09 RA41209EN10GLA0 LTE Performance Simulations v01

32
RA41209EN10GLA0 LTE Performance Simulations 1 1 ©Nokia Siemens Networks RA41209EN10GLA0 LTE RPESS LTE Performance Simulations

Transcript of 09 RA41209EN10GLA0 LTE Performance Simulations v01

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 1/32RA41209EN10GLA0

LTE Performance Simulations

1

1 © Nokia Siemens Networks RA41209EN10GLA0

LTE RPESSLTE Performance Simulations

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 2/32RA41209EN10GLA0

LTE Performance Simulations

2

2 © Nokia Siemens Networks RA41209EN10GLA0

Nokia Siemens Networks Academy

Legal notice

Intellectual Property Rights All copyrights and intellectual property rights for Nokia Siemens Networks trainingdocumentation, product documentation and slide presentation material, all of which are forthwithknown as Nokia Siemens Networks training material, are the exclusive property of NokiaSiemens Networks. Nokia Siemens Networks owns the rights to copying, modification,translation, adaptation or derivatives including any improvements or developments. NokiaSiemens Networks has the sole right to copy, distribute, amend, modify, develop, license,sublicense, sell, transfer and assign the Nokia Siemens Networks training material. Individualscan use the Nokia Siemens Networks training material for their own personal self-developmentonly, those same individuals cannot subsequently pass on that same Intellectual Property toothers without the prior written agreement of Nokia Siemens Networks. The Nokia SiemensNetworks training material cannot be used outside of an agreed Nokia Siemens Networkstraining session for development of groups without the prior written agreement of NokiaSiemens Networks.

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 3/32RA41209EN10GLA0

LTE Performance Simulations

3

3 © Nokia Siemens Networks RA41209EN10GLA0

Module Objectives

After completing this module, the participant should be able to:

• Compare expected LTE spectral efficiency, latency, cellrange and peak data rates with other mobile technologies.• Examine LTE Link Level Simulation• Review the comparison between LTE Reuse factor 1 & 3

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 4/32RA41209EN10GLA0

LTE Performance Simulations

4

4 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 5/32RA41209EN10GLA0

LTE Performance Simulations

5

5 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 6/32RA41209EN10GLA0

LTE Performance Simulations

6

6 © Nokia Siemens Networks RA41209EN10GLA0

Downlink Spectral Efficiency

0.0

0.5

1.0

1.5

2.0

2.5

UTRA baseline E-UTRA 2x2

b p s

/ H z / c e

l l

Alcatel-LucentEricssonHuaweiInterDigitalMotorolaNECNortelNokia-SiemensQualcomm

SamsungTexax Instruments

Average

HSPA0.53 bps

LTE 1.69bps

• Downlink spectral efficiency shown to be 3 x HSPA R6 (=UTRA baseline),which was the target of LTE

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 7/32RA41209EN10GLA0

LTE Performance Simulations

7

7 © Nokia Siemens Networks RA41209EN10GLA0

Uplink Spectral Efficiency

• Uplink spectral efficiency shown to be >2 x HSPA R6, which was thetarget of LTE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

UTRA baseline E-UTRA 1x2

b p s

/ H z / c e

l l

Alcatel-LucentEricssonHuaweiInterDigitalMotorolaNECNortelNokia-SiemensQualcomm

SamsungTexax Instruments

Average

HSPA0.33 bps

LTE 0.74bps

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 8/32RA41209EN10GLA0

LTE Performance Simulations

8

8 © Nokia Siemens Networks RA41209EN10GLA0

Key Features for LTE Downlink Spectral EfficiencyCompared to HSPA R6

Inter-cell interference rejection combiningor cancellation

MIMO = combined use of 2 tx and 2 rxantennas

Frequency domain packet scheduling

+10%

+20%

+40%

Total gain up to 3.1x

OFDM with frequency domainequalization +20..70%

Compared to single antennaBTS tx and 2-rx terminal

Not feasible in HSPA due tocdma modulation

Possible also in HSPA butbetter performance in OFDMsolution

Due to orthogonality

Up to 1000 subscribers per LTE node B can be supported (1+1+1 @ 20 MHz)

ICIC: Way of controlling interference in UL by controlling the PRB range that can beused by the scheduler. Applied to PUSCH (Allows frequency reuse schemes).

