06 Yaser Rahmati

download 06 Yaser Rahmati

of 54

Transcript of 06 Yaser Rahmati

  • 8/10/2019 06 Yaser Rahmati

    1/54

    NATURAL AND STEP RESPONSES OF

    RLC CIRCUI TS

    [email protected]

  • 8/10/2019 06 Yaser Rahmati

    2/54

    NATURAL RESPONSE OF A

    PARALLEL RALC CIRCUIT

    V

    R LVd I C

    dV

    dt

    R

    dV

    dt

    V

    L Cd V

    dt

    d V

    dt RC

    dV

    dt

    V

    LC

    t

    1

    0

    10

    10

    00

    2

    2

    2

    2

    Ordinary, second-order

    differential equation with

    constant coefficients.Therefore, this circuit is

    called a second-order

    circuit.

    CL R V

    ++

    V0

    I0iciL iR

  • 8/10/2019 06 Yaser Rahmati

    3/54

    GENERAL SOLUTION OF SECOND-

    ORDER DIFFERENTIAL EQUATIONS

    Assume that the solution of the differential equation is of

    exponential form V=Aestwhere A and s are unknown constants.

    As e

    As

    RCe

    Ae

    LC

    Ae ss

    RC LC

    st st

    st

    st

    2

    2

    0

    10

    ( )

    This equation can besatisfied for all values of t

    only if A=0 or the term in

    parentheses is zero.

    A=0 cannot be used as a general solution because to do so

    implies that the voltage is zero for all time-a physical

    impossibility if energy is stored in either inductor or

    capacitor.

  • 8/10/2019 06 Yaser Rahmati

    4/54

    THE CHARACTERISTIC

    EQUATION

    ss

    RC LC2 1 0 is called the characteristic equation

    The two roots of the characteristic equation are

    sRC RC LC

    sRC RC LC

    1

    2

    2

    2

    1

    2

    1

    2

    1

    1

    2

    1

    2

    1

  • 8/10/2019 06 Yaser Rahmati

    5/54

    If either s1or s2is substituted into Aest, the assumed solution

    satisfies the differential equation, regardless of the value of A

    V Ae V A es t s t1 1 2 21 2 ,

    These two solutions as well as their summation V=V1+V2satisfy

    the differential equation

    V A e A es t s t 1 21 2

  • 8/10/2019 06 Yaser Rahmati

    6/54

    FREQUENCIES

    The behavior of V(t) depends on the values of s1and s2.

    Writing the roots in a notation as widely used in the literature

    s s

    LC

    1

    2

    0

    2

    2

    2

    0

    2

    0

    2 1

    ,

    =1

    2RC

    The exponent of e must be dimensionless, so both s1and s2(and

    hence and 0) must have the dimension of the reciprocal oftime (frequency). s1and s2are referred to as complex

    frequencies, is called the neper frequency, and 0 is called the

    resonant radian frequency. They have the unit radians per second

    (rad/s)

  • 8/10/2019 06 Yaser Rahmati

    7/54

    The nature of the roots s1and s2depends on the values of and

    0. There are three possible cases:

    1) If 022, both roots will be complex and, in addition, will be

    conjugates of each other. The voltage response is said to be

    underdamped.

    3) If 02=2, roots will be real and equal. The voltage response

    is said to be critically damped.

  • 8/10/2019 06 Yaser Rahmati

    8/54

    EXAMPLE

    CL R V

    + Find the roots of the characteristic

    equation if R=200 , L=50 mH, and

    C=0.2 F.

    1

    2

    10

    400 0 2125 10

    1 10 10

    50 0 2

    10

    125 10 15625 10 10 5000

    125 10 15625 10 10 20000

    64

    3 6

    8 2

    1

    4 8 8

    2

    4 8 8

    RC

    LC

    s

    s

    s

    ( )( . ).

    ( )

    ( )( . )

    /

    . .

