document

10
0. Time-Continous Stochastic Processes 0. Time Continous Stochastic Processes process X(t) Ö single realisation of X(t) : sample function x(t) • A process is stationary , if the ensemble averages (moments, autocorrelation function, cross-correlation function, probability density functions) are independent of time. • If you can calculate the expected values of a process by averaging one sample function in time domain instead of averaging an ensemble of sample functions instead of averaging an ensemble of sample functions, then the process is ergodic. An ergodic process is always stationary too An ergodic process is always stationary too , but a stationary process need not to be ergodic. • We will only consider ergodic processes on the next slides. Correlation Functions 0-1

description

time correction

Transcript of document

0. Time-Continous Stochastic Processes0. Time Continous Stochastic Processesprocess X(t) single realisation of X(t) : sample function x(t)

• A process is stationary, if the ensemble averages (moments, autocorrelation function, cross-correlation function, probability density functions) are independent of time.

• If you can calculate the expected values of a process by averaging one sample function in time domaininstead of averaging an ensemble of sample functionsinstead of averaging an ensemble of sample functions, then the process is ergodic.

• An ergodic process is always stationary tooAn ergodic process is always stationary too , but a stationary process need not to be ergodic.

• We will only consider ergodic processes on the next slides.

Correlation Functions0-1

y g p

Time-Continous Stochastic ProcessesTime Continous Stochastic Processesprocess , function :( )( )tXg( )tX

∞ 2/T

moments ( )( ){ }tXgE ( ) ( ) =⋅= ∫∞−

dxxpxg X ( )( )∫−

∞→

2/

2/

1limT

TTT

dttxg

{ } ( ) XX dxxpxX μ=⋅= ∫∞

∞−

E1st moment:

{ } ( )∫∞

∞−

⋅= dxxpxX X22E2nd moment:

{ } { } { }( ) ( )∫∞

∞−

⋅−==−=− dxxpxXXX XXXX22222 EEE μσμvariance:

Power Density Spectrum0-2

∞−

Correlation Functions of Continous Processes

autocorrelation function (ACF) of a complex-valued process X(t):

( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )( ){ }22112121 EE, ττττττττ IRIRXX jXXjXXXXr +⋅−=⋅= ∗

stationary processes: τττ +tt 21 , ( ) ( ) ( ){ }ττ +⋅= ∗ tXtXrXX E

autocovariance function:

( ) ( )[ ] ( )[ ]{ } ( ) 2E XXXXXXX rtXtXc μτμτμτ −=−+−= ∗∗

cross correlation function (CCF) of two processes X(t) and Y(t):

zero mean processes ( ) ( )ττ XXXX rc =

cross-correlation function (CCF) of two processes X(t) and Y(t):

( ) ( ) ( ){ }2121 E, ττττ YXrXY ⋅= ∗ stationary ( ) ( ) ( ){ }ττ +⋅= ∗ tYtXrXY E

Correlation Functions0-3

Correlation Functions of Continous ProcessesCorrelation Functions of Continous Processescharacteristics of ACF

( ) ( )ττ ∗=− XXXX rr• ( ) ( )ττ XXXX rr =−real processes ACF is even

( ){ } ( )0max XXXX rr =ττ

( ) ( ) ( ){ } ( ){ }2EE0 tXtXtXrXX =⋅= ∗ zero mean 2Xσ( ) =0XXr( ) ( ) ( ){ } ( ){ }EE0 tXtXtXrXX Xσ( )XX

characteristics of CCF

( ) ( )∗ ( ) ( )( ) ( )ττ ∗=− YXXY rr•

• ( ) ( ) YXXYXY rc μμττ ⋅−= ∗

( ) ( )ττ YXXY rr =−real processes

cross-covariance

• uncorrelated processes:

• orthogonal processes: ( ) 0=τXYr( ) ( ) YXXYXY rc μμττ ⋅== ∗0

0=YX μμuncorr. processes with or

Correlation Functions0-4

( )

