06 Lecture Presentation PC

130
8/3/2019 06 Lecture Presentation PC http://slidepdf.com/reader/full/06-lecture-presentation-pc 1/130 Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can be alive Cell structure is correlated to cellular function All cells are related by their descent from earlier cells © 2011 Pearson Education, Inc.

Transcript of 06 Lecture Presentation PC

Page 1: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 1/130

Overview: The Fundamental Units of Life

• All organisms are made of cells• The cell is the simplest collection of matter

that can be alive

Cell structure is correlated to cellular function• All cells are related by their descent from earlier

cells

© 2011 Pearson Education, Inc.

Page 2: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 2/130

Concept 6.1: Biologists use microscopes and

the tools of biochemistry to study cells• Though usually too small to be seen by the

unaided eye, cells can be complex

© 2011 Pearson Education, Inc.

Page 3: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 3/130

Microscopy 

• Scientists use microscopes to visualize cells toosmall to see with the naked eye

• In a light microscope (LM), visible light ispassed through a specimen and then through

glass lenses• Lenses refract (bend) the light, so that the image

is magnified

© 2011 Pearson Education, Inc.

Page 4: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 4/130

• Three important parameters of microscopy – Magnification , the ratio of an object’s image size

to its real size

 – Resolution , the measure of the clarity of the

image, or the minimum distance of twodistinguishable points

 – Contrast , visible differences in parts of thesample

© 2011 Pearson Education, Inc.

Page 5: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 5/130

Figure 6.2 10 m

1 m

0.1 m

1 cm

1 mm

100 m

10 m

1 m

100 nm

10 nm

1 nm

0.1 nm Atoms

Small molecules

Lipids

Proteins

Ribosomes

Viruses

Smallest bacteria

Mitochondrion

Most bacteria

Nucleus

Most plant andanimal cells

Human egg

Frog egg

Chicken egg

Length of somenerve andmuscle cells

Human height

   U  n  a   i   d

  e   d  e  y  e

   L   i  g   h   t  m   i  c  r  o  s

  c  o  p  y

   E   l  e  c   t  r  o  n  m

   i  c  r  o  s  c  o  p  y

Super-resolution

microscopy

Page 6: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 6/130

Brightfield

(unstained specimen)

Brightfield

(stained specimen)

   5   0  m 

Confocal

Differential-interference-contrast (Nomarski)

Fluorescence

10 m

Deconvolution

Super-resolution

Scanning electronmicroscopy (SEM)

Transmission electronmicroscopy (TEM)

Cross sectionof cilium

Longitudinal sectionof cilium

Cilia

Electron Microscopy (EM)

   1  m 

   1   0  m 

   5   0  m 

2 m

2 m

Light Microscopy (LM)

Phase-contrast

Figure 6.3

Page 7: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 7/130

• LMs can magnify effectively to about 1,000 timesthe size of the actual specimen

• Various techniques enhance contrast andenable cell components to be stained or labeled

• Most subcellular structures, includingorganelles (membrane-enclosedcompartments), are too small to be resolved by

an LM

© 2011 Pearson Education, Inc.

Page 8: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 8/130

• Two basic types of electron microscopes(EMs) are used to study subcellular structures

• Scanning electron microscopes (SEMs) focusa beam of electrons onto the surface of aspecimen, providing images that look 3-D

• Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen

• TEMs are used mainly to study the internalstructure of cells

© 2011 Pearson Education, Inc.

Page 9: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 9/130

• Recent advances in light microscopy – Confocal microscopy and deconvolution

microscopy provide sharper images of three-dimensional tissues and cells

 – New techniques for labeling cells improveresolution

© 2011 Pearson Education, Inc.

Page 10: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 10/130

Cell Fractionation 

• Cell fractionation takes cells apart andseparates the major organelles from oneanother

• Centrifuges fractionate cells into theircomponent parts

• Cell fractionation enables scientists to determinethe functions of organelles

• Biochemistry and cytology help correlate cellfunction with structure

© 2011 Pearson Education, Inc.