    . .

    rad / s

    rad

    rad / s

    rad / s

    0

    2 2

    Overdamped

    +

    V0

    I0

  • 8/10/2019 06 Yaser Rahmati

    9/54

    Repeat the problem for R=312.5

    1

    2

    10

    625)(02

    8000

    1 10 10

    50 0 210

    8000 0 64 10 10 8000 6000

    8000 0 64 10 10 8000 6000

    6

    3 6

    8 2

    1

    8 8

    2

    8 8

    RC

    LCs

    s j

    s j

    ( . )( )

    ( )( . )/

    .

    .

    rad / s

    rad

    rad / s

    rad / s

    0

    2 2

    Underdamped

  • 8/10/2019 06 Yaser Rahmati

    10/54

    Find the value of R for a critically damped circuit.

    For critical damping, 2=02

    1

    2

    110

    1 10 102 10 0 2

    250

    2

    8

    4

    6

    4

    RC LC

    RCR

    ( )( . )

  • 8/10/2019 06 Yaser Rahmati

    11/54

    THE OVERDAMPED RESPONSE

    When the roots of the characteristic equation are real and

    distinct, the response is said to be overdamped in the form

    V t A e A es t s t

    ( ) 1 21 2

    The constant A1and A2are to be determined by the initial

    conditions V(0+) and dV(0+)/dt.

    V A AdV

    dts A s A

    V VdV

    dt

    i

    C

    iV

    R

    I

    c

    c

    ( ) ,( )

    ( )( ) ( )

    ( )

    00

    00 0

    0

    1 2 1 1 2 2

    0

    0

    0

  • 8/10/2019 06 Yaser Rahmati

    12/54

    EXAMPLE

    CL R V

    + Fin V(t), if R=200 , L=50 mH, and

    C=0.2 F. V0=12V, I0=30 mA.

    +

    V0

    I0iciL iR

    i I mA

    iV

    R

    V

    RmA

    i i i mA

    dV

    dt

    i

    CkV s

    L

    R

    c

    c L R

    c

    ( )

    ( )( )

    ( ) ( ) ( )

    ( ) ( )

    ./

    0 30

    00 12

    20060

    0 0 0 90

    0 0 90 10

    0 2 10450

    0

    0

    3

    6

  • 8/10/2019 06 Yaser Rahmati

    13/54

    From the previous example, we determined s1=-5000 rad/s and

    s2=-20000 rad/s. Then

    V t Ae A e

    V A A

    dV t

    dtAe A e

    dVdt

    A A

    A V A V

    V t e e V t

    t t

    t t

    t t

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    1

    5000

    2

    20000

    1 2

    1

    5000

    2

    20000

    1 23

    1 2

    5000 20000

    0 12

    5000 20000

    0 5000 20000 450 10

    14 26

    14 26 0

  • 8/10/2019 06 Yaser Rahmati

    14/54

    0 0.5 1 1.5 2 2.5

    x 10-4

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

  • 8/10/2019 06 Yaser Rahmati

    15/54

    i tV t

    e e mA t

    i t CdV tdt

    e e

    e e mA t

    i t i t i t e e mA t

    R

    t t

    c

    t t

    t t

    L R c

    t t

    ( )( )

    ( )

    ( ) ( ) . ( )

    ( )

    ( ) ( ) ( )( )

    20070 130 0

    0 2 10 70000 520000

    14 104 0

    56 26 0

    5000 20000

    6 5000 20000

    5000 20000

    5000 20000

  • 8/10/2019 06 Yaser Rahmati

    16/54

    THE UNDERDAMPED RESPONSE

    When 02>2, the roots of the characteristic equation are complex,

    and the response is underdamped.

    s j

    s j

    d

    d d

    1 0

    2 2

    2 0

    2 2

    ( )

    dis called the damped radian frequency.

