1 13 Radio Astronomy Source Verification

download 1 13 Radio Astronomy Source Verification

of 15

Transcript of 1 13 Radio Astronomy Source Verification

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    1/15

    Radio Astronomy Source Verification

    AN OBSERVATION AID DOCUMENT

    Actual Radio Astronomy Observations for use in identifying and validatingyour observations.

    This source information has been collected from various sources in the amateur and professionalradio astronomy field.

    No equipment endorsement will be made in this document, only the source identification,equipment used, frequency and observer. Submissions are invited and may be made to this

    document, by sending the observation and related information describing the event to:[email protected] [email protected]

    This document is made available to alland requires no password or specific affiliation with anyorganization. However, it is highly recommended that any user referencing the materialwithin, quote the source and contributor of each observation.

    Contributors to this document:

    Rodney Howe

    Hans Michlamyr

    Carl Lyster Jonathan Pettingale

    Dr. John Bernard

    James Van Prooyen

    Jeff Lichtman

    http://www.thrushobservatory.org/radio.htm

    Referenced Information:

    For Jupiter, RadioSky http://www.radiosky.com/rjcentral.html

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    2/15

    Table of Contents

    Contents Page

    SOLAR RADIO OBSERVATIONS................................................................................................................ 3

    VLF Microwave ............................................................................................................................................ 3

    JUPITER RADIO OBSERVATIONS ............................................................................................................. 5GALACTIC RADIO OBSERVATIONS (Drift Scan) .................................................................................... 6

    GALACTIC RADIO OBSERVATIONS (Interferometry).............................................................................. 8SPECIFIC RADIO SOURCES (Pulsars) ...................................................................................................... 10

    SPECIFIC RADIO SOURCES (Quasars) ..................................................................................................... 12

    CALIBRATION TECHNIQUES................................................................................................................... 13

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    3/15

    SOLAR RADIO OBSERVATIONS

    VLF Microwave

    RAS 40 KHz Receiver

    Carl Lyster

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    4/15

    Jonathan Pettingale, UK

    RAS 1.4 GHzUltaCyber8 Foot Antenna

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    5/15

    JUPITER RADIO OBSERVATIONShttp://www.thrushobservatory.org/radio.htm

    S Burst

    L Burst

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    6/15

    GALACTIC RADIO OBSERVATIONS(Drift Scan)

    Pisgah Astronomical Research Institute - 1.4 GHz (RAS SpectraCyber) 85 Foot Antenna &PARI Software

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    7/15

    GALACTIC RADIO OBSERVATIONS(Drift Scan) Continued

    Rodney Howe (DSES) - 1.4 GHz (RAS SpectraCyber)

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    8/15

    Dr. John Bernard - SpectraCyber with Methanol Converter- 12 Foot Antenna usingDr. Bernard - Software Creator / RAS Software

    GALACTIC RADIO OBSERVATIONS(Interferometry)

    Hans Michlamayr (Australia) Cent. A and Cyg. A @ 1410 MHz, 12 Foot StretchedParabolas

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    9/15

    GALACTIC RADIO OBSERVATIONS(Interferometry) Continued

    Hans Michlamayr (Australia) Orion A @ 1410 MHz, 12 Foot Stretched Parabolas

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    10/15

    SPECIFIC RADIO SOURCES(Pulsars)

    Jim Van Prooyen - Pulsar B003-1-07 - 406.7 MHz (RAS System) 10 Foot AntennaPulsar Software developed by Jim Van Prooyen

    Jim Van Prooyen - Pulsar B003-1-07 - 406.7 MHz (RAS System) 10 Foot AntennaPulsar Software developed by Jim Van Prooyen

    Pulsar B0031-07/J.Van Prooyen/GRRO

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    0 50 100 150 200 250 300 350 400

    Time, 0.055 seconds per tick

    SignalStrength

    Pulsar B0950+08/J.Van Prooyen/GRRO

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 50 100 150 200 250 300 350 400

    Time, 0.055 seconds per tick

    SignalStrength

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    11/15

    Jim Van Prooyen - Pulsar B1133+16 - 406.7 MHz (RAS System) 10 Foot AntennaPulsar Software developed by Jim Van Prooyen

    Jim Van Prooyen - Pulsar B1919+21 - 406.7 MHz (RAS System) 10 Foot AntennaPulsar Software developed by Jim Van Prooyen

    Pulsar B1133+16/J.Van Prooyen/GRRO

    0

    2

    4

    6

    8

    10

    12

    14

    0 50 100 150 200 250 300 350 400

    Time 0.055 seconds per tick

    SignalStrength

    Pulsar B1919+21/J.Van Prooyen/GRRO

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 50 100 150 200 250 300 350 400

    Time, 0.055 seconds per tick

    SignalStrength

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    12/15

    SPECIFIC RADIO SOURCES(Quasars)

    Rodney Howe (DSES) - 3C033 - 1.4 GHz (RAS SpectraCyber)

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    13/15

    CALIBRATION TECHNIQUES

    Radio Astronomy SuppliesAPPLICATION NOTE 5

    NOISE TEMPERATURE, FIGURE and FACTOR CALCULATIONS

    Basic formulae are:Noise Temperature (T) = 290 * (10^(Noise Figure/10)-1) K

    Noise Figure (NF) = 10 * log (Noise factor) dB

    Notes:Log must be to base 10. When using calculators and spreadsheets make sure that base 10 isselected. As a test, 10 * log(2) should give an answer of +3 dB. Noise temperature is measured inunits called Kelvin (K) and these are like Celsius (C) temperature degrees but start at zero forabsolute zero temperature so:

    0 K = -273 deg C273 K = 0 deg C (ice melts)

    290 K = 17 deg C (ambient temperature of a cable, for example)

    Table to convert Noise Figure (NF) to Noise Temperature (T). This is useful for working out LNA orLNB noise temperatures from advertised Noise Figures.

    Procedure for adding up noise temperatures for antenna, waveguide, LNA, cable andreceiver in series:

    Notes: T system is referred to the input of the LNA.You need to convert gains in dB to numbers. Number = 10 ^(dB/10)

    (continued)

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    14/15

    T system = Noise contribution from antenna = Tantenna * waveguide gain+ noise contribution of the waveguide = 290 * (1-waveguide gain)+ noise contribution of the LNA = the LNA noise temp+ noise contribution of the cable = 290 / LNA gain+ noise contribution of the receiver= receiver noise temp / (LNA gain * cable gain)

    Example: Antenna noise temperature = 35 K (mainly ground pick up noise)Waveguide feeder gain = -0.25 dB (0.944), temperature = 290KLNA gain = 50 dB (100000), noise temperature = 75 KCable gain = -20 dB (0.001), temperature = 290KReceiver noise temperature = 2000 KTsystem = 35 * 0.944 = 33 Noise contribution of the antenna+ 290 ( 1 - 0.944) = 16 Noise contribution of the waveguide+ 75 Noise contribution of the LNA+ 290 /100000 = 0.003 Noise contribution of the cable+ 2000/(100000 * 0.001) = 2 Noise contribution of the receiver

    = 126 K

    Note that LNA noise temperature, the antenna noise temperature and waveguide loss arethe main factors.

    With permission from Eric JohnstonEmail Eric Johnston

    [email protected]

    Additional Calibration Information on the following page.

  • 8/8/2019 1 13 Radio Astronomy Source Verification

    15/15