083 Moan Structural Reliability

download 083 Moan Structural Reliability

of 10

Transcript of 083 Moan Structural Reliability

  • 8/20/2019 083 Moan Structural Reliability

    1/22

    T.Moan MARE WINT Sept.20131

    Structural reliability and risk analysis

    of «offshore structures»By Torgeir Moan, CeSOS and Department of Marine Technology, NTNU

    T.Moan MARE WINT Sept.20132

    List of content Introduction

    - Facilities

    - Regulatory framework

    - Accident/failure experiences

    - Safety Management

    Structural Reliability Analysis- Introduction

    - Estimation of failure probability of components

    - Uncertainties in Load effect (S) and Resistance (R)

    - System reliability- Time variant Reliability

    - Summary of Reliability methods

    - Practical use of Structural Reliability Analysis

    - Guidelines for Reliability Analysis

    Reliability -base-Calibration of codes for new applications

    - Relation between prob. Of failure and safert factors

    - Reliability based Calibration of safety factors

    Fatigue reliability

    - Background

    - Fatigue life models (based on SN- and Fracture Mechanics)

    - Reliability updating approaches

    T.Moan MARE WINT Sept.20133

    List of content - continued

    Fatigue reliability - continued- Inspection scheduling

    - Calibration of fatigue design criteria

    - Fatigue reliability of gear components

    Quantitative r isk assessment- Risk Analysis Framework

    - Internal and external hazards

    - ALS design check

    - Ship Collision risk

    - Accidental Actions on wind turbines

    T.Moan MARE WINT Sept.20134Wind turbines vs other marine structures

    Facilities for wind vs oil and gas technology

    • Number of units – one of

    a kind versus mass

    production.

    • Safety issues:

    No hydro carbons and

    people on board wind

    turbines

    • The wind energy sector is

    a “ marginal business”

    • Return are more sensitiveto IMMR (O&M) costs

    (access)

    Integrating

    knowledge

    4Introduction

  • 8/20/2019 083 Moan Structural Reliability

    2/22

    T.Moan MARE WINT Sept.20135

    Regulatory framework - general

    5

    to avoid:

    • Fatalities or injury

    • Environmental damage

    • Property damage

    Regulatory regime (depends on economy; accident potential):

    Regulatory principles

    - Goal-setting viz. prescriptive

    - Probabilistic viz. deterministic

    - First principles viz.

    purely experientialOverall stabilit y Strength Escapeways/lifeboats

    Offshore oil and gas Wind turbines

    - National regulatory

    bodies;

    - Industry: API, NORSOK,

    - Classification soc.

    - ISO/IMO

    - National Regulatory

    bodies

    - Classification societies ??

    - IEC

    Introduction

    T.Moan MARE WINT Sept.20136

    Introduction

    Experiences

    Oil and gas platforms- significance of the oil and gas industry to the world econmy

    - need for technology development for deeper water, challenging

    natural and industrial environment,…

    - ageing facilities

    Wind turbines

    CeSOS NTNU

    Gathering of experiences – development of procedures/methods/data

    Failure - and accident data

    Safety management procedure- safety criteria, (limit states) – including accidental limit state

    - risk and reliability analysis of design, inspection/monitoring

    Methods (hydrodynamics, structural analysis)

    Data (strength data for tubular joints)

    5

    T.Moan MARE WINT Sept.20137

     A Case of structural fai lure - due to ” natural hazards” ?

    Severe damage caused by

    hurricane Lilli in the Gulf of 

    Mexico

    Technical-physical causes:Observation: Wave forces exceeded the

    structural resistance

    Human – organizational factors:

    Design

    - Inadequate wave conditions or load calculation

    or strength formulation or safety factors

    Fabrication deficiencies

    due to

    - inadequate state of art in offshore

    engineeringor,

    - errors and omission during

    design or fabrication!

    CeSOS NTNU

    6Introduction

    T.Moan MARE WINT Sept.20138

    a) Alexander L. Kielland – fatigue

    failure, progressive failure and

    capsizing, North Sea, 1980

    c) Piper Alpha fire and explosion,

    NorthSea, 1988

    b) Ocean Ranger, flooding and capsizing,

    New Foundland, 1982.

    (Model during survival testing)

    d) P - 36 explosion, flooding and

    capsizing, Brazil, 2001

    Lessons learnt from total losses of platformsIntroduction

  • 8/20/2019 083 Moan Structural Reliability

    3/22

    T.Moan MARE WINT Sept.20139

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

        B    l   o   w   o   u    t

       C   o    l    i   s    i   o   n    /   c   o   n    t   a   c    t

        D   r   o   p   p   e   d    o    b    j    e   c    t

        E   x   p    l   o   s    i   o   n    F    i   r   e

       G   r   o   u   n   d    i   n   g 

        S   p    i    l    l    /   r   e    l   e   a   s   e

        S    t   r   u   c    t   u   r   a    l    d   a   m   a   g    e

       C   a   p   s    i   z   e    /    f   o   u   n   d   e   r    i   n   g     /    l    i   s    t

    Mobile

    Fixed

    (World wide in the period 1980-95, Source: WOAD 1996)

     Accident experiences for mobi le drill ing and

    fixed production platforms(Number of accidents per 1000 platform years)

    Operational errors

    Design or 

    Fabricationerrors

    CeSOS NTNU

    7Introduction

    T.Moan MARE WINT Sept.201310

    In-service experiences with cracks infixed offshore platforms (See Vårdal, Moan et al, 1997...)

    Data basis

    - 30 North Sea platforms, with a service time of 5 to 25 years

    - 3411 inspections on jackets

    - 690 observations of cracks

    The predicted frequency of crack occurrence was found

    to be 3 times larger than the observed frequency; i.e.

    conservative prediction methods

    On the other hand:

    - Cracks which are not predicted, do occur.

    Hence, 13 % of observed fatigue cracks occurred in jointswith characteristic fatigue life exceeding 800 years; due to

    - abnormal fabrication defects

    (initial crack size ≥ 0.1 mm !)

    - inadequate inspection

    CeSOS NTNU

    8Introduction

    T.Moan MARE WINT Sept.201311

    Failure Rates and Down Times of Wind Turbines

     Availability- 96 - 98 % on land

    - 80 % for early wind

    farms offshore

    -Need for robust design,(reliable and few

    components) &

    smart maintenance,

    but also improved

    accessibility

    - Larger turbine size?