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 9/32RA41209EN10GLA0

LTE Performance Simulations

9

9 © Nokia Siemens Networks RA41209EN10GLA0

Spectral Efficiency Relative to 10 MHz

0 %

20 %

40 %

60 %

80 %

100 %

120 %

1.4 MHz 3 MHz 5 MHz 10 MHz 20 MHz

DownlinkUplink

LTE Efficiency vs. Bandwidth

-40% -13% Reference

• LTE maintains high efficiency with bandwidth down to 5 MHz• The differences between bandwidths come from frequency scheduling

gain and different overheads

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 10/32RA41209EN10GLA0

LTE Performance Simulations

10

10 © Nokia Siemens Networks RA41209EN10GLA0

0

5

10

15

20

25

30

35

40

45

50

GSM

EFR

GSM

AMR

GSM

DFCA

WCDMA

CS voice

HSPA R7

VoIP

LTE VoIP

U s e r p e r

M H z

Voice Spectral Efficiency Evolution from GSM to LTE

• 15 x more users per MHz with 3GPP LTE than with GSM EFR!

• VoIP is the way to go for future voice in mobile systems

CS voice (AMR) VoIP (AMR12.2)

Note also“CS voice

over HSPA”

GSM-EFR is a speech coding standard that was developed in order to improve thequite poor quality of GSM -Full Rate (FR) codec. Working at 12.2 kbit/s the EFRprovides wirelike quality in any noise free and background noise conditions.

3 GPP (R2-073487): Supporting CS over HSPA improvements in user plane latencyand system capacity

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 11/32

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 12/32RA41209EN10GLA0

LTE Performance Simulations

12

12 © Nokia Siemens Networks RA41209EN10GLA0

0

5

10

15

20

25

30

3540

45

50

HSPA (10-ms) i-HSPA (2-ms) LTE

ms

Latency Evolution

LTE specs enable10 ms round trip

time

Approx 15 ms gainexpected from

shorter 2-ms TTI

• Internet-HSPA provides further improvement in latency• WiMAX latency expected 30 ms• Reference: DSL can provide <10 ms round trip time

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 13/32RA41209EN10GLA0

LTE Performance Simulations

13

13 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 14/32RA41209EN10GLA0

LTE Performance Simulations

14

14 © Nokia Siemens Networks RA41209EN10GLA0

Suburban indoor

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

LTE900

LTE2100

LTE2500 FDD

WiMAX 2500 TDD

WiMAX 3400 TDD

km

UplinkDownlink

Cell Range

Assumptions:• Suburban area• 50 m BTS antenna• 15 dB indoor loss• 95% location probability• Correction factor -5 dB• 1.5 m terminal antenna height

• Cell range gets shorter at higher frequency and with TDD• Cell range for LTE varies in DL from 3.6 km ( LTE900 FDD) to 1.6 km ( LTE 2500

FDD)Downlink: 1 MbpsUplink: 64 kbps

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 15/32RA41209EN10GLA0

LTE Performance Simulations

15

15 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 16/32RA41209EN10GLA0

LTE Performance Simulations

16

16 © Nokia Siemens Networks RA41209EN10GLA0

Peak Data Rates in Theory

HSPA FDD 4 WiMAXTDD 1 LTE FDD

8.6 Mbps

4.1 Mbps 7 Mbps

-

8.3 Mbps

29 Mbps- (16.6 Mbps)58 Mbps

1Downlink:uplink ratio 29:182Downlink with 64QAM and 5/6 coding3Uplink with 16QAM and ¾ coding4HSPA 3GPP R7 assumed