Page 11: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 11/130

Figure 6.4 TECHNIQUE

Homogenization

Tissuecells

Homogenate

Centrifugation

Differentialcentrifugation

Centrifuged at1,000 g  

(1,000 times theforce of gravity)

for 10 min Supernatantpoured intonext tube

20,000 g  20 min

80,000 g  

60 minPellet rich innuclei andcellular debris

150,000 g  

3 hr

Pellet rich inmitochondria(and chloro-plasts if cellsare from a plant)

Pellet rich in“microsomes” (pieces of plasmamembranes andcells’ internal 

membranes)

Pellet rich in

ribosomes

Page 12: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 12/130

Figure 6.4a

TECHNIQUE

Homogenization

Tissuecells

Homogenate

Centrifugation

Page 13: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 13/130

Differentialcentrifugation

Centrifuged at1,000 g  

(1,000 times theforce of gravity)

for 10 min Supernatantpoured into

next tube

20 min

60 minPellet rich innuclei andcellular debris

3 hr

Pellet rich inmitochondria(and chloro-plasts if cellsare from a plant)

Pellet rich in“microsomes” 

Pellet rich in

ribosomes

20,000 g  

80,000 g  

150,000 g  

TECHNIQUE (cont.)Figure 6.4b

Page 14: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 14/130

Concept 6.2: Eukaryotic cells have internal

membranes that compartmentalize their

functions

• The basic structural and functional unit of every

organism is one of two types of cells: prokaryoticor eukaryotic

• Only organisms of the domains Bacteria andArchaea consist of prokaryotic cells

• Protists, fungi, animals, and plants all consist ofeukaryotic cells

© 2011 Pearson Education, Inc.

Page 15: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 15/130

Comparing Prokaryotic and Eukaryotic

Cells 

• Basic features of all cells 

 – Plasma membrane

 – Semifluid substance called cytosol – Chromosomes (carry genes)

 – Ribosomes (make proteins)

© 2011 Pearson Education, Inc.

Page 16: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 16/130

• Prokaryotic cells are characterized by having – No nucleus

 – DNA in an unbound region called the nucleoid

 – No membrane-bound organelles – Cytoplasm bound by the plasma membrane

© 2011 Pearson Education, Inc.

Fi

Page 17: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 17/130

Fimbriae

Bacterial

chromosome

A typicalrod-shaped

bacterium

(a)

Nucleoid

Ribosomes

Plasmamembrane

Cell wall

Capsule

Flagella A thin sectionthrough the

bacterium Bacillus coagulans (TEM)

(b)

0.5 m

Figure 6.5

Page 18: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 18/130

• Eukaryotic cells are characterized by having – DNA in a nucleus that is bounded by a

membranous nuclear envelope

 – Membrane-bound organelles

 – Cytoplasm in the region between the plasmamembrane and nucleus

• Eukaryotic cells are generally much larger than

prokaryotic cells

© 2011 Pearson Education, Inc.

Page 19: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 19/130

• The plasma membrane is a selective barrierthat allows sufficient passage of oxygen,nutrients, and waste to service the volume ofevery cell

• The general structure of a biological membraneis a double layer of phospholipids

© 2011 Pearson Education, Inc.

Fi 6 6

Page 20: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 20/130

Figure 6.6

Outside of cell

Inside of cell0.1 m

(a) TEM of a plasmamembrane

Hydrophilicregion

Hydrophobicregion

Hydrophilicregion

Carbohydrate side chains

ProteinsPhospholipid

(b) Structure of the plasma membrane

Page 21: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 21/130

• Metabolic requirements set upper limits on thesize of cells

• The surface area to volume ratio of a cell iscritical

• As the surface area increases by a factor of n 2,the volume increases by a factor of n 3

• Small cells have a greater surface area relative

to volume

© 2011 Pearson Education, Inc.

Figure 6 7

Page 22: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 22/130

Surface area increases whiletotal volume remains constant

Total surface area[sum of the surface areas(height width) of all boxsides number of boxes]

Total volume[height width length

number of boxes]

Surface-to-volume(S-to-V) ratio[surface area volume]

1

5

6 150 750

1

1251251

1.26 6

Figure 6.7

Page 23: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 23/130

A Panoramic View of the Eukaryotic Cell 

• A eukaryotic cell has internal membranes thatpartition the cell into organelles

• Plant and animal cells have most of the sameorganelles

© 2011 Pearson Education, Inc.

Figure 6 8a

Page 24: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 24/130

Figure 6.8a

ENDOPLASMIC RETICULUM (ER)

RoughER

SmoothER

Nuclearenvelope

Nucleolus

Chromatin

Plasmamembrane

Ribosomes

Golgi apparatus

LysosomeMitochondrion

Peroxisome

Microvilli

Microtubules

Intermediate filamentsMicrofilaments

Centrosome

CYTOSKELETON:

Flagellum NUCLEUS

Figure 6 8b

Page 25: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 25/130

Figure 6.8b

Animal Cells

Cell

Nucleus

Nucleolus

Human cells from liningof uterus (colorized TEM)

Yeast cells budding(colorized SEM)

   1   0  m  Fungal Cells

   5  m 

Parentcell

Buds

1 m

Cell wall

Vacuole

Nucleus

Mitochondrion

A single yeast cell(colorized TEM)

