07 Heat&Mass

download 07 Heat&Mass

of 13

Transcript of 07 Heat&Mass

  • 8/13/2019 07 Heat&Mass

    1/13

    Nq

    T

    x

    evaporation

    q

    T

    x

    condensation

    NN

    T

    x

    drying

    q

    liquid vapour

    Three times Mass & Heat Transfer

  • 8/13/2019 07 Heat&Mass

    2/13

    T

    T

    2COCO2

    H2O H2+ CO

    H2O + CO

    H2+ CO2

    q

    Reactions and Heat Transfer

    gasification of coal

    endothermic

    reaction

  • 8/13/2019 07 Heat&Mass

    3/13

    1

    2

    3

    1 mol of iat T,p

    add heat

    samep

    H

    dq

    H dHenthalpy change

    Enthalpy

  • 8/13/2019 07 Heat&Mass

    4/13

    H

    0

    TTref

    liquid H c T T pL ref

    molar heat capacity

    H= 0 at the reference temperature

    H

    Hrefvap

    0

    TTref

    gas H c T T H pG ref refvap

    enthalpy of vaporisation,

    (depends on choice of Tref)

    Effect of Temperature

  • 8/13/2019 07 Heat&Mass

    5/13

    mixture H x Hi iH f T x i i ( , )species enthalpies

    effect of composition often small: H Hi i

    pure i

    Enthalpy in Mixtures

  • 8/13/2019 07 Heat&Mass

    6/13

    Enthalpy of

    Reaction

    12N H NH2

    32 2 3

    (1) (2) (3)

    H

    T

    Tref 298c cp p1 2 29

    J mol K

    1 1

    cp 3 41 J mol K1 1

    12 1 32 2c c T T p p ref

    NH3(3)

    reactants

    H Treaction

    Hrefreaction 46 1 1. (mol )kJ NH3

    H H c T T refreaction

    p ref3 3

  • 8/13/2019 07 Heat&Mass

    7/13

    changes are not

    very important

    Temperature Effects

    MS-equation

    )termsdiffusionthermal()(, jijjii uuxFsmall

    driving force

    dz

    dx

    x

    RT

    dz

    dF i

    iT

    ii

    difference form:

    zx

    xTRF i

    i

    i

    at constant

    temperature

    average film

    temperature

  • 8/13/2019 07 Heat&Mass

    8/13

    E

    Ni

    T

    driftthermal

    conduction

    iiHNdz

    dTE

    thermal conductivity species enthalpies

    difference equation:

    E h T N H i i

    at the average Theat transfer coefficient hz

    differential equation:

    z

    T

    Energy Flux Relation

  • 8/13/2019 07 Heat&Mass

    9/13

    E EE E

    calculated with the

    energy transport relation

    calculated by

    other means

    the film other phase

    Continuity of Energy Flux

    a Bootstrap

  • 8/13/2019 07 Heat&Mass

    10/13

    Condensation with Inert Gascondensate wall coolant

    T

    y1

    vapour

    inert (1) accumulates at interface

    y H

    R T T

    vap

    b2

    1 1

    exp

    y2

    interfacial equilibrium of (2)

    low temperature for condensation

    boiling point

    E E

    E N H T h T T L2 2

    methanol

    nitrogen

  • 8/13/2019 07 Heat&Mass

    11/13

    Reaction with Convection

    (1) (2) (3)

    catalyst

    1

    2 2N

    32H2

    NH3

    bootstraps:

    N N N N 2 1 3 13 2

    no net energy flux through film:

    h T T N H T N H T N H T

    1 1 2 2 3 3 0

    1

    2N H NH23

    2 2 3

    T T T 0 5.

    conduction thermal drift

  • 8/13/2019 07 Heat&Mass

    12/13

    water (1)

    air (2) + ammonia (3)

    gas

    liquid

    10 30 50T

    o

    C

    condensation of 1

    co-diffusion

    absorption of 2

    evaporation of 1

    counter diffusion

    Ammonia Absorber

  • 8/13/2019 07 Heat&Mass

    13/13

    T

    T

    y1

    y1

    E

    N

    N H T E L1 1

    water hot air (2)

    water (1)

    N2 0

    THNTThE G11

    y y N y N

    k c1

    2 1 1 2

    1 2,

    bootstraps transport relations

    (much) lower than

    bulk temperature

    T

    y1

    Drop in a Spray Drier