Uplink 3

HSPA FDD 4 WiMAXTDD 1 LTE FDD

2x3.5 (1x7) MHz - 28 Mbps -

2x5 (1x10) MHz

-

40 Mbps 43 Mbps

2x10 (1x20) MHz - (80 Mbps) 86 Mbps

Downlink 2x2MIMO 2

= typical bandwidth

2x2.5 (1x5) MHz

35 Mbps

20 Mbps 21 Mbps

- 5.5 Mbps -

2x20 MHz - - 173 Mbps

2x3.5 (1x7) MHz

2x5 (1x10) MHz

2x10 (1x20) MHz

2x2.5 (1x5) MHz

2x20 MHz

-

14 Mbps

-

• HSPA and WiMAX peak rates are similar

• LTE has highest peak data rates due to2x20 MHz spectrum

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 17/32RA41209EN10GLA0

LTE Performance Simulations

17

17 © Nokia Siemens Networks RA41209EN10GLA0

LTE Peak Data Rates

• Downlink: Peak Rate 172 Mbps with 2x2 MIMO and 20 MHz

Modulation coding 1.4 MHz 3.0 MHz 5.0 MHz 10 MHz 15 MHz 20 MHz

QPSK 1/2 Single stream 0.7 2.1 3.5 7.0 10.6 14.116QAM 1/2 Single stream 1.4 4.1 7.0 14.1 21.2 28.316QAM 3/4 Single stream 2.2 6.2 10.5 21.1 31.8 42.464QAM 3/4 Single stream 3.3 9.3 15.7 31.7 47.7 63.664QAM 4/4 Single stream 4.3 12.4 21.0 42.3 63.6 84.964QAM 3/4 2x2 MIMO 6.6 18.9 31.9 64.3 96.7 129.164QAM 1/1 2x2 MIMO 8.8 25.3 42.5 85.7 128.9 172.164QAM 1/1 4x4 MIMO 16.6 47.7 80.3 161.9 243.5 325.1

Modulation coding 1.4 MHz 3.0 MHz 5.0 MHz 10 MHz 15 MHzQPSK 1/2 Single stream 0.7 2.0 3.5 7.1 10.8 14.316QAM 1/2 Single stream 1.4 4.0 6.9 14.1 21.6 28.516QAM 3/4 Single stream 2.2 6.0 10.4 21.2 32.4 42.816QAM 1/1 Single stream 2.9 8.1 13.8 28.2 43.2 57.064QAM 3/4 Single stream 3.2 9.1 15.6 31.8 48.6 64.264QAM 1/1 Single stream 4.3 12.1 20.7 42.3 64.8 85.564QAM 1/1 V-MIMO (cell) 8.6 24.2 41.5 84.7 129.6 171.1

20 MHz

• Uplink: Peak Rate 57 Mbps with 20 MHz and 16QAM

•Following overheads not reduced: CRC, L2/L3 headers, IP headers

•Following overheads reduced

Synchronization, reference, PBCH, PCFICH, PHICH and 1 PDCCHsymbol

•Relative overheads

Reference symbol overhead 9.5% with 2x2 MIMO

PDCCH overhead 7.1% with single symbol (two symbols with 1.4MHz)

Other overheads <1% with 10 MHz bandwidth

UPLINK

•Following overheads not reduced: CRC, L2/L3 headers, IP headers

•Following overheads reduced

1 symbol for reference symbol

1 resource block for PUCCH

•Relative overheads

Reference symbol overhead 14.3%

PUCCH overhead 2.5%

VIRTUAL MIMO: (multi user MIMO) 2 UEs with 1Tx antenna each can communicatewith an eNodeB simultaneously using the same resource blocks simultaneously ( Away for operators to increase capacity). As UEs are assumed to be physically distantfrom each other the resulting combined transmissions arrive at the eNodeB as

multipath and can be processed in the same way as separate MIMO streams. Itdoubles capacity of the UL.

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 18/32RA41209EN10GLA0

LTE Performance Simulations

18

18 © Nokia Siemens Networks RA41209EN10GLA0

NSN RL10 DL and UL net data rates

• Marketing figure of 86.4 Mbps theoretical for 10MHz BW and 172.8Mbps for20MHz BW net PHY peak (assuming single OFDM symbol for PDCCH, referencesymbols for 2 transmit antennas and code rate 1) cannot be demonstrated ascode rate 1 is not defined in 3GPP

• DL conditions: – 2x2 MIMO with single OFDM symbol for PDCCH and code rate 0.9

• Marketing figure of 28.4 Mbps theoretical for 10MHz BW and 56.8Mbps for20MHz BW net PHY peak (assuming single PUCCH pair, no sounding, PRACHevery 20 ms and code rate 1) cannot be demonstrated as code rate 1 is notdefined in 3GPP

• UL conditions: – single PUCCH pair, no sounding, PRACH every 20 ms and code rate 0.83

DL UL

76.2 MbpsLTE 10 MHz 23.4 Mbps

153 MbpsLTE 20 MHz 47.4 Mbps

Informative:DL Spectrum Efficiency (loaded network)R6 HSPA 0.6 bps/Hz/sector --> LTE 1.8 bps/Hz/sector with 2x2 MIMO (c.f. 3GPP 25.913 3-4times R6 HSPA)translates to 18 Mbps and 36Mbps average sector throughput for 10MHz and 20MHzbandwidths respectively in fully loaded macro environment

