08 1 Mechanical Properties

52
1. MECHANICAL CHARACTERIZATION OF MATERIALS. TENSILE PROPERTIES 1.1 Introduction 1.2 Stress and Strain. Tensil e tests 1.3 Stress State 1.4 Elastic Deformation and Plastic Defor mation 1.5 Elasti c Pr operties of Materials 1.6 Tensile Properties 1.7 Elastic Recovery. Str ain Har dening 1.8 True Stress /True Strai n Curve. Necki ng Criter ion

Transcript of 08 1 Mechanical Properties

Page 1: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 1/66

1. MECHANICAL CHARACTERIZATION OF

MATERIALS. TENSILE PROPERTIES

1.1 Introduction

1.2 Stress and Strain. Tensile tests1.3 Stress State

1.4 Elastic Deformation and Plastic Deformation

1.5 Elastic Properties of Materials

1.6 Tensile Properties

1.7 Elastic Recovery. Strain Hardening

1.8 True Stress/True Strain Curve. Necking Criterion

Page 2: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 2/66

1. MECHANICAL CHARACTERIZATION OF

MATERIALS. TENSILE PROPERTIES

TOPIC’S OBJECTIVES

- Concepts of stress and strain

- Define the state of stress in a point of a solid

- Introduce the Hooke’s law in three dimensions

- Describe the tensile tests- Define the parameters that describe the mechanical

behavior of materials

Page 3: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 3/66

- To assure performance, safety and durability of devices,instruments and structures 

- The knowledge of the mechanical properties provides the basis for preventing failure of materials in service 

• Why must the mechanical properties of materials be known?

1.1 INTRODUCTION

• How are determined the mechanical properties ofmaterials?

- Mechanical characterization, i.e. studying of their deformation and cracking 

Page 4: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 4/66

- Any change in the material that induces the lost or worsening of its structural capabilities 

- Deformation and fracture 

1.1 INTRODUCTION

• What is the failure of a material?

Page 5: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 5/66

1.1 INTRODUCTION

DEFORMATION

Time Independent■Elastic

■Plastic

FRACTURE

Static Loading■Brittle ■Ductile

■ Enviromental

■ Creep Rupture

Fatigue: Cyclic Loading

■Low cycle ■High cycle

■ Fatigue crack growth

■ Corrosion fatigue

MATERIALSFAILURE

Time Dependent■Creep

Page 6: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 6/66

1.2 STRESS AND STRAIN

Dashed lines represent the shape before deformation, and solid line afterdeformation.

o A

 P =σ 

o

o

o

o

l l  Δ=

−=ε 

Engineering stress: 

Engineering strain: 