    ( > 5 - 20 MW)

    Courtesy:

    Fraunhofer 

    - Predict,

    monitor and

    measure degradation

    (Courtesy: Fraunhofer)

    Introduction

    T.Moan MARE WINT Sept.201312

    Risk Control Measures

    Cause of failure Safety measure

    Inadequate design check to

    account for normal variability

    −Increase safety factors or use

    lower Rc and higher Sc

    Human error and omission

     ─ Design

     ─ Fabrication

     ─ Operation

    Unknown phenomena

    In general:

    -improve the quality of the initial job.-implement proper QA/QC

    −possible ALS design check

    − ALS design check

    R&D

    Introduction

  • 8/20/2019 083 Moan Structural Reliability

    4/22

    T.Moan MARE WINT Sept.201313

    Safety management (ISO 2394, ISO19900, etc)

    ULS

    FLS: D = Σni/Ni ≤ Dallowable ALS

    • Measures to maintain acceptable risk

    - Life Cycle Approach

    design, fabrication and operational criteria

    - QA/QC of engineering design process

    - QA/QC of the as-fabricated structure

    - QA/QC during operation

    (structural inspection )

    - Event control of accidental events

    - Evacuation and Escape

    CeSOS NTNU

    n ro uc on

    T.Moan MARE WINT Sept.201314

    Safety with respect to- Fatalities

    - Environmental damage

    - Property damage

    Floatability / stability

    Structural strength of the hull

    Strength of (possible)mooring system

    Escapeways and

    lifeboatstationes etc for evacuation

    Regulatory requirements:

    - National Regulatory bodies;

    (MMS, HSE, NPD

    - Industry : API, NORSOK,…

    - Class societies/IACS

    - IMO/ISO/(CEN)

    OR

    model

    tests

    Introduction

    T.Moan MARE WINT Sept.201315

    Safety cri teria for design and reassessment(with focus o n structural failure modes) ISO

    Limit states Physical appearance

    of failure mode

    Remarks

    Ultimate (ULS)

    - Ultimate strength of

    structure, mooring or

    possible foundation

    Component design check

    Fatigue (FLS)

    - Failure of welded joints

    due to repetitive loads

    Component design check

    depending on residual

    system strength and

    access for inspection

     Accidental co llapse ( ALS)

    - Ultimate capacity1) of

    damaged structure with

    “credible” damage

    Platethick-

    ness

    Collapsed

    cylinder 

    Jack-up collapsed

    Fatigue

    crack

    CeSOS NTNU

    10Introduction

    T.Moan MARE WINT Sept.201316

     Accidental Col lapse Limit State for

    Structures (NPD, 1984)

    • Estimate the damage due to accidental loads (A) at

    an annual exceedance probability of 10-4

    - and likely fabrication errors

    • Check survival of the structure with damage

    under functional (F) and environmental loads (E) -

    at an annual exceedance probability of 10-2.

    • Load & resistance factors equal to 1.0E

    P,F

    P,F

     A

    CeSOS NTNU

    11Introduction

  • 8/20/2019 083 Moan Structural Reliability

    5/22

    T.Moan MARE WINT Sept.201317

    Ocean

    environment

     Analysis for demonstrating compliance with

    design criteriaFunctional loads

    - dead loads

    - -pay loads

     Accidental

    loads

    Piper Alpha

    Responseanalysis- dynamic v.s.quasi-static/quasi-dynamic

    Sea loads

    Designcriteria

    Loadeffects

    Collapseresistance

    SN-curve/fracturemechanics

    Ultimate

    globalresistance

    Extreme

    moment (M)andaxialforce (N)

    Localstressrangehistory

    Extremeglobalforce

    Designcheck

    ULS:

    FLS:

     ALS :

    Damaged

    structure

     Analysis of damage

    Industrial

    and

    Operational

    Conditions

    CeSOS NTNU

    Defined probability level

    12Introduction

    T.Moan MARE WINT Sept.201318

    Risk and reliability assessment

    Definition• Reliability:

    Probability of a component/system to perform a required function

    • Risk:

    Expected loss (probability times consequences)Recognised in the oil and gas industry

    - calibration of LFRD design approaches (1970s, 1980s)

    - RBI (Risk/Reliability Based Inspection)

    (methods in 1980s-; industry adoption in 1990s-)

    rational mechanics methods for design of structures, foundations loads and resistances are subjected to uncertainties

    - normal variability and uncertainty; gross errors

    design is decision under uncertainty :

    - rational treatment of uncertainty (range, mean+st.dev. etc)- implying probabilistic methods

    especially in connection with new technology, no standards

    CeSOS NTNU

     ALARP

    principle

    13Introduction

    T.Moan MARE WINT Sept.201319

    Estimation of Failure Probability of components A s imple example: The probability of failure , Pf , for

    a time-invariant reliability problem, is

    - R is the resistance

    - S is the loading

    The main issues in the following will be to

    - describe the R and S as random variables- derive the expression for the Pf and generalise it for more

    complex problems

    Notional

    probaility,

    not true, actuarial

    [ ] [ ]

    [ ]   ( )f 

    P P R S 0 P ln R lnS 0

    .... P R ' S' 0 '

    = − ≤ = − ≤ =

    = − ≤ = Φ −β

     22

    ln

    2121ln

    21

    21ln

    S  R

     R

    S  R

     R

     R

    V V V V 

     

     

     

     

    =

    μ 

    μ 

    μ 

    μ 

     β 

    where Φ ( ) is the standard normal density function

    φ(u)

    ( ) ( )u

    u t dtφ 

    −∞

    Φ = ∫

    T.Moan MARE WINT Sept.201320

    β Pf  Pf    β

    1

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    6

    1.59 ·10-1

    2.27·10-2

    6.21·10-3

    1.35·10-3

    2.33·10-4

    3.17·10-5

    3.40 ·10-6

    2.90 ·10-7

    1.90·10-8

    1.00·10-9

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    10-8

    10-9

    10-10

    1.29

    2.32

    3.09

    3.72

    4.27

    4.75

    5.20

    5.61

    6.00

    6.36

    Relation between Pf  and β

    1.2 1.4( ) 10  β  β    −Φ − ≈= f  P  A rough approximation:

    Estimation of Failure Probability

  • 8/20/2019 083 Moan Structural Reliability

    6/22

    T.Moan MARE WINT Sept.201321

    General methods to determine PfThe probability of failure , Pf , for

    a time-invariant reliability problem, is

    ( ) ( )

    ( ) 0

    0 ( )

    ⎡ ⎤= ≤ = = Φ −⎣ ⎦   ∫∫ f  g 

     P P g f d   β x

    x

    x x x

    - g(x) is the limit state function, i.e. g(x) = R - S

    - X is the set of n random variables

    - f x(x) in the joint probability density of the vector X.