  • 8/10/2019 06 Yaser Rahmati

    17/54

    V t Ae A e

    Ae e A e e

    e A t jA t A t jA t

    e A A t j A A t

    j t j t

    t j t t j t

    t d d d d

    t

    d d

    d d

    d d

    ( )

    ( cos sin cos sin )

    [( )cos ( )sin ]

    ( ) ( )

    1 2

    1 2

    1 1 2 2

    1 2 1 2

    A1and A2are complex conjugates. Therefore, their sum is a

    real number and their difference is imaginary. Then j(A1-A2)is also a real number. Denoting B1=A1+A2, and B2=j(A1-A2)

    V t e B t B t t d d( ) ( cos sin )

    1 2

  • 8/10/2019 06 Yaser Rahmati

    18/54

    DAMPING FACTOR

    The trigonometric functions indicate that the response is

    oscillatory; that is, the voltage alternates between positive and

    negative values. The rate at which the voltage oscillates is fixed

    with d. The rate at which the amplitude decreases is determinedby . Because determines how quickly the amplitude

    decreases, it is called as the damping factor. If there is no

    damping, =0 and the frequency of oscillations is 0. When

    there is a dissipative element, R, in the circuit, is not zero and

    the frequency of oscillations is, d, less than 0. Thus, when isnot zero, the frequency of oscillation is said to be damped.

  • 8/10/2019 06 Yaser Rahmati

    19/54

    EXAMPLE

    CL R V

    ++

    V0

    I0iciL iR Find V(t) if R=20 k, L=8H, C=0.125F,

    V0=0, and I0=-12.25 mA

    12

    102 20 10 0125)

    200

    1 10

    8 0125)10

    9798

    200 979 8

    200 979 8

    6

    3

    6

    3

    2

    0

    2 2

    RC

    LC

    j j

    j j

    d

    d

    d

    ( ) ( .

    ( .

    .

    .

    .

    rad / s

    rad / s

    rad / s

    s rad / s

    s rad / s

    0

    0

    2

    1

    2

  • 8/10/2019 06 Yaser Rahmati

    20/54

    V(0+)=V0=0, then iR(0+)=V(0+)/R=0.

    ic(0+)=-iL(0

    +)=12.25 mA

    dV

    dt

    B B V

    V t e t V t

    d

    t

    ( ) .

    .

    ,

    ( ) sin .

    0 12 25 10

    0125 1098000

    098000

    100

    100 979 8 0

    3

    6

    1 2

    200

    V / s

  • 8/10/2019 06 Yaser Rahmati

    21/54

    THE CRITICALLY DAMPED

    RESPONSE

    The second-order circuit is critically damped when 2=02. The

    two roots of the characteristic equation are equal

    s s RC1 21

    2

    For a critically damped circuit, the solution takes the following

    formV t D te D et t( ) 1 2

    D1and D2are constant which must be determined using the

    initial conditions V(0+) and dV(0+)/dt

  • 8/10/2019 06 Yaser Rahmati

    22/54

    EXAMPLE

    CL R V

    ++

    V0

    I0iciL iR Determine the value of R for a critically

    damped response when, L=8H,

    C=0.125F, V0=0, and I0=-12.25 mA

    From the previous example 02=106. Then

    101

    240003

    RC R

    Again, from the previous example V(0+)=0 and dV(0+)/dt=98000 V/sThen D1=0 and D2=98000 V/s.

    V t te V t t( ) 98000 01000

  • 8/10/2019 06 Yaser Rahmati

    23/54

    THE STEP RESPONSE OF A

    PARALLEL RLC CIRCUIT

    IC

    L R V

    +t=0ic iL iR

    i i i I

    iV

    RC

    dV

    dtI

    L R c

    L

    V Ldi

    dt

    dV

    dtL

    d i

    dt

    i

    L

    R

    di

    dt LC

    d i

    dt I

    d i

    dt RC

    di

    dt

    i

    LC

    I

    LC

    L L

    L

    L L

    L L L

    2

    2

    2

    2

    2

    2

    1

  • 8/10/2019 06 Yaser Rahmati

    24/54

    The equation describing the step response of a second-order

    circuit is a second-order differential equation with constant

    coefficients and with a constant forcing function. The solution of

    this differential equation equals the forced response which is inthe same form of the forcing function (constant for a step input)

    plus a response function identical in form to the natural response.

