07. Extended Surface Fins

download 07. Extended Surface Fins

of 31

Transcript of 07. Extended Surface Fins

  • 7/28/2019 07. Extended Surface Fins

    1/31

    7. EXTENDED SURFACES - FINS

    The Function of Fins

    Increase heat transfer rate for a fixed surfacetemperature, or

    Lower surface temperature for a fixed heat transfer rate

    Newton's law of cooling

    )T(TaSQsss =&

    Rewrite (3.63)

    s

    s

    s aS

    QTT &+=

    sQ& Extending Ss for a fixed Tsincreases

    Extending surface at fixed lowerssQ&

    sT

  • 7/28/2019 07. Extended Surface Fins

    2/31

    A surface is extended by adding fins Examples of fins:

    Thin rods on the condenser in back of refrigerator.

    Honeycomb surface of a car radiator. Corrugated surface of a motorcycle engine. Coolers of PC boards.

    Types of Fins

    finstraight

    areaconstant(a) finpin(c)

    finstraight

    areavariable(b) finannular(d)

    3.12Fig.

  • 7/28/2019 07. Extended Surface Fins

    3/31

    Fin terminology and types

    Fin base (pata ebra) Fin tip (konec ebra)

    Heat Transfer and Temperature

    Distribution in Fins

    Heat flow through a fin isaxial and lateral (2-D)

    Note temperature profile

    Temperature distribution is 2-D

    x

    Th,

    T

    Tr

    3.13Fig.

    T,

  • 7/28/2019 07. Extended Surface Fins

    4/31

    The Fin Approximation

    Neglect temperature variation in the lateral direction r

    and assume uniform temperature at any section:

    T T(x)

    Criterion for justifying this approximation:Biot number =Bi= /

  • 7/28/2019 07. Extended Surface Fins

    5/31

    Conservation of energy for an element for steady stateand no energy generation:

    outin EE && =

    Energy in by conduction =x

    Q&

    Energy out by conduction = /dx)dxQ(dQ&&

    +

    The Fin Heat Equation

  • 7/28/2019 07. Extended Surface Fins

    6/31

    Energy out by convection =conv

    Qd&

    Neglect radiation:

    0Qddxxd

    Qd

    conv

    x

    =+&

    &

    (c)

    (a)Q&=

    (b)convx

    xoutQddx

    dxQdQE &&

    & ++=

    (a) and (b) into outin EE && = )(b

    CsdA

    cdq

    xq dxdx

    dqq xx+

    dS=P.dx

    convQd&

    P

  • 7/28/2019 07. Extended Surface Fins

    7/31

    0Pdx)T(Tdx

    dx

    dTA

    dx

    d=

    (f)

    A = cross-sectional conduction area

    P.dx= dS= surface area of element through whichheat is convected

    is a surface average heat transfer coefficient

    (d) and (e) into 0Qddxxd

    Qd

    convx

    =+&

    &

    (e))P.dxT(TQd conv =&

    Fourier's and Newtons laws:

    dx

    dTAQx =& (d)

  • 7/28/2019 07. Extended Surface Fins

    8/31

    TTOr assuming constant and replacing TwithT

    Assume: constant

    0)T(TA

    P

    dx

    Td2

    2=

    Heat equation for fins

    0)T(T

    A

    P

    dx

    )(T-Td2

    2

    =

  • 7/28/2019 07. Extended Surface Fins

    9/31

    Boundary Conditions

    Two B.C. are needed

  • 7/28/2019 07. Extended Surface Fins

    10/31

    Determination of Fin Heat Transfer Rate oQ&

    Conservation of energy applied to a fin at steady state:

    (1) Conduction at the base: Fourier's law( )

    0xodx

    TTdAQ =

    =&

    Two methods to determine oQ&

    = conduction at the base =

    convection at the surfaceoQ&

  • 7/28/2019 07. Extended Surface Fins

    11/31

    (2) Convection at the fin surface: Newton's law

    = o P.dx]T[T(x)Q&

    Introducing a new parameterfin parameter m

    LA

    PmL =

    0)T(Tmdx

    )T-(Td2

    2

    2

    =

    Rewrite Heat equation for fins 0)T(TA

    P

    dx

    )(T-Td2

    2

    =

  • 7/28/2019 07. Extended Surface Fins

    12/31

    ` Heat equation is valid for:(1) Steady state

    (2) Constant

    (3) No energy generation

    (4) No radiation

    (5)Bi

  • 7/28/2019 07. Extended Surface Fins

    13/31

    mx

    2

    mx

    1eCeCTT(x)

    +=

    C1

    and Care integration constants.