    - Pf is determined by calculating the integral byMC simulation or FORM/SORM methods

    (Avoid FOSM methods etc)

    Main issue: Modelling load effects and

    resistance in terms of: f x(x)

    Notional

    probaility,

    not true, actuarial

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201322

    General formulation for two variables An approach which represents a first step towards a general formulation can be based on

    Volume: f RS(r,s)drds is per definition the

    probability that s and r lies in the interval

    (s, s+ds) and (r, r+dr), respectively

    Formulation of failure probability , which can be generalized

    NOTE:

    The probability density function for independent variables is )()(   s f r  f S  R

      ⋅

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201323

    FORM/ SORM

    Instead of integrating the probability density in the domain of physical variable

    R and S, the integral may be transformed into a domain of independentstandard normal variables, u1 and u2. This is done here for the simpleproblem where

    Transformation of variables

    Transformtion of failure function

    1

    2

     R

     R

     RU 

    S U 

    μ 

    σ 

    μ 

    σ 

    −   ⎫= ⎪⎪⎬

    − ⎪=⎪⎭

    [ ] [ ] [ ]P P R S P R S 0 P M 0f  = ≤ = − ≤ = ≤

    ( )2, R R R N  μ σ =   ( )2,S S S N  μ σ =

    '

    1 2( ) ( ) R R S S  M R S U U σ μ σ μ  = − = + − +

    1

    ( ) ( )

    ( ( ))−

    Φ =

    = Φ x

     x

    u F x

     x F u

    In general transformation of (independent variables)

    x into variables u is :

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201324

    ( )d cfr. previous definitionμ − μ

    = → βσ + σ

    R S

    2 2

    R S

    1 2' '

    '

    1 2 1 2 1 2 1 2

    ( 0) ( 0)

    0 ( ) ( ). ( ) ( ) f U U  M M 

     P P M f u u du du u u du duφ φ β ≤ ≤

    ⎡ ⎤= ≤ = = = Φ −

    ⎣ ⎦   ∫∫ ∫∫

    Distance d:

    Failure p robability

    The same answer as before.

    The advantage of this method is when multiple variables are needed.

    R,S space U-space

    Estimation of Failure Probability

  • 8/20/2019 083 Moan Structural Reliability

    7/22

    T.Moan MARE WINT Sept.201325

    Monte Carlo simulation

    Instead of using integration, the failure probability may be determined by

    using Monte Carlo simulation and interpreting probability as relative

    frequency.

    This approach is described in the following for the simple case specified by:

    with independent variables R and S given by probability density function f R(r)

    and f S(s), respectively.

    pf may be determined as follows:

    1) Generate n sample of pair (R,S) from f R(r) and f S(s), respectively

    [ ]0= ≤

    = − f  p P M 

     R S 

    ( )

    ( )

    ( )

    ( )

     1 1

    2 2

    3 3

    n n

    ˆ ˆ r , s

    ˆ ˆ r , s

    ˆ ˆ r , s

    ˆ ˆ r , s

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201326

    Samples for a variable X with a distribution function FX(x) or 

    a density f X(x) may be generated by , where pi is a

    sample of a variable which is uniformly distributed in the interval

    [0,1]. can then be obtained by using tables of random number

    or standard subroutines in computers.

    2) Determine for all pairs.

    3) Determine no. of cases (k) where - which correspond to failure.

    Then

    This estimate is accurate for large n. to determine a pf of (10-4-10-6)requires an n of the order (10-5-10-7)

    { }iˆ  x( )1−=i X iˆ ˆ  x F v

    iˆ v

    = −i i iˆ    ˆ ˆ r s

    0

  • 8/20/2019 083 Moan Structural Reliability

    8/22

    T.Moan MARE WINT Sept.201329

    System reliability System failure may imply fatalities

     A system may

    - fail due to overload or fatigue failures (at

    multiple crack initiation sites), but may have- reserve capacity beyond first component

    failure

    Simplified system model for frame type

    structures:

    Pf,SYS = P[FSYS]

    = P[FSYS(U)] + Σ P[FSYS(U)| Fi]    P [Fi]

    - P [Fi] probability of fatigue failure

    - P[FSYS(U)|Fi] conditional probability of ultimate failure

    [ ]   ( )( )(...)1 1

    0= =

    ⎡ ⎤= = ≤⎢ ⎥

    ⎣ ⎦∪∩   j N k 

     FSYS i

    i j

     P P FSYS P g 

    P[FSYS(U)]=P[Rsys - Ssys  0)]

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201330

    Illustration of calculation of failure probability for a time-

    variant load and resistance

    Estimation of Failure Probability

    T.Moan MARE WINT Sept.201331

    Failure probability in time period, T:

    Example:

    Wave loads (due to inertia forces) in North Sea:

    (ratio of loads prop. to ratio

    of wave heights)

    VS = 0.30 for both cases (incl. statistical + model uncertainty)

    Resistance

    μR = 100, VR = 0.10

    For lognormal variables

    [ ]= ≤ max f P P R S

    ( ) )100(8.01 maxmax   yearsS  year S    ⋅≈

    )100(8.0

    )1(   yearsSmax year Smaxμ μ 

      ⋅

    μ  s  yearsmax( )100 50= 40)1max( = year  sμ 

    ( ) β ′−Φ= f  P   ln

    22

    S  R

     R

    V V   +≈′

    μ  β 

    18.2)100(   =′   years β   246.1100:    E  years P  f 

    89.2)1(   =′   year  β    393.11:    E  year  P  f 

    7~3

    1093.1

    21046.1

    )1(

    )100(

     

     

    =

     year  P 

     years P 

     f 

     f 

    What is the probability of 

    failure in 20 years compared

    to the failure prob. in 1 year ?

    T.Moan MARE WINT Sept.201332

    Structural Reliabili ty Analysis Procedure- Aim: Estimate Pf 

    - Formulate the reliability problem (time invariant problems)

    - Define failure function: g( ) ≤ 0

    - Define properties of random variables xi

    (type of distribution, mean value, st. dev.)

    - Calculate

    - Failure probability, Pf  (reliability index, β)

    by appropriate method (FORM/SORM,

    Monte Carlo simulation)

    - Sensitivity of Pf (β) to parameter, θ

    - Time variant reliability

    - Systems reliability

    - Uncertainty modelling

    - random variables

    - stochastic process

  • 8/20/2019 083 Moan Structural Reliability

    9/22

    T.Moan MARE WINT Sept.201333

    Uncertainties in Load effects (S) and Resistance

    (R): Classification of uncertainties according to

    their “nature”

    Normal Uncertainties or, Variability

     ─  Fundamental (natural) Variability

    Example - Wave elevation/

    - Loading/

    - Load effects

     ─  Lack of Knowledge

    e.g. - model uncertainty

    - statistical uncertainty (due to limited data)

    Wave

    elevation

    (loads) time

    T.Moan MARE WINT Sept.201334

    Characterisation of a random variable, X

    - Mean, μx

    - ; or  

    - probability density function (f X(x) /distribution (FX(x))

    Fundamental uncertainty in wave elevation and corresponding wave-induced loads and load effects by stochastic methods

    Model uncertainty, X of a method:

    Estimate by obtaining a sample of:

     ─  Predicted value (for a given set of parameters: PV

     ─  True value (e.g. based on obs. or accurate analyses): TV

    Model uncertainty for observation i:

    Xi = TVi/PViEstablish statistics for X by a sample {Xi}n

    NOTES:

    - Gross Errors are not considered in SRA as such

    - Unknown phenomena that can cause failures, cannot be treated with

    probabilistic methods simply because they are unknown !

     x

     xCOV μ 

    σ =

    ValueMean

    Dev. Stand.

    T.Moan MARE WINT Sept.201335

    Uncertainties according to their 

    physical source – associated with wave loads

    - wave height, period, current velocity

    (including variability, limited amount of data, etc.)