Figure 6 8c

Page 26: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 26/130

NUCLEUS

Nuclearenvelope

Nucleolus

Chromatin

Golgiapparatus

Mitochondrion

Peroxisome

Plasma membrane

Cell wall

Wall of adjacent cell

Plasmodesmata

Chloroplast

Microtubules

Intermediatefilaments

Microfilaments

CYTOSKELETON

Central vacuole

Ribosomes

Smoothendoplasmicreticulum

Roughendoplasmic

reticulum

Figure 6.8c

Figure 6 8d

Page 27: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 27/130

Figure 6.8d

Plant Cells

Cells from duckweed(colorized TEM)

Cell

   5  m 

Cell wall

Chloroplast

Nucleus

Nucleolus

   8  m 

Protistan Cells

   1  m 

Chlamydomonas  (colorized SEM)

Chlamydomonas  (colorized TEM)

Flagella

Nucleus

Nucleolus

Vacuole

Chloroplast

Cell wall

Mitochondrion

Page 28: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 28/130

Concept 6.3: The eukaryotic cell’s genetic

instructions are housed in the nucleus and

carried out by the ribosomes

• The nucleus contains most of the DNA in a

eukaryotic cell• Ribosomes use the information from the DNA to

make proteins

© 2011 Pearson Education, Inc.

Page 29: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 29/130

The Nucleus: Information Central 

• The nucleus contains most of the cell’s genesand is usually the most conspicuous organelle

• The nuclear envelope encloses the nucleus,separating it from the cytoplasm

• The nuclear membrane is a double membrane;each membrane consists of a lipid bilayer

© 2011 Pearson Education, Inc.

Figure 6.9

Page 30: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 30/130

Nucleus

Rough ER

Nucleolus

Chromatin

Nuclear envelope:

Inner membrane

Outer membrane

Nuclear pore

Ribosome

Porecomplex

Close-up

of nuclearenvelope

Surface of nuclearenvelope

Pore complexes (TEM)

   0 .   2

   5  m 

   1  m 

Nuclear lamina (TEM)

Chromatin

1 m

gu e 6 9

Figure 6.9a

Page 31: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 31/130

Nucleus

Rough ER

Nucleolus

Chromatin

Nuclear envelope:

Inner membrane

Outer membrane

Nuclear pore

Chromatin

Ribosome

Porecomplex

Close-upof nuclear

envelope

g

Page 32: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 32/130

• Pores regulate the entry and exit of moleculesfrom the nucleus

• The shape of the nucleus is maintained by thenuclear lamina, which is composed of protein

© 2011 Pearson Education, Inc.

Page 33: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 33/130

• In the nucleus, DNA is organized into discreteunits called chromosomes

• Each chromosome is composed of a single DNAmolecule associated with proteins 

• The DNA and proteins of chromosomes aretogether called chromatin 

• Chromatin condenses to form discrete

chromosomes as a cell prepares to divide • The nucleolus is located within the nucleus and

is the site of ribosomal RNA (rRNA) synthesis

© 2011 Pearson Education, Inc.

Page 34: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 34/130

Ribosomes: Protein Factories 

• Ribosomes are particles made of ribosomalRNA and protein

• Ribosomes carry out protein synthesis in twolocations

 – In the cytosol (free ribosomes)

 – On the outside of the endoplasmic reticulum orthe nuclear envelope (bound ribosomes)

© 2011 Pearson Education, Inc.

Figure 6.10

Page 35: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 35/130

0.25 m

Free ribosomes in cytosol

Endoplasmic reticulum (ER)

Ribosomes bound to ER

Largesubunit

Smallsubunit

Diagram of a ribosomeTEM showing ER andribosomes

Figure 6.10a

Page 36: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 36/130

0.25 m

Free ribosomes in cytosol

Endoplasmic reticulum (ER)

Ribosomes bound to ER

TEM showing ER andribosomes

Page 37: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 37/130

Concept 6.4: The endomembrane system

regulates protein traffic and performs

metabolic functions in the cell

• Components of the endomembrane system 

 – Nuclear envelope – Endoplasmic reticulum

 – Golgi apparatus

 – Lysosomes

 – Vacuoles – Plasma membrane

• These components are either continuous orconnected via transfer by vesicles

© 2011 Pearson Education, Inc.

Page 38: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 38/130

The Endoplasmic Reticulum: Biosynthetic

Factory 

• The endoplasmic reticulum (ER) accounts formore than half of the total membrane in manyeukaryotic cells

• The ER membrane is continuous with thenuclear envelope

• There are two distinct regions of ER

 – Smooth ER, which lacks ribosomes

 – Rough ER, surface is studded with ribosomes

© 2011 Pearson Education, Inc.