P P 

Shear stress: o A

 F 

=τ 

Shear strain:  a

δ θ γ  == tan

Tensile test Compression test

Shear deformation

a

δ 

Page 7: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 7/66

1.2 STRESS AND STRAIN TENSILE TESTS

Tensile test machine

6 mm

3 mm

2 mmt =0.5 – 1.5 mmt 

6 mm

11 mm

1.5 mm

35 mm

Standard specimens for tensile tests

Page 8: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 8/66

1.2 STRESS AND STRAIN TENSILE TESTS

Page 9: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 9/66

Tensile Specimens and ApparatusTensile Specimens and Apparatus

1.2 STRESS AND STRAIN TENSILE TESTS

Page 10: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 10/66

Tensile Specimens and ApparatusTensile Specimens and Apparatus

Page 11: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 11/66

Tensile Specimens and ApparatusTensile Specimens and Apparatus

Page 12: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 12/66

Tensile Specimens and ApparatusTensile Specimens and Apparatus

Page 13: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 13/66

Tensile Test ConceptTensile Test Concept

Page 14: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 14/66

Tensile Test ConceptTensile Test Concept

Specimen

Clamp

Crosshead & Load Cell

Clamp

Page 15: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 15/66

Page 16: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 16/66

Page 17: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 17/66

Page 18: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 18/66

Tensile Test ConceptTensile Test Concept

Page 19: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 19/66

Tensile Test ConceptTensile Test Concept

Page 20: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 20/66

Tensile Test ConceptTensile Test Concept

Page 21: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 21/66

During the Tensile TestDuring the Tensile Test

Page 22: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 22/66

Elongation

   F  o  r

  c  e

During the Tensile TestDuring the Tensile Test

Page 23: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 23/66

Elongation

During the Tensile TestDuring the Tensile Test

   F  o  r

  c  e

Page 24: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 24/66

Elongation

During the Tensile TestDuring the Tensile Test

   F  o  r

  c  e

Page 25: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 25/66

Elongation

During the Tensile TestDuring the Tensile Test

   F  o  r

  c  e

Page 26: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 26/66

Page 27: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 27/66

Results and AnalysisResults and Analysis

Nominal strain

  N  o

  m  i  n  a  l   s  t  r  e

  s  s

Page 28: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 28/66

Results and AnalysisResults and Analysis

Page 29: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 29/66

Results and AnalysisResults and Analysis

Page 30: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 30/66

Results and AnalysisResults and Analysis

6061-T651

Aluminum

Cold Rolled

1018 Steel

Copper 

C2600 Brass,

half hard

Annealed

1018 Steel   S   t  r  e  s  s   (

   M  p  a   )

Strain (mm/mm)

1.3 STRESS STATE

Page 31: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 31/66

θ θ σ 

θ 

θ τ 

θ σ 

θ 

θ σ 

θ 

θ 

cossin

cos

sin

cos

cos

cos

//

2

===′

===′ ⊥

o

o

 A

 F 

 A

 F 

and 

 A

 F 

 A

 F 

is the applied stress

σ’ is the normal stress acting on the plane pp’

τ’ is the resolved shear stress in the specific direction p-p’ 

o A

 F =σ 

// F  F  F rrr

+= ⊥

F  // F ⊥

Aθ 

Ao 

θ 

O

1.3 STRESS STATE STRESS COMPONENTS

Page 32: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 32/66

 FnZ 

 FtX 

 F

ΔΑ

Y

Z

 FtY 

k  ji A

 F 

 A

 F 

 A

 F 

 A

 F  s

k  F  j F i F  F 

nztytxnZ 

 A

tY 

 A

tX 

 A A

tZ tY tX 

rrr

rrrr

r

rrrv

σ σ σ  ++=Δ

=

++=

→Δ→Δ→Δ→Δlimlimlimlim

0000

The stress state at a point of a given plane is define by two stress components tangent to the plane, tx and  tx , and one component normal to the plane,

nz !! 

1.3 STRESS STATE STRESS COMPONENTS

Page 33: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 33/66

The state of stress at a point is completely defined when 

the stress components are known on three mutually  perpendicular planes 

σ zx 

σ zz 

σ zy 

σ yx 

σ yz 

σ yy 

σ xx 

σ xz 

σ xy 

Stress component notation:

•The first subscript is the direction of thenormal to the plane, and the second thedirection of the stress component.

•A normal stress is positive if the

direction of the unit normal vector andthe direction of the stress component areboth in the positive direction or both inthe negative direction of the coordinatesystem.

•Tensile stresses are defined as positiveand compressive stresses are negative.