    They depend on boundary conditions.

    Solution to the equation: 0)T(Tmdx

    )T-(Td22

    2

    =

    Two boundary conditions: at the base and at the tip

  • 7/28/2019 07. Extended Surface Fins

    14/31

    Consider 3 cases of constant area fins

    (i) Specified temperature at the base, semi-infinite fin

    (ii) Finite fin, specified temperature at the base,

    insulated tip(iii) Finite fin, specified temperature at the base, heat

    transfer at the tip

  • 7/28/2019 07. Extended Surface Fins

    15/31

    The base is at temperature oT Ambient temperature is T

    Case (i): Semi-infinite fin with specified

    temperature at the base

    Remind the solution: mx2

    mx

    1eCeCTT(x)

    +=

    B.C. are: T(0) = ,To (a)

    = TTTT(0)0

    (b)T() = ,T 0T)T( =

    0 x

    CTh,

    Th,

    oT cA3.16Fig.

    T,

    T,

    P

    A

  • 7/28/2019 07. Extended Surface Fins

    16/31

    mx)exp(TT

    TT(x)

    o

    =

    =

    mx))exp(T(TTT(x)o

    =

  • 7/28/2019 07. Extended Surface Fins

    17/31

    Fin heat transfer rateo

    Q&

    ( ))TAm(T

    dx

    TTdAQ 00xo =

    =

    =&

    ( )= TTPAQ 0o&

    Obviously,

    no dependence on the fin length

    ( )= TTA

    Q0

    o&

  • 7/28/2019 07. Extended Surface Fins

    18/31

    Case (ii): Finite length fin with specified

    temperature at the base and insulated tip

    Same as Case (i) except

    the tip is insulated.

    mx

    2

    mx

    1eCeCTT(x)

    +=General solution:

    0=

    =

    ==

    LLx

    x

    TSQ& cA

    C

    th0

    oT

    Th,

    xTh,

    3.17Fig.

    ,T

    ,T

    P

    ( )0dx

    TTdLx =

    =

    Tip B.C.

  • 7/28/2019 07. Extended Surface Fins

    19/31

    About hyperbolic functions:

    xx

    xxxxxx

    ee

    ee

    coshx

    sinhxtghx;

    2

    eecoshx;

    2

    eesinhx

    +

    ==

    +=

    =

    Two B.C. - fin base (specified temperature) and tipzero heat transfer rate give C1 and C2,

  • 7/28/2019 07. Extended Surface Fins

    20/31

    mL

    xLm

    TT

    TxT

    o cosh

    )-(cosh)(=

    =

    Solution:

    ml

    mL)TAm(TQ 0ocosh

    sinh=&

    ( ))(tgh

    0

    mLTTPA

    Qo =

    &

    Similarly heat transfer rate

    (tepeln tok):

    ( )0xo

    dx

    TTdAQ =

    =&

    Tip temperature (x=L):mLTT

    TT LL

    cosh

    1

    0

    =

  • 7/28/2019 07. Extended Surface Fins

    21/31

    T0,014.(TTT 0L =

    Compare with the semi-infinite fin: ( )= TTPA

    Q0

    o&

    ( )1=

    TTPA

    Q

    0

    o&

    014,0

    0

    =

    TT

    TT LL

  • 7/28/2019 07. Extended Surface Fins

    22/31

    Case (iii): Finite length fin with specified

    temperature at the base and heattransfer at the tip

    ( )( ) mLmmL

    xLmmxLm

    TT

    TxT

    L

    L

    sinh/cosh

    )(sinh/)(cosh)(

    0

    ++=

    cA

    C

    th0

    oT

    Th,

    xTh,

    3.17Fig.