Figure 6.11 Smooth ERNuclear

Page 39: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 39/130

Rough ER

ER lumen

CisternaeRibosomes

Smooth ERTransport vesicle

Transitional ER

Rough ER200 nm

Nuclearenvelope

Figure 6.11a

Page 40: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 40/130

Smooth ER

Rough ER

CisternaeRibosomes

Transport vesicle

Transitional ER

Nuclearenvelope

ER lumen

Figure 6.11b

Page 41: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 41/130

Smooth ER Rough ER 200 nm

Page 42: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 42/130

 Functions of Smooth ER

• The smooth ER – Synthesizes lipids

 – Metabolizes carbohydrates

 – Detoxifies drugs and poisons

 – Stores calcium ions

© 2011 Pearson Education, Inc.

Page 43: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 43/130

 Functions of Rough ER

• The rough ER – Has bound ribosomes, which secrete

glycoproteins (proteins covalently bonded tocarbohydrates) 

 – Distributes transport vesicles, proteinssurrounded by membranes 

 – Is a membrane factory for the cell

© 2011 Pearson Education, Inc.

Page 44: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 44/130

• The Golgi apparatus consists of flattenedmembranous sacs called cisternae

Functions of the Golgi apparatus – Modifies products of the ER

 – Manufactures certain macromolecules

 – Sorts and packages materials into transport

vesicles

The Golgi Apparatus: Shipping and

Receiving Center 

© 2011 Pearson Education, Inc.

Figure 6.12

Page 45: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 45/130

cis face

(“receiving” side of  Golgi apparatus)

trans face(“shipping” side of  Golgi apparatus)

0.1 m

TEM of Golgi apparatus

Cisternae

Figure 6.12a

Page 46: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 46/130

TEM of Golgi apparatus

0.1 m

Page 47: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 47/130

Lysosomes: Digestive Compartments 

•A lysosome is a membranous sac ofhydrolytic enzymes that can digestmacromolecules

• Lysosomal enzymes can hydrolyze proteins,

fats, polysaccharides, and nucleic acids

• Lysosomal enzymes work best in the acidicenvironment inside the lysosome

© 2011 Pearson Education, Inc.

Page 48: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 48/130

© 2011 Pearson Education, Inc.

Animation: Lysosome FormationRight-click slide / select “Play” 

Page 49: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 49/130

Some types of cell can engulf another cell byphagocytosis; this forms a food vacuole

• A lysosome fuses with the food vacuole anddigests the molecules 

• Lysosomes also use enzymes to recycle thecell’s own organelles and macromolecules, aprocess called autophagy

© 2011 Pearson Education, Inc.

Figure 6.13

Page 50: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 50/130

Nucleus

Lysosome

1 m

Digestiveenzymes

Digestion

Food vacuole

LysosomePlasma membrane

(a) Phagocytosis

Vesicle containingtwo damagedorganelles

1 m

Mitochondrionfragment

Peroxisomefragment

(b) Autophagy

Peroxisome

VesicleMitochondrion

Lysosome

Digestion

Figure 6.13a

Nucleus1 m

Page 51: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 51/130

Nucleus

Lysosome

Digestiveenzymes

Digestion

Food vacuole

LysosomePlasma membrane

(a) Phagocytosis

Figure 6.13aa

Page 52: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 52/130

Nucleus

Lysosome

1 m

Figure 6.13bVesicle containing

d d

Page 53: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 53/130

two damagedorganelles

1 m

Mitochondrionfragment

Peroxisomefragment

Peroxisome

VesicleMitochondrion

Lysosome

Digestion

(b) Autophagy

Page 54: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 54/130

Vacuoles: Diverse Maintenance

Compartments 

• A plant cell or fungal cell may have one orseveral vacuoles, derived from endoplasmicreticulum and Golgi apparatus

© 2011 Pearson Education, Inc.

Page 55: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 55/130

Food vacuoles are formed by phagocytosis• Contractile vacuoles, found in many freshwater

protists, pump excess water out of cells

• Central vacuoles, found in many mature plantcells, hold organic compounds and water

© 2011 Pearson Education, Inc.

Figure 6.14

Page 56: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 56/130

Central vacuole

Cytosol

Nucleus

Cell wall

Chloroplast

Centralvacuole

5 m

Figure 6.14a

Page 57: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 57/130

Cytosol

Nucleus

Cell wall

Chloroplast

Centralvacuole

5 m

Page 58: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 58/130

The Endomembrane System: A Review •

The endomembrane system is a complex anddynamic player in the cell’s compartmental

organization

© 2011 Pearson Education, Inc.

