Atmospheric models for damage costs TRADD, part 2 Ari Rabl, ARMINES/Ecole des Mines de Paris, November 2013 There are many different models for atmospheric.

25

Parameters for UWM

Population density and depletion velocities, in cm/s, selected data for several regions.

From Rabl, Spadaro and Holland [2013]