    Thus, the solution for the inductor current is in the form

    i IL f

    function of the same form

    as the natural response

  • 8/10/2019 06 Yaser Rahmati

    25/54

    EXAMPLE

    IC

    L R V

    +t=0ic iL iR C=25nF, L=25mH, R=400

    The initial energy in the

    circuit is zero. I=24 mA.

    Find iL(t)Since there is no initial energy in the circuit, iL(0

    +)=0 and V(0+)=0

    V(0+)=L[diL(0+)/dt]=0, then diL(0

    +)/dt=0

    0

    2

    12

    8

    9

    4

    8

    0

    2

    1 10

    25)(25)16 10

    1

    2

    10

    2 400 25)5 10

    25 10

    LC

    RC

    (

    ( )(rad / s

    2

    Overdamped

    circuit

  • 8/10/2019 06 Yaser Rahmati

    26/54

    s

    s

    1

    4 4

    2

    4 4

    5 10 3 10 20000

    5 10 3 10 80000

    rad / s

    rad / s

    As t , circuit reaches dc steady state where inductor is short

    and capacitor is open. All of the input current flows through theinductor. Then If=24 mA.

    i t A e A e A

    i A A

    di

    dtA e A e

    di

    dtA A

    L

    t t

    L

    L t t

    L

    ( )

    ( )

    ( )

    24 10

    0 24 10

    20000 80000

    020000 80000 0

    3

    1

    20000

    2

    80000

    3

    1 2

    1

    20000

    2

    80000

    1 2

  • 8/10/2019 06 Yaser Rahmati

    27/54

    A mA A mA

    i t e e mA t Lt t

    1 2

    20000 80000

    32 8

    24 32 8 0

    ( ) ( )

    EXAMPLE:If the resistor in the circuit is increased to 625,

    find iL(t) in the circuit.

    Since L and C remain fixed, resonant frequency has the same

    value. But neper frequency decreases to 3.2x104rad/s. Withthese values circuit is underdamped with complex conjugate

    roots.

  • 8/10/2019 06 Yaser Rahmati

    28/54

    s j

    s j

    i t I B e t B e t

    I A

    i B

    di

    dt

    e B t B t

    e B t B t

    di

    L f

    t

    d

    t

    d

    f

    L

    L t

    d d

    t

    d d

    L

    14 4

    2

    4 4

    1 2

    3

    3

    1

    1 2

    1 2

    32 10 2 4 10

    32 10 2 4 10

    24 10

    0 24 10 0

    0

    . .

    . .

    ( ) cos sin

    ( )

    ( cos sin )

    ( sin cos )

    (

    rad / s

    rad / s

    + d

    )

    dtB Bd 1 2 0

  • 8/10/2019 06 Yaser Rahmati

    29/54

    B mA B mA

    i t e t t mA t Lt

    1 2

    32000

    24 32

    24 24 24000 32 24000 0

    ( ) ( ( cos sin ))

    EXAMPLE: Find iL(t) if R=500

    The resonant frequency remains the same, but neper frequency

    becomes 4x104rad/s. These values correspond to critical damping.