Figure 6.15-3

Page 59: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 59/130

Smooth ER

Nucleus

Rough ER

Plasmamembrane

cis Golgi

trans Golgi

Page 60: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 60/130

Concept 6.5: Mitochondria and chloroplasts

change energy from one form to another

• Mitochondria are the sites of cellular respiration,a metabolic process that uses oxygen togenerate ATP

• Chloroplasts, found in plants and algae, are thesites of photosynthesis

• Peroxisomes are oxidative organelles

© 2011 Pearson Education, Inc.

Page 61: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 61/130

• Mitochondria and chloroplasts have similarities

with bacteria 

 – Enveloped by a double membrane – Contain free ribosomes and circular DNA

molecules

 – Grow and reproduce somewhat independently

in cells

© 2011 Pearson Education, Inc.

The Evolutionary Origins of Mitochondria

and Chloroplasts

Page 62: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 62/130

• The Endosymbiont theory  – An early ancestor of eukaryotic cells engulfed

a nonphotosynthetic prokaryotic cell, whichformed an endosymbiont relationship with its

host – The host cell and endosymbiont merged into

a single organism, a eukaryotic cell with amitochondrion

 – At least one of these cells may have taken upa photosynthetic prokaryote, becoming theancestor of cells that contain chloroplasts

© 2011 Pearson Education, Inc.

NucleusEndoplasmicreticulum

Figure 6.16

Page 63: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 63/130

reticulum

Nuclearenvelope

Ancestor ofeukaryotic cells(host cell)

Engulfing of oxygen-using nonphotosyntheticprokaryote, which

becomes a mitochondrion

Mitochondrion

Nonphotosyntheticeukaryote

Mitochondrion

At leastone cell

Photosynthetic eukaryote

Engulfing ofphotosyntheticprokaryote

Chloroplast

Page 64: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 64/130

Mitochondria: Chemical Energy Conversion 

Mitochondria are in nearly all eukaryotic cells• They have a smooth outer membrane and an

inner membrane folded into cristae

• The inner membrane creates two compartments:intermembrane space and mitochondrial matrix

• Some metabolic steps of cellular respiration arecatalyzed in the mitochondrial matrix

• Cristae present a large surface area for enzymesthat synthesize ATP 

© 2011 Pearson Education, Inc.

Figure 6.17

Page 65: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 65/130

Intermembrane space

Outer

membrane

DNA

Innermembrane

Cristae

Matrix

Freeribosomesin themitochondrialmatrix

(a) Diagram and TEM of mitochondrion (b) Network of mitochondria in a protist

cell (LM)

0.1 m

MitochondrialDNA

Nuclear DNA

Mitochondria

10 m

Figure 6.17a

Page 66: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 66/130

Intermembrane space

Outer

DNA

Innermembrane

Cristae

Matrix

Freeribosomesin themitochondrial

matrix

(a) Diagram and TEM of mitochondrion

0.1 m

membrane

Page 67: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 67/130

Chloroplasts: Capture of Light Energy

Chloroplasts contain the green pigmentchlorophyll, as well as enzymes and othermolecules that function in photosynthesis

• Chloroplasts are found in leaves and other

green organs of plants and in algae

© 2011 Pearson Education, Inc.

Page 68: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 68/130

Chloroplast structure includes – Thylakoids, membranous sacs, stacked to

form a granum – Stroma, the internal fluid

• The chloroplast is one of a group of plantorganelles, called plastids 

© 2011 Pearson Education, Inc.

Figure 6.18

Page 69: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 69/130

RibosomesStroma

Inner and outer

membranes

Granum

1 mIntermembrane spaceThylakoid

(a) Diagram and TEM of chloroplast (b) Chloroplasts in an algal cell

Chloroplasts(red)

50 m

DNA

Figure 6.18a

Page 70: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 70/130

RibosomesStroma

Inner and outermembranes

Granum

1 mIntermembrane spaceThylakoid

(a) Diagram and TEM of chloroplast

DNA

Figure 6.18b

Page 71: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 71/130

(b) Chloroplasts in an algal cell

Chloroplasts(red)

50 m

Page 72: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 72/130

Peroxisomes: Oxidation

Peroxisomes are specialized metaboliccompartments bounded by a single membrane

• Peroxisomes produce hydrogen peroxide andconvert it to water

• Peroxisomes perform reactions with manydifferent functions

• How peroxisomes are related to other organelles

is still unknown

© 2011 Pearson Education, Inc.

Figure 6.19

Page 73: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 73/130

Chloroplast

PeroxisomeMitochondrion

1 m

Page 74: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 74/130

Concept 6.6: The cytoskeleton is a network

of fibers that organizes structures and

activities in the cell

• The cytoskeleton is a network of fibersextending throughout the cytoplasm

• It organizes the cell’s structures and activities,

anchoring many organelles

• It is composed of three types of molecular

structures – Microtubules – Microfilaments – Intermediate filaments

© 2011 Pearson Education, Inc.