    ,T

    ,T

    P

    ,T

  • 7/28/2019 07. Extended Surface Fins

    23/31

    Corrected LengthLc

    Fins with insulated tips have simpler solutions thanfins with convection at the tip

    Simplified model: Assume insulated tip andcompensate by increasing the length by Lc

    The corrected length Lcis cc LLL

    The correction incrementLc = t/2 fin half width0,0625

    t

    Error negligible if

  • 7/28/2019 07. Extended Surface Fins

    24/31

    Fin Effectiveness (efektivnost) f

    Fin Efficiency (innost) f

    Fin performance is described by two parameters:

    FinEffectiveness fenhancement due to fin addition.

    : Measures heat transfer

    A

    Ratio of heat transfered by the fin and heat transfered

    from the original areaA of the fin ( )= TTAQ obase

    Defined as

    ( ) baseo

    o

    o

    f Q

    Q

    TTA

    Q

    &

    &&

    =

    =

    ml

    mL)TAm(TQ 0ocosh

    sinh=&

  • 7/28/2019 07. Extended Surface Fins

    25/31

    f must be >2, otherwise dont use the fin.

    ( )( ) A

    P

    TTA

    TTAP

    o

    of =

    =

    For a semi-infinite fin:

    How to increase fin effectivness:

    high conductivity material

    high perimeter to area ratio P/A thin fin and close

    each to other use fin where heat transfer coefficient is low

  • 7/28/2019 07. Extended Surface Fins

    26/31

    fS = total fin surface area

    Introduce the above into equation for f

    FinEfficiency fwith the maximum heat that the fin

    can transfer. Defined as

    : Compares heat transfer from a fin

    o,max

    of Q

    Q

    &

    &

    =

    the base temperature

    = heat transfer from fin if its entire surface is ato,maxQ&

    ( )= TTSQ ofo,max&

    ( )

    =

    TTS

    Q

    of

    of

    &

  • 7/28/2019 07. Extended Surface Fins

    27/31

    Total Fin Surface Efficiency (innost) tot

    ( )==

    TTS

    Q

    Q

    Q

    oTOT

    TOT

    TOT,max

    TOTTOT

    &

    &

    &

    When the entire finned surface is at the

    base temperatureTOT,maxQ

    &

    TOTSTotal finned surface (including surface between

    individual fins) ofTOT SSS +=

    fS

    oS

    TOTQ& Total heat transfer rate from the total finned

    surface of an actual finned surface

    ( ) ( )+= TTSTTSQ

    oooffTOT&

  • 7/28/2019 07. Extended Surface Fins

    28/31

    ( ) ( )

    = TT

    S

    SSQ of

    TOT

    fTOTTOT 11&

    After some rearrangement

    Taking the definition of the total efficiency

    ( )( )

    =

    = TTSQTTS

    Q oTOTTOTTOT

    oTOT

    TOTTOT

    &&

    ( fTOTfTOT

    S

    S = 11

    we come to the definition of a total efficiency

  • 7/28/2019 07. Extended Surface Fins

    29/31

    Practical procedure how to calculate heat transfer rate

    from a finned surface

    fS

    oS

    1. Specify efficiency of an individual fin f using graphs

    ofTOT SS +=

    2. Calculate total surface of fins and

    free space between fins

    3. Calculate total efficiencyT OT

    ( )fTOT

    fTOT

    SS = 11

    5. Calculate actual heat transfer rate

    TOT,maxTOTTOT QQ&& =

    4. Calculate maximum heat transfer rate

    )T(TSQ oTOTTOT,max =&

  • 7/28/2019 07. Extended Surface Fins

    30/31

    Fin efficiency for three types of straight fins

    Graphs of fin efficiency

  • 7/28/2019 07. Extended Surface Fins

    31/31

    Fin efficiency for annular fins

    Graphs of fin efficiency