    Roots of the characteristic equation are real and equal at s=-40000

    i t I D te D e AL ft t( ) 1

    40000

    2

    40000

  • 8/10/2019 06 Yaser Rahmati

    30/54

    I A

    i D

    didt

    e D t D D e

    di

    dtD D

    D mA s D mA

    i t te e mA t

    f

    L

    L t t

    L

    L

    t t

    24 10

    0 24 10 0

    00

    960000 24

    24 960000 24 0

    3

    3

    2

    1 2 1

    2 1

    1 2

    40000 40000

    ( )

    ( )

    ( )

    /

    ( ) ( )

  • 8/10/2019 06 Yaser Rahmati

    31/54

    0 0.5 1 1.5 2 2.5

    -4

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    Underdamped

    Critically dampedOverdamped

  • 8/10/2019 06 Yaser Rahmati

    32/54

  • 8/10/2019 06 Yaser Rahmati

    33/54

    V V Ldi

    dt

    di

    dtA s

    i t I D te D e AI A

    i D D A

    didt

    D D D A s

    i t te

    L c

    L L

    L f

    t t

    f

    L

    L

    L

    t

    ( ) ( )( ) ( )

    /

    ( )

    ( )

    ( ) /

    ( ) ( .

    0 00 0 50

    25 102000

    24 10

    0 24 10 29 10 5 10

    0 2000 2200

    24 2 2 10 5

    3

    1

    40000

    2

    40000

    3

    3

    2

    3

    2

    3

    1 2 1

    6 40000

    e mA t t 40000 0)

  • 8/10/2019 06 Yaser Rahmati

    34/54

    V t Ldi

    dt

    te

    e e

    te e V

    L

    t

    t t

    t t

    ( )

    ( )[( . )( )

    . ( ) ]

    .

    25 10 2 2 10 40000

    2 2 10 5 40000 10

    2 2 10 50

    3 6 40000

    6 40000 40000 3

    6 40000 40000

  • 8/10/2019 06 Yaser Rahmati

    35/54

    THE NATURAL AND STEP RESPONSE

    OF A SERIES RLC CIRCUIT

    R L

    C+

    V0

    I0

    i

    Ri Ldi

    dt Cid V

    Rdi

    dt

    Ld i

    dt

    i

    C

    t

    1

    0

    0

    00

    2

    2

    d i

    dt

    R

    L

    di

    dt

    i

    LC

    s RL

    sLC

    2

    2

    2

    0

    1 0

    sR

    L

    R

    L LC

    R

    L LC

    1 2

    2

    2

    0

    2

    0

    2 2

    1

    2

    1

    ,

    rad / s rad / s

  • 8/10/2019 06 Yaser Rahmati

    36/54

    These equations are in the same form that of the equations for

    the parallel RLC circuit. Therefore, the solution will be

    overdamped, critically damped, or underdamped depending

    on relative magnitudes of the resonant frequency and neperfrequency.

    i t Ae A e

    i t B e t B e t i t D te D e

    s t s t

    t

    d

    t

    dt t

    ( )

    ( ) cos sin( )

    1 2

    1 2

    1 2

    1 2 (overdamped)

    (underdamped) (critically damped)

  • 8/10/2019 06 Yaser Rahmati

    37/54

    R L

    C+

    Vci

    + VR + VL

    +V

    t=0V Ri L

    di

    dtV

    i CdV

    dt

    di

    dtC

    d V

    dt

    c

    c c

    2

    2

    d V

    dt

    R

    L

    dV

    dt

    V

    LC

    V

    LC

    V t V Ae A eV t V B e t B e t

    V t V D te D e

    c c c

    c f

    s t s t

    c f

    t

    d

    t

    d

    c f

    t t

    2

    2

    1 2

    1 2

    1 2

    1 2

    ( )( ) cos sin

    ( )

    (overdamped) (underdamped)

    (critically damped)

  • 8/10/2019 06 Yaser Rahmati

    38/54

    t=0

    +

    100V

    100mH

    +

    Vc 560i

    The capacitor is initially charged

    to 100V. At t=0, switch closes.