Informative:UL Spectrum Efficiency (loaded network)R6 HSPA 0.33 bps/Hz/sector --> LTE 0.75 bps/Hz/sector with single TX antenna at UE (c.f.3GPP 25.913 2-3 times R6 HSPA)translates to 7.5Mbps (10MHz) and15 Mbps (20MHz) average sector throughput in fullyloaded macro environment

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 19/32RA41209EN10GLA0

LTE Performance Simulations

19

19 © Nokia Siemens Networks RA41209EN10GLA0

Cell Edge Data Rate Simulations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

70

80

90

100

Distance from BTS [relative to cell radius, 1=cell edge]

M b p s

LTE 20 MHzLTE 10 MHzLTE 5 MHzHSDPA 5 MHz

Cell edge G-factor = -4 dB2x2 MIMO

Median (50%) data rate overthe cell area (70% distance)• HSDPA 3.4 Mbps• LTE 10 MHz 8 Mbps• LTE 20 MHZ 16 Mbps

G- factor: own cell to other cell interference value

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 20/32RA41209EN10GLA0

LTE Performance Simulations

20

20 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 21/32RA41209EN10GLA0

LTE Performance Simulations

21

21 © Nokia Siemens Networks RA41209EN10GLA0

TDD Performance

• FDD has better coverage than TDD• When coming closer to cell edge, TDD tries to increase bandwidth earlier as Tx

time is reduced

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 22/32RA41209EN10GLA0

LTE Performance Simulations

22

22 © Nokia Siemens Networks RA41209EN10GLA0

Module Contents

• Spectral Efficiency

• Latency Evolution• Cell Range• Peak Data Rates• TDD Performance• Performance Evolution• LTE Link Level Simulation• LTE Reuse 1 vs. Reuse 3 Comparison (FREAC dynamicsystem simulator used)

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 23/32RA41209EN10GLA0

LTE Performance Simulations

23

23 © Nokia Siemens Networks RA41209EN10GLA0

1.3/0.4

1.4 – 20MHz

see HSPAR6 & R85 MHzBandwidth 5 MHz

Performance Evolution

PS only, VoIPBroadbandPS and CSover HSPA

BroadbandPSServices

1.7/0.7

173/58Mbps

10-20 ms

LTE 2

0.5 3 /0.3Spectral efficiencyMbps/MHz/cell DL/UL

see HSPA

R6 & R7/R8

14/5.7Mbps

Peak data rate DL/UL

25 ms40-60 ms

I-HSPAHSPA R6

CS and highspeed PS

0.2/0.2

384/384kbps

100-200ms

WCDMA

5 MHz

BroadbandPS and CSover HSPA

43 4 /11.5Mbps

HSPAR7/R8

5-10 MHzunpaired (TDD)

PS only,VoIP

1.4/0.6

40/10Mbps

30-50 ms

WIMAX 1

FlatFlatRNCbasedArchitecture RNC

based RNC based Flat

63/48(DL/UL)Flat for S27 3 /17

(DL/UL)Voice efficiency

User/MHz/Cell18 36/25

(DL/UL)

see HSPAR6 & R7/R8

see HSPAR6 & R7/R8

20

1DL/UL ratio=29:18, with 2x2 MIMO @ 10 MHz TDD2with 2x2 MIMO @ 20 MHz

Latency 25-35 ms

3With Rake receiver terminals428Mbps with Rel7, 43Mbps with Rel8

HSPA R7/R8: values for 2x2 MIMO and 64 QAM

Latency for HSPA Rel 6 with 10ms TTI, 2 ms TTI considered for REl7/Rel8

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 24/32

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 25/32RA41209EN10GLA0

LTE Performance Simulations

25

25 © Nokia Siemens Networks RA41209EN10GLA0

Link Simulations and Mapping are used to support SystemLevel Simulator

Mapping Functions

SINRoBER ( C/I, Fade ) BLER

C/I, FadeBER, BLER

The link simulator is run onetime to generate themapping functionsSINRoBER and BERoBLER.

The network simulator usesSINRoBER and BERoBLERin subsequent simulations.