Figure 6.20

Page 75: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 75/130

   1   0  m 

Page 76: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 76/130

Roles of the Cytoskeleton:

Support and Motility

• The cytoskeleton helps to support the cell andmaintain its shape

• It interacts with motor proteins to produce

motility• Inside the cell, vesicles can travel along

“monorails” provided by the cytoskeleton 

• Recent evidence suggests that the cytoskeletonmay help regulate biochemical activities

© 2011 Pearson Education, Inc.

Figure 6.21

Vesicle

Page 77: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 77/130

ATPVesicle

(a)

Motor protein(ATP powered)

Microtubuleof cytoskeleton

Receptor formotor protein

0.25 mVesiclesMicrotubule

(b)

Figure 6.21a

Page 78: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 78/130

0.25 mVesiclesMicrotubule

(b)

C f h C k l

Page 79: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 79/130

Components of the Cytoskeleton

Three main types of fibers make up thecytoskeleton

 – Microtubules are the thickest of the threecomponents of the cytoskeleton

 – Microfilaments , also called actin filaments, arethe thinnest components

 – Intermediate filaments are fibers withdiameters in a middle range

© 2011 Pearson Education, Inc.

Table 6.1

Page 80: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 80/130

Column of tubulin dimers

Tubulin dimer

25 nm

   

Actin subunit

7 nm

Keratin proteins

812 nm

Fibrous subunit (keratinscoiled together)

10 m 10 m 5 m

Table 6.1a

Page 81: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 81/130

Tubulin dimer

25 nm

   

Column of tubulin dimers

10 m

Table 6.1b

Page 82: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 82/130

10 m

Actin subunit

7 nm

Table 6.1c

Page 83: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 83/130

5 m

Keratin proteins

Fibrous subunit (keratinscoiled together)

812 nm

Mi t b l

Page 84: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 84/130

 Microtubules

Microtubules are hollow rods about 25 nm indiameter and about 200 nm to 25 microns long

• Functions of microtubules

 – Shaping the cell

 – Guiding movement of organelles

 – Separating chromosomes during cell division

© 2011 Pearson Education, Inc.

Page 85: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 85/130

 

Centrosomes and Centrioles • In many cells, microtubules grow out from a

centrosome near the nucleus

• The centrosome is a “microtubule-organizingcenter” 

• In animal cells, the centrosome has a pair ofcentrioles, each with nine triplets of

microtubules arranged in a ring

© 2011 Pearson Education, Inc.

Figure 6.22

Page 86: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 86/130

Centrosome

Longitudinalsection ofone centriole

Centrioles

Microtubule

0.25 m

Microtubules Cross section

of the other centriole

Figure 6.22a

Page 87: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 87/130

Longitudinal

section ofone centriole

0.25 m

Microtubules Cross sectionof the other centriole

Page 88: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 88/130

 

Cilia and Flagella • Microtubules control the beating of cilia and

flagella, locomotor appendages of some cells

• Cilia and flagella differ in their beating patterns

© 2011 Pearson Education, Inc.

Direction of swimmingFigure 6.23

Page 89: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 89/130

(b) Motion of cilia

Direction of organism’s movement 

Power stroke Recovery stroke

(a) Motion of flagella5 m

15 m

Page 90: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 90/130

Cilia and flagella share a common structure – A core of microtubules sheathed by the plasma

membrane

 – A basal body that anchors the cilium or

flagellum – A motor protein called dynein, which drives the

bending movements of a cilium or flagellum 

© 2011 Pearson Education, Inc.

Page 91: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 91/130

© 2011 Pearson Education, Inc.

Animation: Cilia and FlagellaRight-click slide / select “Play” 

0.1 m Outer microtubuledoublet

Dynein proteins

Plasma membraneFigure 6.24

Page 92: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 92/130

Microtubules

Plasmamembrane

Basal body

Longitudinal sectionof motile cilium

(a)

0.5 m 0.1 m

(b) Cross section ofmotile cilium

Dynein proteins

Centralmicrotubule

Radialspoke

Cross-linkingproteins betweenouter doublets

Triplet

(c) Cross section ofbasal body

Figure 6.24a

Page 93: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 93/130

Microtubules

Plasmamembrane

Basal body

Longitudinal sectionof motile cilium

0.5 m

(a)