    - wave theory

    - drag and mass coefficient

    Wave height: H100(100 year wave height)

    Mean uncertainty ~ 1.0

    Wave load model based on regular wave – relating to API/ISO

    Mean uncertainty ~ 0.9 - 1.1 (1.0)

    COV ~ 0.25 - 0.35

    Total uncertainty may be estimated by:

    F = ψ .c’.Hα

    where ψ is the model uncertainty and the uncertainty in wave

    height is represented by H.

    ⎩⎨⎧

    −==

    GoM 

     Sea NorthCOV 

     H 

     H 

    20.015.0

    15.010.0

    μ 

    σ 

    T.Moan MARE WINT Sept.201336

    Estimation of uncertainties of extreme loads on jackets

    (simplified approach)

    Design Wave Approach

    • Kinematics : Stokes 5th order theory

    particle velocity particle acceleration

    • Wave loading

     API (ISO) procedure will be referred to here

    18m

    →   F  

    c=18 m

    H=30m

    70m

    1F C v v C D aD M2 4

      c H (approximation by regression fit)

    π= ×ρ × × + × × ×

    α≈ ×

    2

  • 8/20/2019 083 Moan Structural Reliability

    10/22

    T.Moan MARE WINT Sept.201337

    Estimate of uncertainty in the global wave load on jackets

     – base shear force of the Magnus and Tern jackets:

    i) predicted(F

    )measured(iF

    μ 

    σ 

    Model uncertainty =

    Mean = 1.06

    COV = ≡ 25%

    The Magnus platform

    CeSOS NTNU

    Keulegan-Carpenter number 

    ISO 19900load analysis procedure

    21

    T.Moan MARE WINT Sept.201338

    Modelling of uncertainty in ult imate strength of beam-column

    X A - parameter uncertainty in cross-section area

    Xfy - parameter uncertainty in yield strength f YXR- model uncertainty = Rtrue/Rpred:

    Mean :

    CoV :

    Model uncertainty of ECCS method for strength of tubular columns

     N N

     fy A Rc pred 

     ynom

     y

    nom

     Rnom ynom

     pred  y

    u

     R y

     pred  y

    u

    uu

     X  X  X  R

     f 

     f 

     A

     A X  A f 

     f 

     f  A X  f 

     f 

     f  A f  N  R

    =

    =

    )(

    R X1.00+0.10 for 0 2.0μ = λ < λ ≤

    <

    =

    0.26.0 for 08.0

    6.0 for 05.0

    λ λ 

    λ  R X 

    Slenderness, λ

    u

     y  pred

     f 

     f 

    ⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

    T.Moan MARE WINT Sept.201339 T.Moan MARE WINT Sept.201340

    0 2  4  60 

    0  2  4  6 

    β LN 

    β M 

    β LN 

    β M 

    cov (S)  cov  (S) 

    0.2 

    0.4 

    0.2 

    0.4 

    cov (R) = 0.1, cov (S)-variable  cov (R) = 0.2, cov (S)-variable 

    β LN  :  lognormal  R and S  β M : R lognormal and S lognormal 

    Tail sensitivity

    (not analytical !)

  • 8/20/2019 083 Moan Structural Reliability

    11/22

    T.Moan MARE WINT Sept.201341

    Relation between reliability measure, (Pf ) and

    Safety Factors (γR , γS ) in ULS design check

    ( )2 2

    1 .2 1 .4

    2 2

    ln

    ln /( )

    ....... ( ) ( ) 10 ;

     β 

    μ μ 

     β 

      −

    ≈ Φ −⎡ ⎤⎣ ⎦+

    = Φ − = Φ − ≈+

    = ≤   R S  f  R S 

     R R S S 

     R S 

    (B   γ γ   /B )

    V V 

    V V 

     P P R S 

    Resistance R

    Load effect S

    - Rc ; Sc - characteristic resistance and load effect

    -   γR ; γS - partial safety factors

    Reliability analysis:

    R and S modelled as random variables;

    e.g. by lognormal distributions

    Semi-probabilistic design code:

    c R S cR /γ γ S≥

    Goal: Implied Pf ≅ Pft

    pdf 

    R,S

    μ - denotes mean valueσ - denotes st. deviationV = σ/μ – coefficient of variationΦ(-β) = standard cumulative normal distr.

     R R C  B Rμ   =  S S C  B S μ   =

    μ μ  R R S S V ); ,V )( ( 

    ≥ < R   S 

    ;B B   1 1

    14

    0.85 0.7 log β   ≈ −   f  P 

    T.Moan MARE WINT Sept.201342

    Reliability - based ULS requirements

    R — resistance

    D, L, E — load effects due to• permanent

    • live load effects

    • environmental

    Reliability-based code calibrations:

    Offshore oil and gas

    - NPD/DNV; API/LRFD;

    - Conoco studies of TLPs ;

    Wind turbines

    -IEC

    RC/γR > γDDC + γLLC + γEEC Goal: The Implied

    Pf = P(R>D+L+E)≅

    Pft

    Pf depends upon the

    systematic and random

    uncertainties in

    R; D, L, and E

    Design equation

    CeSOS NTNU

    β

    βT

    WSD

    LRFD

    Load ratio, Ec/(Lc+Ec)

    15

    T.Moan MARE WINT Sept.201343

    • Initial and modified inspection/

    monitoring plan

    - method, frequency

    Safety against fatigue or other degradation

    failure is achieved by design, inspection and repair 

    • Design criteria: FLS

     ALS

    .... 0.1 1.0

    = ≤

    = −

    ∑   i allowablei

    n D D

     N 

    Brace

    wall

    Ground

    Chordwall

    CeSOS NTNU

    NDE diver inspection or LBB

    • Repair (grinding, welding,..steel…)

    16

    See Overview by Moan, in J. Structures and Infrastructureengineering, Vol.1, No.1 March 2005, pp. 33-62

    T.Moan MARE WINT Sept.201344

    In-service Experiences

    Fatigue behaviour 

    Fatigue depends on local geometry

    - Cracks start to grow at ”hot spot”

    points, with high stress concentration

    - Initial crack depth of 0.1 mm

    - driven by cyclic tensile stresses

    Cracks can be detected and repaired.

    - Mean detectable crack depth:

    NDE: 1-2 mm

    Close visual inspection: 10-20 mm

    Fracture or ductile tearing under given

    extreme stress

    Total loss if the structure lacks residualstrength after a member failure

    Tubular 

     joints

    Time

       S   t  r  e  s  s ,     σ S

    Fatigue failure:

    - through thickness

    crack

    - member failure

    - visible crack

  • 8/20/2019 083 Moan Structural Reliability

    12/22

    T.Moan MARE WINT Sept.201345

    Experiences with cracks infixed offshore platforms (See Vårdal, Moan et al, 1997...)

    Data basis

    - 30 North Sea platforms, with a service time of 5 to 25 years

    - 3411 inspections on jackets- 690 observations of cracks

    The predicted frequency of crack occurrence was found

    to be 3 times larger than the observed frequency

    On the other hand:

    - Cracks which are not predicted, do occur.