3 sr

1 s

r

2 sr

componentsstressshear are  jiijij≠≡ τ σ 

Page 34: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 34/66

Page 35: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 35/66

1.4 ELASTIC DEFORMATION

Page 36: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 36/66

For shear forces :

G the shear modulus

Elastic strain is produced by small reversible changes in the equilibrium interatomic spacing 

⎪⎪⎭

⎪⎪

⎟ ⎠ ⎞⎜

⎝ ⎛ ⎟

 ⎠ ⎞⎜

⎝ ⎛ =

+=⇒=

ee x x

ee

e

e

d dx

dxdF 

 A E 

 x x x x

 x-xε

ε 

ε 

1

 

e

eee

 x x

 x x x

dx

dF 

 Ad 

dx E 

 A

 F 

d dx

dxd 

d d  E 

⎟ ⎠

 ⎞⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ =⇒

⎪⎪⎭

⎪⎪⎬

=

⎟ ⎠ ⎞⎜

⎝ ⎛ ⎟

 ⎠ ⎞⎜

⎝ ⎛ =⎟

 ⎠ ⎞⎜

⎝ ⎛ =

1

ε σ 

ε σ 

ε σ 

e

e

 xdx

dF 

 A

 x E  ⎟

 ⎠

 ⎞⎜⎝ 

⎛ =

x, Interatomic distance 

Repulsión force

 Attraction force

xe

    F ,

    F   o   r   c   e

e xdx

dF ⎟ ⎠ ⎞

⎜⎝  ⎛  Fig. 1.7. Interatomic force as a function of the interatomic spacing.

γ τ  G=

A is the cross-sectional area of material per atom

1.4 PLASTIC DEFORMATION

Page 37: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 37/66

Elastic limit

   N   O   M   I   N   A   L   S   T   R   E   S   S

NOMINAL STRAIN Plastic ElasticεEεp

Total Strain

loading unloading

Fig. 1.8. Stress-strain curve showing elastic and plastic deformation

 I  I  E  E 

ε σ ε ε ε  +=+=

Plastic deformation ⇔ bond breaking betweenneighbor atoms and reforming bonds between new

neighbor atoms ⇒ slip process; dislocation motion

Time independent → plastic strain

Time dependent → creep strain

ε  I Inelastic

strainElastic limit

   N   O

   M   I   N   A   L   S   T   R   E   S   S

NOMINAL STRAIN Plastic ElasticεEεp

Total Strain

loading unloading

Fig. 1.8. Stress-strain curve showing elastic and plastic deformation

 I  I  E  E 

ε σ ε ε ε  +=+=

Plastic deformation ⇔ bond breaking betweenneighbor atoms and reforming bonds between new

neighbor atoms

Time independent → plastic strain

Time dependent → creep strain

ε  I Inelastic

strain

Slip Process

&

Formation and motion ofdislocations

σ 

1.5 ELASTIC PROPERTIES OF MATERIALS

Page 38: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 38/66

 z x

 E ε 

ν σ  −=

 A homogeneous and isotropic material is subjected to an axial stress σ x 

Y

Z

Xd o 

Ao 

l o 

Y

Z

Xd o 

A

O

σ x =E ε x 

E/ ν 

ε x  ,ε y  ,ε z strain

    σ  x

      s       t      r      e      s      s

O

    ε   y ,    ε   z

ε x strainν 

σ x 

Fig. 1.9. Longitudinal extension and transversal contraction

oo

o x

l l 

l l l 

Δ=

−=ε 

oo

o z y

d d  Δ=

−== ε ε 

 z x

 E ε 

ν σ  −=

 z y x

 E  E 

ε ν ε ν σ  −=−= x x

 x

 z

 x

 y

 E ε σ ε 

ε 

ε 

ε ν 

⎪⎭

=

−=−=−=⇔

strainallongitudin

ncontractioltransversa ratiosPoisson'