Figure 6.24b

Page 94: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 94/130

0.1 m

(b) Cross section ofmotile cilium

Outer microtubuledoublet

Dynein proteins

Centralmicrotubule

Radialspoke

Cross-linkingproteins betweenouter doublets

Plasma membrane

Figure 6.24ba

Page 95: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 95/130

0.1 m

(b) Cross section ofmotile cilium

Outer microtubuledoublet

Dynein proteins

Centralmicrotubule

Radialspoke

Cross-linkingproteins betweenouter doublets

Figure 6.24c

Page 96: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 96/130

0.1 m

Triplet

(c) Cross section of

basal body

Figure 6.24ca

Page 97: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 97/130

0.1 m

Triplet

(c) Cross section of

basal body

Page 98: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 98/130

How dynein “walking” moves flagella and cilia − Dynein arms alternately grab, move, and release

the outer microtubules

 – Protein cross-links limit sliding

 – Forces exerted by dynein arms cause doublets tocurve, bending the cilium or flagellum

© 2011 Pearson Education, Inc.

Figure 6.25 Microtubuledoublets ATP

Page 99: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 99/130

Dynein protein

(a) Effect of unrestrained dynein movement

Cross-linking proteinsbetween outer doublets

ATP

Anchoragein cell

(b) Effect of cross-linking proteins

(c) Wavelike motion

1

2

3

MicrotubuleATP

Figure 6.25a

Page 100: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 100/130

doublets

Dynein protein

ATP

(a) Effect of unrestrained dynein movement

Figure 6.25b

Page 101: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 101/130

Cross-linking proteins

between outer doublets

ATP

Anchoragein cell

(b) Effect of cross-linking proteins (c) Wavelike motion

31

2

Microfilaments (Actin Filaments)

Page 102: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 102/130

 Microfilaments (Actin Filaments)

Microfilaments are solid rods about 7 nm indiameter, built as a twisted double chain of actin

subunits

• The structural role of microfilaments is to bear

tension, resisting pulling forces within the cell• They form a 3-D network called the cortex just

inside the plasma membrane to help support thecell’s shape 

• Bundles of microfilaments make up the core ofmicrovilli of intestinal cells

© 2011 Pearson Education, Inc.

Figure 6.26

Microvillus

Page 103: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 103/130

Plasma membrane

Microfilaments (actinfilaments)

Intermediate filaments

0.25 m

Page 104: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 104/130

Microfilaments that function in cellular motilitycontain the protein myosin in addition to actin

• In muscle cells, thousands of actin filaments arearranged parallel to one another

• Thicker filaments composed of myosininterdigitate with the thinner actin fibers

© 2011 Pearson Education, Inc.

Figure 6.27

Muscle cell

0.5 m

Page 105: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 105/130

Actinfilament

Myosin

Myosin

filament

head

(a) Myosin motors in muscle cell contraction

0.5 m

100 m

Cortex (outer cytoplasm):gel with actin network

Inner cytoplasm: solwith actin subunits

(b) Amoeboid movement

Extendingpseudopodium

30 m(c) Cytoplasmic streaming in plant cells

Chloroplast

Figure 6.27a

Page 106: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 106/130

Muscle cell

Actin

filamentMyosin

Myosin

filament

(a) Myosin motors in muscle cell contraction

0.5 m

head

Figure 6.27b

Page 107: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 107/130

100 m

Cortex (outer cytoplasm):

gel with actin network

Inner cytoplasm: solwith actin subunits

(b) Amoeboid movement

Extendingpseudopodium

Page 108: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 108/130

Localized contraction brought about by actin andmyosin also drives amoeboid movement

• Pseudopodia (cellular extensions) extend andcontract through the reversible assembly and

contraction of actin subunits into microfilaments 

© 2011 Pearson Education, Inc.

Page 109: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 109/130

Cytoplasmic streaming is a circular flow ofcytoplasm within cells

• This streaming speeds distribution of materialswithin the cell

• In plant cells, actin-myosin interactions and sol-gel transformations drive cytoplasmic streaming

© 2011 Pearson Education, Inc.

Intermediate Filaments

Page 110: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 110/130

 Intermediate Filaments

• Intermediate filaments range in diameter from8 –12 nanometers, larger than microfilaments butsmaller than microtubules

• They support cell shape and fix organelles inplace

• Intermediate filaments are more permanentcytoskeleton fixtures than the other two classes

© 2011 Pearson Education, Inc.

Concept 6.7: Extracellular components and

Page 111: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 111/130

Concept 6.7: Extracellular components and

connections between cells help coordinate

cellular activities

• Most cells synthesize and secrete materials thatare external to the plasma membrane

• These extracellular structures include

 – Cell walls of plants

 – The extracellular matrix (ECM) of animal cells

 – Intercellular junctions

© 2011 Pearson Education, Inc.