    Hence, 13 % of observed fatigue cracks occurred in joints

    with characteristic fatigue life exceeding 800 years; due to

    - abnormal fabrication defects (initial crack size ≥ 0.1 mm !)- inadequate inspection

    T.Moan MARE WINT Sept.201346

    In-service experiences: Comparison of fatigue life

    predicted by old and new method

    T.Moan MARE WINT Sept.201347

    In-service experiences:

    Corrosion

    • affects ultimate and

    fatigue strength

    - plate thinning effect

    - crack growth rate

    • no or damaged coating

    or cathodic protection

    • corrosion rate for

    general corrosion:

    0.1 – 1.0 mm/year;

    Splash zone:

    • Corrosive environment /

    difficult access

    T.Moan MARE WINT Sept.201348

    • Fatigue loading

    - Weibull distribution of stress ranges

    (with shape and scale parameters B and A)

    • Fatigue resistance

    - SN approach- Fracture mechanics model:

    a - crack depth

    N - number of cycles

    c, m - material parameters

    • Deterministic vs . probabilistic approach

    - Reliability model

    Time

       S   t  r  e  s  s ,     σ S

    Stress,σ

    f x(x)f x(x)

    xcx

    Prob. density

    Fatigue life models

  • 8/20/2019 083 Moan Structural Reliability

    13/22

    T.Moan MARE WINT Sept.201349

    Fatigue failure expressed by SN – formulation

    Load effect (stress range), S

     – Fs(s) = 1 – exp(-(s/A)B)

     – Total number of cycles in period, N0

    Resistance, SN formulation (simplified)

    N = KS-m

    K, m: material, local geometry dependent

    Cumulative damage:

    where sref = A(lnNref )1/m

    often Nref = N0(108 in 20 years – e.g. or wave loads)

    ( ) Γ  ⎛ ⎞= = = + =⎜ ⎟⎝ ⎠

    ∑   m m mi 0 0 0 eqi

    n N N N  m D E S A 1 S 

     N K K B K 

    T.Moan MARE WINT Sept.201350

    Fatigue reliability baed on SN formulationConsider 

    failure probability in a given (service time) period:

     Assume

    m, B, No deterministic

    so, k and  Δ lognormal distribution

    ( )  ( )

    m

    i o o

    m B

    i o

    n N s mDB N K  ln N

    = = Γ +∑   1

    [ ]f P P D= ≥ Δ

    ( )

    ( )( )

    o

    m B

    o

    m

    o o

    s K 

    P

    K ln Nm N s

    B

    V m V V

    X X

     

    where the notation is the modal value of

    Δ

    = Φ −β

    ΔΓ +

    β =+ +

    i

    2 2 2

    1

    T.Moan MARE WINT Sept.201351

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    0 5 10 15 20Time

       F  a

       i   l  u  r  e 

      p  r  o   b  a   b   i   l   i   t  y

    Cumulative failure probability

    •Probability of failure in interval t +Δt , given ithas survived up to t 

    •Suitable for time-dependent problems

    •i.e. implicitly accounts for degradation of

    structure!

    Reliability model (cont…)

    Hazard rate, h R(t )

    Implied reliability

    Ca

    se

    Δ

    allow

    able

    Service

    life

     P f 

    Annual

    hazard

    rate h( t)

    1 1 10 –1 10 –2

    2 0.33 10 –2 2*10 –3

    1E-05

    1E-04

    1E-03

    1E-02

    1E-01

    1E+00

    0 5 10 15 20Time

       F  a

       i   l  u  r  e 

      p  r  o   b  a   b   i   l   i   t  y

     Annual hazard rate

    Cumulative failure probability

    ( )( )

    1 ( ) R

    t h t 

     F t =

     F (t )  – distribution of time to failure

     f (t )  – probability density function

    If F (t ) is the fatigue P  f accumulated up to t 

    and f (t ) the “instantaneous”  Pf  evaluated at t ,

    Then

    h R(t ) = Annual hazard rate or annual fai lure probabil ity for fat igueT.Moan MARE WINT Sept.201352

    Reliability level as a function of uncertainty level

    1.0E-06

    1.0E-05

    1.0E-04

    1.0E-03

    1.0E-02

    1.0E-01

    1.0E+00

    1 2 3 4 5 6 7 8 9 10

    Fat igue de sign factor  

       F  a   i   l  u  r  e 

      p  r  o   b  a   b   i   l   i   t  y

    Cumulative failure probability

    Cumulative, stdv(lnA )=0.15

    Cumulative, stdv(lnA )=0.3

     Ann ual fa ilure pro bability

     Ann ual, std v(lnA )=0.15

     Ann ual, std v(lnA )=0.3

    Fs(s) = 1 – exp(-(s/A)B)

    .... 0.1 1.01/

    = ≤

    = −=

    ∑   i allowablei

    allowable

    n D D

     N 

     FDF D

  • 8/20/2019 083 Moan Structural Reliability

    14/22

    T.Moan MARE WINT Sept.201353

    Fracture mechanics model

    Basic model

    Fatigue failure event:

    g(x) = acr  – a(C, m, lnA, B) ≤ 0

    C, m - material parameters

    lnA, B - load effect (stress) parameters

    NO,  Δ - deterministic

    Reliability calculation by FORM/SORM or

    Monte Carlo Simulation

    [ ]f g( ) 0

     p P g( ) 0 f (x)dx ( )≤

    = ≤ = = Φ −β∫∫x

    x

    T.Moan MARE WINT Sept.201354

    Reliabili ty model (cont…)

       P  r  o   b  a   b   i   l   i   t  y

       d  e  n  s   i   t  y ,

         f     A             (    a             )

    Plate thickness a(t ) – crack depth

    Time in-service

    Calculated probability of through thickness crack(without updating)

    aupd (t i)

    a0t i

    a(t i)

     P r e d i c

     t e d  m e a

     n  c r a c

     k  s i z e

       P  r  o   b  a   b   i   l   i   t  y

       d  e  n  s   i   t  y ,

         f     A             (    a             )

    Plate thickness a(t ) – crack depth

    Time in-service

    Calculated probability of through thickness crack(without updating)

    aupd (t i)

    a0t i

    a(t i)

     P r e d i c

     t e d  m e a

     n  c r a c

     k  s i z e

    [ ]( ) 0 f  P P M t = ≤

    Fatigue failure probability, P  f 

    ( ) ( ) f t a a t  = −

    Often used

     β  – reliability index

    Φ  – standard normal distribution

    ( ) f  P   β = Φ −

    Predicted

    crack size

    Final crack size

    (plate thickness)1

    1 2 2 1 2

    0( ) (1 )2m m m m   mma t a C S Y N  π 

    −   −⎡ ⎤= + −⎣ ⎦

    For special case: Y (a)=constant

    T.Moan MARE WINT Sept.201355

    Inspection quality (POD curves)• Non-destructive examination

    • Magnetic Particle Inspection

    • Eddy Current (EC)

    • Visual inspection (within 0.5m

    distance), depending upon access

    to crack site

    • (Fujimoto et al., 1996, 1997)

    based on trading vessels)ACFM in air

    Depth (mm)

    (length based on

    a/2c=0.2)

    Method Tubular joint in

    sea water 

    Butt

    weld in

    air 

     ACFM (Alternate

    Current Field

    Measurement)

    0.70

    (3.5)

    0.21

    (1.05)

    Magnetic

    Particle Insp.