    Find i(t) and Vc(t) for t0

    0

    2

    3 6

    8

    3

    6

    0

    2

    0

    2 2

    1 10 10

    100 0110

    2

    560

    2 100

    10 2800

    784 10

    9600

    LC

    R

    L

    ( )( )

    ( . )

    ( ).

    rad / s

    Underdamped

    rad / s

    2

    d

  • 8/10/2019 06 Yaser Rahmati

    39/54

    i t B e t B e t

    i B

    V Ri L didt

    di

    dt

    V

    LA s

    didt

    B e t B e t

    di

    dtB B A

    t

    d

    t

    d

    c

    c

    t t

    ( ) cos sin

    ( )

    ( ) ( ) ( )

    ( ) ( )/

    sin cos

    ( )

    1 2

    1

    3

    22800

    22800

    2 2

    0 0

    0 0 0 0

    0 0 100

    10010 1000

    2800 9600 9600 9600

    09600 1000

    1000

    9600

  • 8/10/2019 06 Yaser Rahmati

    40/54

    i t e t t

    V t iR Ldi

    dt

    V t t t e V t

    t

    c

    c

    t

    ( )

    .

    sin

    ( )

    ( ) ( cos . sin )

    1

    9 6

    9600 0

    100 9600 2917 9600 0

    2800

    2800

    A

  • 8/10/2019 06 Yaser Rahmati

    41/54

    EXAMPLE

    0.4

    F

    +

    Vc+48V

    t=0

    280 0.1HThere is no initial stored

    energy in the circuit at t=0.

    Find Vc(t) for t0.

    s

    js j

    V t V B e t B e t t c cft t

    1

    2 6

    2

    1

    1400

    2

    1400

    280

    2 01

    280

    0 2

    10

    01 0 4

    1400 48001400 4800

    4800 4800 0

    ( . ) . ( . )( . )

    ( ) cos sin ,

    rad / srad / s

  • 8/10/2019 06 Yaser Rahmati

    42/54

  • 8/10/2019 06 Yaser Rahmati

    43/54

    dV

    dt

    B B

    B V

    V t e t e t V t

    c

    c

    t t

    ( )

    ( ) ( cos sin ) ,

    04800 1400 0

    14

    48 48 4800 14 4800 0

    2 1

    2

    1400 1400

    A CIRCUIT WITH TWO

  • 8/10/2019 06 Yaser Rahmati

    44/54

    A CIRCUIT WITH TWO

    INTEGRATING AMPLIFIERS

    ++

    Vo1

    R1

    ++

    Vo

    R2

    C2C1

    +

    Vg

    Assuming ideal opamps, find the relation between Voand Vg

    00 0

    1

    1

    1 1

    1

    1 1

    V

    RC

    d

    dtV

    dV

    dt R C V

    g

    o

    o

    g( )

  • 8/10/2019 06 Yaser Rahmati

    45/54

    00 0

    1

    1

    1 1

    1

    2

    2

    2 2

    1

    2

    0

    2

    2 2

    1

    2

    0

    21 1 2 2

    V

    RC

    d

    dtV

    dV

    dt R C V

    d V

    dt R C

    dV

    dt

    d V

    dt R C R C V

    o

    o

    o

    o

    o

    g

    ( )

  • 8/10/2019 06 Yaser Rahmati

    46/54

    EXAMPLE

    +

    +

    Vo1

    250k

    + +Vo

    0.1F

    +

    Vg

    500k

    1F

    -5V-9V

    9V5V

    No energy is stored in the circuit when the input voltage Vg

    jumps instantaneously from 0 to 25 mV.

    Derive the expression for Vo(t) for 0 ttsat.

    How long is it before the circuit saturates?