Page 39: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 39/66

1.5 ELASTIC PROPERTIES HOOKE’S LAW FOR 3 D

Page 40: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 40/66

σ yy 

Consider an isotropic body under a general stress state

RESULTING LONGITUDINAL STRAINSTRESS

X-direction Y-direction Z-direction

σ xx 

σ yy 

σ zz 

 xxε  yyε 

σ zx 

σ zz 

σ zy 

σ yx 

σ yz 

σ xx 

σ xz 

σ xy 

 zzε 

 E  zzνσ 

 E  xxσ 

 E 

 yyνσ −

 E  zzνσ 

 E  xxνσ 

− E 

 xxνσ −

 E 

 yyνσ −

 E 

 yyσ 

 E 

 zzσ 

 zzε 

Shear stresses σ xy = σ 

yx , σ 

yz = σ 

zy and σ 

zx = σ 

xz produce only shear strains

given by

,,,GGG

 yz

 zy yz xz

 zx xz

 xy

 yx xy

σ ε ε 

σ ε ε 

σ ε ε  ======

1.5 ELASTIC PROPERTIES HOOKE’S LAW FOR 3 D

Page 41: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 41/66

These equations, taken together, are the generalized Hooke’s law for a

isotropic material

( )[ ]

( )[ ]

( )[ ]

,,,

1

1

1

GGG

 E 

 E 

 E 

 yz

 yz yz xz

 xz xz

 xy

 xy xy

 yy xx zz zz

 zz xx yy yy

 zz yy xx xx

σ ε γ 

σ ε γ 

σ ε γ 

σ σ ν σ ε 

σ σ ν σ ε 

σ σ ν σ ε 

======

+−=

+−=

+−=

⎟⎟⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜⎜⎜

⎝ 

⎛ 

⎟⎟⎟

⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜

⎜⎜⎜⎜⎜⎜

⎜⎜⎜⎜

⎝ 

⎛ 

−−

−−

−−

=

⎟⎟⎟⎟⎟⎟⎟

 ⎠

 ⎞

⎜⎜⎜⎜⎜⎜⎜

⎝ 

⎛ 

 zx

 yz

 xy

 zz

 yy

 xx

 zx

 yz

 xy

 zz

 yy

 xx

G

G

G

 E  E  E 

 E  E  E 

 E  E  E 

σ 

σ 

σ 

σ σ 

σ 

ν ν 

ν ν 

ν ν 

ε 

ε 

ε 

ε ε 

ε 

100000

01

0000

001

000

0001

0001

0001

or

Page 42: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 42/66

1.5 ELASTIC PROPERTIES Relationship between E, G and

Page 43: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 43/66

( ) ⎟ ⎠ ⎞⎜⎝ ⎛ +=⇒⎪⎭

⎪⎬

=

⎟ ⎠

 ⎞⎜⎝ 

⎛ +==

Δ

22

1

12

2

1

2a F 

 E aad 

a

 F 

 E d d 

o

oo ν δ 

ν δ 

Now, ⎟ ⎠

 ⎞⎜⎝ 

⎛ === 2

1

a

 F 

GGa

τ δ γ 

 E G

)1(2 ν +=⇒

Page 44: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 44/66

Page 45: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 45/66

Page 46: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 46/66

Page 47: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 47/66

1.6 TENSILE PROPERTIES Tensile strength

Page 48: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 48/66

• Ultimate tensile strength, or tensile strength ↔ the maximum stress in

stress-strain curve.

• Necking ↔ formation of a small constriction or neck in the specimen.

• Fracture strength ↔ stress at the fracture point

Engineering stress-strain curve showing the ultimate tensile strength and the fracture point.

σ uts 

Strain

   S   t  r  e  s  s

Uniform strain

Necking; UTS point

Strain at the neck

1.6 TENSILE PROPERTIES - curves

Page 49: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 49/66

• Ultimate tensile strength ranges from 40 MPa (Mg alloys) to 3000 MPa (W

alloys).• For design purposes, the yield strength is used instead of the tensile

strength.

• Fracture strength are not normally specified for engineering designpurposes

1.6 TENSILE PROPERTIES Ductility

Page 50: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 50/66

Engineering stress-strain curve for brittle and ductile materials

• Ductility is the capability of a material to sustain plastic deformation before

fracture• Ductility is quantitatively expressed as either percent elongation or

percent reduction in area at fracture 

100% ×⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛  −=

o

o f  

l l  EL

100% ×⎟⎟ ⎠ ⎞⎜⎜

⎝ ⎛  −=

o

 f  o

 A A A RA

1.6 TENSILE PROPERTIES Resilience

Page 51: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 51/66

• Resilience is the capability of a material to store elastic energy during 

loading, and to realease it during unloading.