    0.89

    (4.45)

    Not

    reported

    Eddie Current2.08

    (10.4)

    0.32

    (1.6)

    In-service MPI &EC (Moan et al,

    1997)

    1.95(9.75)

    T.Moan MARE WINT Sept.201356

    Failure probabilityPf  (t) = P[ac – a(t) ≤ 0 ]

    ac = critical crack size

    Updating of failure probability based on

    Inspection ( Madsen, Moan, Skjong,Sørensen, ….): :

    Example: no crack is detected:

    Pf,up (t) = P[ac – a(t) ≤ 0 | aD – a(t) ≥ 0]

    = P[F |IE] = P[F IE]/ P[IE]

    ac = critical crack size

    aD = detectable crack size

    where F AD (a) = POD(a)

    • Known outcomes in-service

    vs uncertain outcomes at the design stage• Updating late in the service life has larger 

    influence

    Reliability based inspection planning w.r.t. fatigue

    Mean detectable

    crack depth of 1.5 mm

    Pf 

    CeSOS NTNU

    17

  • 8/20/2019 083 Moan Structural Reliability

    15/22

    T.Moan MARE WINT Sept.201357

    Target level, pfsysT for global failure and p fT (βT)for fatigue reliability of a specific joint

    P [Fi] P [FSYS(U)|Fi] = pfsysT

    Fatiguefailureprobabilityin theservice life

    Conditionalannualultimatefailureprobability

    Target

    Level forglobal failure ofthe structure;Depending onthe potential of - Fatalities- Pollution- Property loss

    P [FSYS(U)|Fi] = Φ(-βFSYS|Fi)

    Φ(-βT) = P [Fi] = pfsysT / P [FSYS(U)|Fi] =

    βTGlobal failure model

    of jacket with

    member (i) removedT.Moan MARE WINT Sept.201358

    Inspection sceduling for a welded joint

    based upon no detection of crack during inspection

    0 4 8 12 16 20

    Inspection at time t=8with no crack detection

    Noinspection

       R  e   l   i  a   b   i   l   i   t  y   l  e  v  e   l ,       β

    Time (years)

    1st inspection 2nd inspection

    Target levelfor a given joint

    In-service scheduling of inspections

    to maintain a target reliability level

    Extension of method:- consideration of other inspection events;

    - effect of corrosion etc

    - many welded joints , i.e. system of joints

    ; depending on the

    consequences of failure

    1 .2 1 .4( ) 10

    0.85 0.7 log

     β 

     β 

    −Φ − ≈

    ≈ −

    = f  f  P 

     P 

    CeSOS NTNU

    18

    βT

    T.Moan MARE WINT Sept.201359

    Contribution to cumulative fatigue damage ofwind loads, wave loads and interaction of windand wave loads

    Tubular 

    Joints

    Characteristic fatigue damage

    Raw

    data

    Weibull

    model

    General-

    ized

    gamma

    model

    Leg1-

    Joint20.0881 0.0859 0.0952

    Leg1-

    Joint30.2713 0.2714 0.2862

    Sur12-

    Joint10.2142 0.2069 0.2213

    Leg2-

    Joint20.0876 0.0836 0.0889

    Characteristic fatigue damage

    for different model

    Long term fatigue analysis of multi-planar tubular joints

    In an offshore jacket wind turbine

    Two-parameter Weibull model:

    Fs(s) = 1 – exp(-(s/A)B)

    T.Moan MARE WINT Sept.201360

    Fatigue reliability results:

    Reliability index for welded joints in

     jacket as a function of time. No

    inspection and repair. .0.1corr  R   =

    Reliability index for welded joints in

     jacket as a function of time. ,

    years, mm, mm, and

    mm.

    0.1corr 

     R   =5 pt t   =0.11

     Ra   =

    00.11a   = 2.0

     Da   =

    Fatigue reliability analysis of multi-planar welded

    tubular joints considering corrosion and inspection

    (Source: W.B.Dong et al., diff.papers)

  • 8/20/2019 083 Moan Structural Reliability

    16/22

    T.Moan MARE WINT Sept.201361

    Reliability - based calibration of FLS requirements

    Design criterion :

    FDF - depends upon:

    • consequence of failure

    • inspection quality

    Criterion:

    ( ) ( )   fsysT  P FSYS FF i P FF i P ⎡ ⎤   ⎡ ⎤⋅ ≤⎣ ⎦⎣ ⎦

    FailureConsequence

    Noinspection

    Inspectionin splashzone

    Inspectioninside/topside

    Static determ. 10 (10) 5 (3) 3 (2)

    Fulfills ALSwith onemember failed

    4 (3) 2 (2) 1 (1)

    0 2 4 6 8 10 12 14 16 18 20

    6

    5

    4

    3

    2

    1

    with

    inspection

    no

    inspection

    Δd = 0.1

    Δd = 0.2

    Δd = 0.3

    Time after installation t [year]

       R  e   l   i  a   b   i   l   i   t  y   i  n   d

      e  x        β

    ∑   =Δ≤= FDF/1 N

    nD d

    i

    i

    T.Moan MARE WINT Sept.201362

    Main purpose:

    (1) Check the effects of gearboxon the Torque calculation;

    (2) Check the effects of globalmodel on the contact forcecalculation.

    Time domain based simulation model of 750 kW

    land-based wind turbine Comparison between coupled and decoupled analysis method:

    T.Moan MARE WINT Sept.201363

    • Model for crack propagation:

    Linear elastic fracture mechanics (LEFM) model

    is used:

    ( ) _ m

     II eff da C K dN 

    = ⋅ Δ

    , :C m material parameters, which can be

    determined by experiments;

    :a half crack length;

    : N  cycle numbers;

     _  : II eff  K Δ effective Mode II (shear) stressintensity factor range ; dependent on

    Hardness ; microstructure; friction;

    crack closure

    - Subsurface initiated pitting.