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 26/32

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 27/32RA41209EN10GLA0

LTE Performance Simulations

27

27 © Nokia Siemens Networks RA41209EN10GLA0

Typical link level results example – BLER-SNR curves

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 28/32

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 29/32RA41209EN10GLA0

LTE Performance Simulations

29

29 © Nokia Siemens Networks RA41209EN10GLA0

SINR Distribution

0

10

20

30

40

50

60

70

80

90

100

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

[dB]

c d f %

10MHz Reuse 1 (Reference) 5MHz Reuse3 (Reference) 5MHz Reuse1(Reference)10MHz Reuse 1 (Large) 5MHz Reuse3 (Large) 5MHz Reuse 1 (Large)

• Impact of Reuse on SINR Distributions – 5 MHz Reuse 3 provides a better SINR distribution (less interference):

8 dB better than 5 & 10 MHz Reuse 1 , reference case (50 percentile) – Large Scenario causes a degradation in SINR compared to reference case

▪ 2-3dB at 50 percentile

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 30/32RA41209EN10GLA0

LTE Performance Simulations

30

30 © Nokia Siemens Networks RA41209EN10GLA0

LTE BW (10 & 5 MHz) & freq. reuse (R3 & R1) userthroughput comparison

0

500

1000

1500

2000

2500

1 0 M H

z_ R 1_ M a c r

o 1_ l o a

d 1 0 0

%

5 M H z

_ R 3_ M a c r

o 1_ l o a

d 1 0 0

%

5 M H z

_ R 1_ M a c r

o 1_ l o a d

1 0 0 %

1 0 M H

z_ R 1_ L a r g e

M a c r o

_ l o a d 1

0 0 %

5 M H z

_ R 3_ L a r g e

M a c r o

_ l o a d 1

0 0 %

5 M H z

_ R 1_ L a r g e

M a c r o

_ l o a d 1

0 0 %

5% user throughput [kbps/s]50% user throughput [kbits/s]"95% user throughput [kbits/s]mean user throughput [kbits/s]

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 31/32RA41209EN10GLA0

LTE Performance Simulations

31

31 © Nokia Siemens Networks RA41209EN10GLA0

18.98

12.61

8.75

6.37

14.08

9.068.18

5.01

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.0020.00

15MHz Reuse1 10MHz Reuse 1 5MHz Reuse3 5MHz Reuse1

M b p s

Reference Case Large Case

Executive Summary – Cell Capacity

• Best Spectral Efficiency with 15MHzR1

– 5 MHz Reuse 3 provides a capacity gainrelative to 5 MHz Reuse 1

– 15 MHz Reuse 1 provides a gain relative to 5MHz Reuse 3

* Capacity is based Link level results for SIMO 1Tx2Rx configuration

DownlinkCapacity (Mbps)

15MHz Reuse1 10MHz Reuse 1 5MHz Reuse3 5MHz Reuse1

Reference Case 18.98 12.61 8.75 6.37Large Case 14.08 9.06 8.18 5.01Delta (%) 25.85% 28.15% 6.49% 21.31%

Delta (Mbps) 4.91 3.55 0.57 1.36SE

(bps/Hz/sector)Reference Case

1.27 1.26 0.58 1.27

SE(bps/Hz/sector)

Large Case0.94 0.91 0.55 1.00

• 15 MHz Reuse 1 suffers more with Large scenario vs Original

– 25.8% vs 6.5%,• BUT capacity still higher than 5MHz Reuse 3

– 14.1Mbps vs 8.2Mbps• For same total Bandwidth

8/12/2019 09 RA41209EN10GLA0 LTE Performance Simulations v01

http://slidepdf.com/reader/full/09-ra41209en10gla0-lte-performance-simulations-v01 32/32

LTE Performance Simulations

32 © Nokia Siemens Networks RA41209EN10GLA0

Executive Summary

• Objective – Compare the Performance of Reuse 1 vs. Reuse 3 configurations

▪ Same total bandwidth in both configurations

– Compare Impact of different cell size on the performance

• Methodology – SINR from Dynamic Network Simulator

▪ Standard Hexagonal 57 Cells scenario based on 3GPP Macro Case 1• Reference Scenario: 3000m ISD, Large Scenario: 7200m ISD (4x size factor)• Antenna configuration: 1Tx2Rx(MRC) with TxPower 60W

– Capacity based on Full Buffer traffic model and 100% load▪ 10MHz R1, 5MHz R1, 5MHz R3 simulated, 700MHz Band

• Conclusions

•5MHz R3 vs 5MHz R1

•27% to 37% gain for 3 times more spectrum•15MHz R1 vs 5MHz R1

•67% to 64% gain with 3 times more spectrum•4x Larger Inter Site Distance Scenarios

•Higher Throughput degradation respect to reference with R1.•Still 42% Higher Throughput with 15MHz R1 than 5MHz R3