• Resilience is measured by the resilience modulus U r 

Representation of the resilience modulus

 E d U 

y

 y yr 

 y

22

12

0

σ ε σ ε σ 

ε 

=== ∫

1.6 TENSILE PROPERTIES Toughness

Th h i h bili f i l b b

Page 52: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 52/66

• Thoughness is the capability of a material to absorb energy up to fracture 

• For static loading conditions, that is, at low strain rate, toughness may be determined from a tensile stress-strain curve up to fracture.This toughness is referred to as tensile toughness.

 f  

uts y f  

d  ε 

σ σ 

ε σ 

ε 

20

+

≈∫

Strain

   S   t  r  e  s  s

utsσ 

ε f 

Tensile Toughness:

0.002

σ y  2

)( uts y σ σ  +

Page 53: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 53/66

Page 54: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 54/66

Page 55: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 55/66

Page 56: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 56/66

Page 57: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 57/66

Page 58: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 58/66

1.8 T- T CURVE Graphical Interpretation of Necking Criterion

At th i t f i l d i t bilit i t i

Page 59: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 59/66

• At the point of maximum load appears instability in tension 

(non-homogeneous deformation) and it satisfies: criterion! Necking T 

d σ 

ε 

σ =

ε T 

σ T 

1

ε T,uts 

σ T,uts 

Determination of the point of necking at maximum load in the true stress/true strain curve

Page 60: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 60/66

Page 61: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 61/66

1.8 TRUE STRESS/TRUE STRAIN CURVE

• Above the necking onset, true strain can not be determined l ( ) f h d d f

Page 62: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 62/66

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=⇒⎪⎭

⎪⎬

=⇒=

=−

+=+=

i

oT 

iioo

o

i

o

oiT 

 A

 A

l  Al  ActeV l 

l l 

ln

ln)1ln()1ln(

ε 

ε ε 

⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=i

o

i

oT 

 D

 D

 A

 Aln2lnε 

gas ln(1+  ) from the measured strain  , because deformation is 

not uniformly distributed any more.

• Now,

• For cylindrical specimens of diameter D,

• The formation of a necked region introduces triaxial stresses that make difficult to determine accurately the longitudinal 

tensile stress from the onset of necking until fracture occurs 

Page 63: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 63/66

1.8 T- T CURVE True stress at maximun load

If A i h i l i l d h

TRUE TENSILE STRENGTH 

Page 64: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 64/66

• If Au  is the cross-sectional area at maximun load, then

• If ε T,uts  is the true strain at maximum load, also called true uniform strain , then

• Also,

⇒⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=⇒⎪⎪

⎪⎪

=

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ =⎟⎟

 ⎠

 ⎞⎜⎜⎝ 

⎛ =

uts

utsT 

utsT 

uts

u

outsT 

u

o

o

uutsT 

 A

 A

 A

 A

σ 

σ 

ε σ σ 

ε ,

,

,

,

ln

lnln

uts

u

outsT 

o

uts

u

utsT 

 A

 A

 A

 P 

 A

 P 

σ σ 

σ 

σ 

=⇒

⎪⎪⎭

⎪⎪⎬

=

=

,

max

max,

→True stress at maximum load

utsT eutsutsT 

uts

utsT 

utsT ,

,

,

, lnε 

σ σ σ σ ε  =⇒⎟⎟

 ⎠ ⎞⎜⎜

⎝ ⎛ =

True strain at maximum load

or true uniform strain

→True stress at maximum load

Page 65: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 65/66

Page 66: 08 1 Mechanical Properties

7/31/2019 08 1 Mechanical Properties

http://slidepdf.com/reader/full/08-1-mechanical-properties 66/66