    Gear contact fatigue analysis of a wind

    turbine drive train under dynamic conditions

    (a) Contact model of two gear flanks and

    (b) Equivalent model of two cylinders(Glodez, et al.,1997)

    Schematic of crack propagation

    T.Moan MARE WINT Sept.201364

    Reliability-based gear contact fatigue analysis-

    a frame work

    Reliability as a function of time

    Uncertainties:

    - loading: contact

    pressure

    - Model uncertaintiesin aerodynamic loads,

    global and local struct.analysis

    planet gear 

  • 8/20/2019 083 Moan Structural Reliability

    17/22

    T.Moan MARE WINT Sept.201365

    Summary of reliability methods

    Simple formulae (“lognormal format”)

     ─  Convenient as reference. Note: used in API Code Calibration

    FORM/SORM

     ─  Very efficient

     ─   Approximate and need to be validated

    Monte Carlo method

     ─  Basic method yields “exact” solution if the sample n is largeenough (time consuming)

     ─  Improved efficiency by

    • Importance sampling (but caution is required)

    Combined FORM and MC

     ─  Estimate approximate solution by FORM

     ─  Improve solution by MC, focused on the most important area

    T.Moan MARE WINT Sept.201366

    Practical use of Structural Reliability Analysis

    Choice of method (simple explicit method based on lognormal

    variables - FORM/MC)

    Estimate uncertainties

     ─  Focus on the most important variables/ uncertainties

     ─  Introduce variable to represent uncertainty of the “mechanics”

    model

     ─  Effect of probabilistic model (e.g. pdf)

    Calculate reliability

     ─ Check relative importance/ influence of variables and possiblyimprove uncertainty measures

    Estimation of target level

    T.Moan MARE WINT Sept.201367

    Case-by-case Structural Reliability Analysis

    Reliability-based design

    • New types of structures

    • New use

    Design and inspection planning

    • Integrated design and inspection planning

    Requalification

    • New use

    • New information

    • Damage/subsidence

    • Extension of service life

    T.Moan MARE WINT Sept.201368

    Guidelines for Structural Reliability Analysis

    Content

     – Methods

     – Uncertainty modelling

     – Target levels

    Issued guidelines

     – Det norske Veritas

     – Norwegian Geotechnical Intitute

    Criticism

     – Important to develop such guidelines by an authorized committee

     – The target reliability level should be defined by close calibration to

    acceptable design/ operation practice and properly defined reliability

    methodology.

    Risk Assessment in Offshore Safety

  • 8/20/2019 083 Moan Structural Reliability

    18/22

    T.Moan MARE WINT Sept.201369

    Risk Assessment in Offshore Safety

    ManagementWith respect to

    • Fatalities

    • Environmental

    damage

    • Property damage

    Offshore structures are designed according to approaches which are:

    - Goal-based; rather than prescriptive- Probabilistic; rather than deterministic

    - First principles; not purely experiental

    - Integrated total; not separately (i.e. system consideration)

    - Balance of safety elements; not hardware only

    Critical

    eventFault tree

    Event tree

    NPD Guidelines for

    Quantitative Risk Analysis(1981)

    NPD’s Accidental Collapse

    Limit State (ALS) (1984)

    UK Safety Case (1992)

    T.Moan MARE WINT Sept.201370RISK ANALYSISRISK ANALYSISRISK ANALYSIS

    RISK ESTIMATIONRISK ESTIMATIONRISK ESTIMATION

    Risk Analysis PlanningRisk Analysis Planning

    System DefinitionSystem Definition

    Hazard IdentificationHazard Identification

    Risk PictureRisk Picture

    RiskReducingMeasures

    RiskReducingMeasures

    Frequency

     Analysis

    Consequence

     Analysis

    Risk Acceptance

    Criteria

    Risk Acceptance

    Criteria

     Acceptable Acceptable

    Unacceptable

    Tolerable

    Critical

    eventFault tree Event tree

    Risk analysis framework (oil and gas industry)• Empirical data: Accumulated no. of platform years world wide:

    fixed p latforms: ~ 150 000

    mobi le units: ~ 15 000

    • Theoretical analysis (Fault tree/event tree)

    T.Moan MARE WINT Sept.201371

    Internal hazards:

    Blade pitch and control system faults

    • Blade seize: imbalance loads

    • Shutdown loads: impulse from aerodynamic braking can lead to pitch vibrations

    • What about sensor faults?

    • Does changing the shutdown pitch rate help?

    • Possible instability for TLPWTs (idling with one blade pitched – Jonkman andMatha, 2010)

    Wilkinson et al., 2011

         P     i     t    c     h    s    y    s     t    e    m

    -200 -150 -100 -50 0 50 100 150 200-1.5

    -1

    -0.5

    0

    0.5

    1

    1.5x 10

    4

       T  o  w  e  r

       T  o  p   B   M   Y ,   k   N  m

    TLP, EC 5

    time - TF, s

     

    B

    C

    Shut downturbine quickly

    Faultoccurs

    Continueoperating withfaulted blade

    T.Moan MARE WINT Sept.201372

    External hazards: Accidental Loads

    1Explosion loads(pressure, duration - impulse)

    scenarios

    explosion mechanics

    probabilistic issues⇒ characteristic loads for design2 Fire loads

    (thermal action, duration, size)

    3 Ship impact loads(impact energy, -geometry)

    4 Dropped objects

    5 Accidental ballast

    6 Unintended pressure

    7 Abnormal Environmental loads8 Environmental loads on platform

    in abnormal floating position

    A id t l C l l Li i t St t

  • 8/20/2019 083 Moan Structural Reliability

    19/22

    T.Moan MARE WINT Sept.201373

     Accidental Col lapse Limit State

    relating to structural strength (NPD,1984, later NORSOK)

    • Estimate the damage due toaccidental event (damage, D or action, A) at an

    annual probability of 10-4

    - apply risk analysis to establishdesign accidental loads

    • Survival check of the damaged structure as a whole,considering P, F and environmental actions ( E )

    at a probability of 10-2

    Target annual probability of total loss:

    10-5 for each type of hazard

    P, F

     A

    P, F

     A

    P, FP, F

    E

     A

    T.Moan MARE WINT Sept.201374

    Estimating the Accidental Event

    Theory based on:

    - accidental events originate from a small fault and develop in a sequence of

    increasingly more serious events, culminating in the final event,

    - it is often reasonably well known how a system will respond to a certain event.

    Damage or accidental load with annual probability of occurrence: P = 10-4

    Need homogeneous empi rical data of the order 2/p = 20 000 years

    to estimate events by empirical approach

     Accumulated plat form years world wide:

    - fixed platforms: ~ 180 000

    - mobile units: ~ 20 000

    - FPSO: ~ 2 000

     Account of all measures to reduce the probabil ity and c ons equences of the hazards

    T.Moan MARE WINT Sept.201375

    Ship collisions

      Types and scenarios

     – according to

    type of ships and their function:

    • offshore site related ships

    (supply vessels, offshore tankers,…)

    • floating structures (storage

    vessels, drilling units, crane

    barges..)

    • external ships (merchant, fishing..)Oseberg BSubmarine U27

    but not submarinesT.Moan MARE WINT Sept.201376

    Risk reduction

    - ship collision risk

    • reduce risk by

    reducing the prob.

    (traffic control) and/or the

    consequences of collision

    • Design for collision events

    - Min collision: Supply vessel

    5000 tons displacement

    and a speed of 2 m/s;

    i.e. 11, 14 MJ

    (to be increased!)

    - collision events with trading vessels

    (with a probability of exceedance of 

    10- 4 ) site specific events identified by

    risk analysis

    Collisions do occur.