  • 8/10/2019 06 Yaser Rahmati

    47/54

    1 1000

    250 0140

    1 1000

    500 1

    2

    40 2 25 10 2

    2 2

    2

    1 1

    2 2

    2

    2

    3

    0

    2

    0

    R C

    R Cd V

    dt

    dV

    dt dx t

    V xdx t

    o

    o t

    o

    t

    ( )( . )

    ( )( )

    ( )( )

    0 t tsat

  • 8/10/2019 06 Yaser Rahmati

    48/54

    The second integrating amplifier saturates when Voreaches 9V

    or t=3s. But it is possible that the first opamp saturates before

    t=3s. To explore this possibility use the following equation

    dVdt R C

    V

    V t

    o

    g

    o

    1

    1 1

    3

    1

    1 40 25 10 1

    ( )

    Thus, at t=3s, Vo1=-3V. The first opamp does not reachsaturation at t=3s. The circuit reaches saturation when the

    second amplifier saturates.

  • 8/10/2019 06 Yaser Rahmati

    49/54

    TWO INTEGRATING AMPLIFIERS

    WITH FEEDBACK RESISTORS

    ++

    Vo1

    Ra

    ++

    Vo

    Rb

    C2C1

    +Vg

    R1 R2

    The reason that the op amp saturates in the integratingamplifier is the feedback capacitors accumulation of charge.

    To overcome this problem, a resistor is placed in parallel

    with each feedback capacitor.

  • 8/10/2019 06 Yaser Rahmati

    50/54

    0 00 0

    1

    0 0 0 0

    1

    1

    1 1

    1

    1 11

    1

    1 1 1

    1 1

    1 1

    1

    2

    2

    2

    1

    2

    2 2 2

    V

    R

    V

    RC

    d

    dtV

    dV

    dt R C V

    V

    R C

    R CdV

    dt

    V V

    R C

    VR

    VR

    C ddt

    V

    dV

    dt

    V V

    R CR C

    g

    a

    o

    o

    o

    o

    g

    a

    o o g

    a

    o

    b

    oo

    o o o

    b

    ( )

    ( )

    Let

    ,

  • 8/10/2019 06 Yaser Rahmati

    51/54

    d V

    dt

    dV

    dt R C

    dV

    dt

    dV

    dt

    V V

    R C

    V R CdV

    dt

    R CV

    d V

    dt

    dV

    dtV

    V

    R C R C

    o

    b

    o

    o o g

    a

    o b

    o b

    o

    o o

    o

    g

    a b

    2

    0

    2

    2 2

    1

    1 1

    1 1

    1 2

    2

    2

    2

    2

    1 2 1 2 1 2

    1 1

    1 1 1

  • 8/10/2019 06 Yaser Rahmati

    52/54

    The characteristic equation is

    s s2

    1 2 1 2

    1 1 10

    The roots of the characteristic equation are real

    s s11

    2

    2

    1 1

  • 8/10/2019 06 Yaser Rahmati

    53/54

    EXAMPLE

    The parameters of the circuit are Ra=100 k, Rb=25 k,

    R1=500 k, R2=100 k, C1=0.1F, and C2=1F. The power

    supply of each op amp is 6V. The input voltage jumps from 0

    to 250 mV at t=0. No energy is stored in the feedback capacitorsat the instant the input is applied. Find Vo(t) for t0.

    1 1 1 21 2 2

    1 2

    2

    2

    0 05 01

    30 200 1000

    R C s R C s

    V

    R C R C

    d V

    dt

    dV

    dtV

    g

    a b

    o o

    o

    . .

    = 1000 V / s

    +

    2

  • 8/10/2019 06 Yaser Rahmati

    54/54

    The characteristic equation is s2+30s+200=0. Then

    s1=-20 rad/s and s2=-10 rad/s. The final values of the output

    is the input voltage times the gain of each stage, because

    capacitors behave as open circuits as t

    V V

    V t Ae A e

    VdV

    dt

    A V A V

    V t e e V t

    o

    o

    t t

    oo

    o

    t t

    ( ) ( )

    ( )

    ( )( )

    ( ) ( )

    250 10500

    100

    100

    255

    5

    0 00

    0

    10 5

    5 10 5 0

    3

    1

    10

    2

    20

    1 2

    10 20

    and