Cell Walls of Plants

Page 112: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 112/130

Cell Walls of Plants

The cell wall is an extracellular structure thatdistinguishes plant cells from animal cells

• Prokaryotes, fungi, and some protists also havecell walls

• The cell wall protects the plant cell, maintains itsshape, and prevents excessive uptake of water

• Plant cell walls are made of cellulose fibers

embedded in other polysaccharides and protein

© 2011 Pearson Education, Inc.

Page 113: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 113/130

Plant cell walls may have multiple layers – Primary cell wall: relatively thin and flexible

 – Middle lamella: thin layer between primary wallsof adjacent cells

 – Secondary cell wall (in some cells): addedbetween the plasma membrane and the primarycell wall

• Plasmodesmata are channels between adjacent

plant cells

© 2011 Pearson Education, Inc.

Secondary

Figure 6.28

Page 114: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 114/130

ycell wall

Primary

cell wallMiddlelamella

Central vacuole

Cytosol

Plasma membrane

Plant cell walls

Plasmodesmata

1 m

Figure 6.29

Page 115: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 115/130

RESULTS 10 m

Distribution of cellulosesynthase over time

Distribution ofmicrotubules

over time

The Extracellular Matrix (ECM) of Animal

Page 116: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 116/130

( )

Cells

• Animal cells lack cell walls but are covered by anelaborate extracellular matrix (ECM)

• The ECM is made up of glycoproteins such as

collagen, proteoglycans, and fibronectin

• ECM proteins bind to receptor proteins in theplasma membrane called integrins

© 2011 Pearson Education, Inc.

Figure 6.30

Page 117: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 117/130

EXTRACELLULAR FLUIDCollagen

Fibronectin

Plasmamembrane

Micro-

filaments

CYTOPLASM

Integrins

Proteoglycancomplex

Polysaccharidemolecule

Carbo-hydrates

Coreprotein

Proteoglycanmolecule

Proteoglycan complex

Figure 6.30a

EXTRACELLULAR FLUIDCollagen

Page 118: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 118/130

EXTRACELLULAR FLUIDg

Fibronectin

Plasmamembrane

Micro-filaments

CYTOPLASM

Integrins

Proteoglycan

complex

Figure 6.30b

Polysaccharidemolecule

Page 119: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 119/130

Carbohydrates

Coreprotein

Proteoglycanmolecule

Proteoglycan complex

Page 120: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 120/130

• Functions of the ECM

 – Support

 – Adhesion

 – Movement

 – Regulation

© 2011 Pearson Education, Inc.

Cell Junctions

Page 121: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 121/130

Neighboring cells in tissues, organs, or organsystems often adhere, interact, andcommunicate through direct physical contact

• Intercellular junctions facilitate this contact

• There are several types of intercellular junctions – Plasmodesmata

 – Tight junctions

 – Desmosomes – Gap junctions

© 2011 Pearson Education, Inc.

Page 122: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 122/130

Figure 6.31

Page 123: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 123/130

Interiorof cell

Interiorof cell

0.5 m Plasmodesmata Plasma membranes

Cell walls

Tight Junctions, Desmosomes, and Gap

Page 124: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 124/130

g p

 Junctions in Animal Cells

• At tight junctions, membranes of neighboringcells are pressed together, preventing leakage ofextracellular fluid

• Desmosomes (anchoring junctions) fasten cellstogether into strong sheets

• Gap junctions (communicating junctions) provide

cytoplasmic channels between adjacent cells 

© 2011 Pearson Education, Inc.

Page 125: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 125/130

© 2011 Pearson Education, Inc.

Animation: Tight JunctionsRight-click slide / select “Play” 

Page 126: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 126/130

© 2011 Pearson Education, Inc.

Animation: DesmosomesRight-click slide / select “Play” 

Page 127: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 127/130

© 2011 Pearson Education, Inc.

Animation: Gap JunctionsRight-click slide / select “Play” 

Figure 6.32

Tight junctions preventfluid from movingacross a layer of cells

Tight junction

Page 128: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 128/130

Tight junction

TEM0.5 m

TEM1 m

   T   E   M 

0.1 m

ExtracellularmatrixPlasma membranes

of adjacent cells

Spacebetween cells

Ions or smallmolecules

Desmosome

Intermediatefilaments

Gapjunction

The Cell: A Living Unit Greater Than the

Page 129: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 129/130

Sum of Its Parts

• Cells rely on the integration of structures andorganelles in order to function 

• For example, a macrophage’s ability to destroy

bacteria involves the whole cell, coordinatingcomponents such as the cytoskeleton,lysosomes, and plasma membrane 

© 2011 Pearson Education, Inc.

Figure 6.33

Page 130: 06 Lecture Presentation PC

8/3/2019 06 Lecture Presentation PC

http://slidepdf.com/reader/full/06-lecture-presentation-pc 130/130

   5  m