    Frequency of Impact by Passing Vessels

  • 8/20/2019 083 Moan Structural Reliability

    20/22

    T.Moan MARE WINT Sept.201377

     – annual impact frequency for a given

    platform in a given location – annual number of vessels with a size (j) in

    route (i)

     – probability that vessel of size (I) in

    navigation group (k) in route (i) is on

    collision course

    Frequency of Impact by Passing Vessels

    ∑ ∑∑= ==

    ⋅=n

    1i

    4

    1k 

     jk ,FR ijk ,CC

    5

    1 j

    ijC PP NP

    CP

    ij N

    ijk ,CCP

     jk ,FR P

    Probability density

    of ship position

    ij,CCP

    platform

       C  e  n   t  r  e   l   i  n  e

     – probability that a vessel with a size (j) in

    navigation group (k) does not succeed in

    avoiding the platform

    T.Moan MARE WINT Sept.201378

    Calculation of impact damage

    External mechanics

    The fraction of the kinetic energy to be

    absorbed as deformation energy(structural damage) is determined by

    means of:

    Conservation of momentum

    Conservation of energy

    Internal mechanics

    Energy dissipated by vessel

    and offshore structure

    Equal force level

     Area under force-def. curvedws dwi

    R iRs

    Ship FPSO

    Es,sEs,i

    External mechanics

    Internal mechanics

    Measure of damage:

    Indentation depth

    T.Moan MARE WINT Sept.201379

    Ultimate global collapse analysis of platforms

    Non-linear analysis to assess

    the resistance of

    - intact and damaged structures

    by accounting for 

    geometrical imperfection,

    residual stresses

    local buckling, fracture,

    rupture in joints

    nonlinear geometrical and

    material effects

    Nonlinear FEM-General purpose (ABAQUS….)

    -Special purpose (USFOS…)

    28

    T.Moan MARE WINT Sept.201380

    Residual global ultimate strength after damage

    (due to collison, dropped objects, ” fatigue failure” )

    Residual st rength

    of damaged

    North Sea jacket.Linear pile-soil model

    Ultimate strength

    Broad side loading

    Brace261

    Brace363

    Brace463

    Ultimate strengthFult / FH100

    2.73 2.73 2.73

    Residual strength

    Fult(d) / Fult

    1.0 0.76 1.0

    7  0  m  5 6 

     m

    main structure

    deck

    (261)

    (363)

    (463)

    Broad-side and end view.

    Deck model indicated by dashed line

    (261)

    (363)

    (463)

    (455)(456)

    collision

    dropped

    object

    29

    Framework for Risk based Design against

  • 8/20/2019 083 Moan Structural Reliability

    21/22

    T.Moan MARE WINT Sept.201381

    Framework for Risk-based Design against

     Accidental actions

    ][]|[]|[)(   )(

    ,

    )(   i

      jk 

    k   j

    i

      jk  FSYS    A P  A D P  D FSYS  P i P    ∑   ⋅⋅=

    probability of damagedsystem failure under

    relevant F&E actions

    probability of damage, D

    given A jk(i) (decreased

    by designing againstlarge A j

    (i))

    probability of accidentalaction at location (j)

    and intensity (k)

    (i)

     jk P A⎡ ⎤⎣ ⎦ is determined by risk analysis while the other probabilities

    are determined by structural reliability analysis.

    [ ]P FSYS | D Is determined by due consideration of relevant action andtheir correlation with the haazard causing the damage

    For each type of 

    accidental action

    T.Moan MARE WINT Sept.201382

     Accidental act ions for wind turbines

    IEC 61400-1

    • “External” ALS actions may need to be considered

    Ship collision:• Maximum size of service vessel and limiting operational conditions to

    be specified by designer:

    • • Vessel speed not less than 0.5 m/s• • Kinetic energy based on

    • – 40% added mass sideway

    • – 10% added mass bow/stern

    • • Impact energy < 1 MJ (small)• • Max. force may be assumed 5 MN - includes dynamic amplification

    IEC 6400-3

    T.Moan MARE WINT Sept.201383

    2.3 Standard directives for

    approval practice

    Number 4: The structures shall be

    designed and configured in such

    a way that –in the event of collision

    with a ship, the hull of the ship shall

    be damaged as little as possible.

    Design Collision Event

    •A single-hull Suezmax tanker with 160,000 tdw

    •The ship is drifting sideways at 2 m/s•Ship displacement  ≈ 190,000 tons

    •Kinetic energy (40% added mass) = 530 MNm

    T.Moan MARE WINT Sept.201384

    Mass of 5 MW turbine 450 tons

    •Drop height 60 m•Energy 275 MJ

    •Nacelle may fall through the tank!

    Suezmax tanker collision

     Al tenative jacket

    failure modes(Source: J.Amdahl, Tekna seminar, NTNU, January 2012)

    Collapse mode is favourable –

    nacelle drops into sea

    •Upper weak soil

    layers beneficial

    30

  • 8/20/2019 083 Moan Structural Reliability

    22/22

    T.Moan MARE WINT Sept.201385

    Concluding remarks

    Experiences regarding

    - failures and accidents and

    - life cycle safety managementfor oil and gas installations can serve as a basis for structures

    in other offshore industries, notably wind turbines,

    - when the differences between

    the oil and gas and the other industriesare recognised

    In particular 

    - normal uncertainty and variability in structural

    performance as well as possible “gross errors” in fabricationand operation should be properly considered in the decision

    process

    CeSOS NTNU

    Thank you! T.Moan MARE WINT Sept.201386

    Selected references – which include more complete reference listsDesign codes: ISO 2394 (Reliability of structures); ISO 19900- (Offshore structures)

    Emami, M.R., and Moan, T.: “Ductility demand of simplified pile-soil-jacket system under extreme sea wavesand earthquakes”, Third European Conf. on Structural Dynamics, Balkema Publ. G. Augusti et al.(eds.) Rotterdam, 1996, pp. 1029 – 1038.

    Moan, T. and Amdahl, J.: “Catastrophic Failure Modes of Marine Structures”, in Structural Failure,

    Wierzbiecki, T. (Ed.), John Wiley & Sons, Inc., New York, 1989.Moan, T., Vårdal, O.T., Hellevig, N.C. and Skjoldli, K. “Initial Crack Dept. and POD Values inferred from in-service Observations of Cracks in North Sea Jackets”, J. OMAE, Vol. 122, August 2000, pp. 157-162.

    Moan, T. and Amdahl, J.: “ Nonlinear Analysis for Ultimate and Accidental Limit State. Design andRequalification of Offshore Platforms” WCCM V. Fifth World Congress on Computational Mechanics(Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner) July 7-12, 2002, Vienna, Austria.

    Moan, T. “Reliability-based management of inspection, maintenance and repair of offshore structures”.Structure and Infrastructure Engineering. Vol.1, No.1, 2005, pp. 33-62.

    Moan, T. Reliability of aged offshore structures. In: "Condition Assessment of Aged Structures", 2008, Ed.Paik, J. K. and Melchers R. E., Woodhead Publishing.

    Moan, T. Development of accidental collapse limit state criteria for offshore structures. J. Structural Safety,2009, Vol. 31, No. 2, pp. 124-135.

    Vinnem, J.E.: “Offshore Risk Assessment”, Kluwer Academic Publishers, Doordrecht, 1999.