Power Density Spectrum(Power Density Spectrum, PDS)

• definition (Wiener-Khintshine theorem)

explanation of plausibility:see slide 9{ } τττω τω derrjS j

XXXXXX ∫∞

∞−

−== )()()( F

ACF is conjugate even power density spectrum is real

• process average power (zero mean):

{ } ∫∞

∞−

=== )0()(21)(Var 2

XXXXX rdjStX ωωπ

σ

• white noise: PDS is a constant ( infinite power only a model)• white noise: PDS is a constant ( infinite power only a model)

{ } )(2/2/)(

- with 2/)(1

0

τδτ

ωω

==

∞<<∞=− NNr

NjSXXF

Power Density Spectrum0-5

{ } )(2/2/)( 000 τδτ ⋅== NNrXX F

Definition of Wiener-Khintschine : explanation of plausibilityplausibility

finite sample function: otherwise

if0

)()(

TtTtxtxT

≤≤−

⎩⎨⎧

= ( )ωjXT

finite energy: ( ) ( ) ωωπ djXdttxT

TTT∫ ∫

∞−

= 2212 Theorem of Parseval

T

average power: PDS of sample func.( )∫ ∫∞

=T

TTT ddttx ωπ2

1221 ( ) 2

21 ωjXTT

definition: PDS of the ergodic process X(t)f l f ti ith i fi it l th

− ∞−T

mean of a sample function with infinite length :

( ) ( ) 221lim ωω jXjS TTTXX ⋅=

∞→

Power Density Spectrum0-6

Definition of Wiener-Khintschine : explanation of plausibilityplausibility

Wiener-Khintschine: ( )τXXr( ) ( ){ } ∫∞

−== ττω τω derjS jXXXX F

ergodic processes: ( ) ( ){ }τ+← ∗ tXtXE ( ) ( )dttxtxT

TTTTT ∫

∞→+⋅ τ2

1lim( ) =τXXr

∞−

( )ωjS == ∫∞

− ττω de j( ) ( )dttxtxT

TT∫ ∗ +⋅ τ1lim( )ωjSXX ∫∞−

τde( ) ( )dttxtxT

TTTT ∫−

∞→+τ2lim

( ) ( ) ωjexx −∗ += 1lim ∫T

dττ τ dtttT

∫ ( ) ( ) ωjexx −∗ += 1lim dtttT

∫ ττ τ dT

∫( ) ( )TTTTexx

∞→+⋅= 2lim ∫

−T

dττ dtttT∫−

( ) ( )TTTTexx

∞→+= 2lim dttt

T∫−

ττ dT∫−

Power Density Spectrum0-7

Definition of Wiener-Khintschine : explanation of plausibilityplausibility

( ) ( ) ( ) dtdetxtx jT T

TTτωτ +−∗∫ ∫ += 1lim ttje ω+ τ48476876 ΘΘ

( ) ( ) dtdetxtxT T

TTTTτ

− −∞→ ∫ ∫ +2lim e τ

(substitution: )=+= ;τt τddΘΘ

(see slide 8)( ) 221lim ωjXTTT⋅

∞→( ) ( ) =⋅= −∗

∞→ ∫∫ ωω exdtetx jT

Ttj

T

TTT 21lim ΘΘ Θd

T ∞→

( ) ⎟⎠⎞⎜

⎝⎛

−∞→ ∫∫

44 344 214434421ωω jXjX T

T

T

TT

Power Density Spectrum0-8

Response of a linear system to a random input signalResponse of a linear system to a random input signal

impulse response: ( )( )⎩

⎨⎧

tYtX

th:signal output random

:signal input random)(

(Energy-) ACF : ( ) ( ) ( ) ( ) ( )ττττ −∗=+= ∗∞

∞−

∗∫ hhdtththr Ehh

ACF of the output:

CCF f i / t t

( ) ( ) ( ) ( )∗=∗= ττττ XXEhhXXYY rrrr ( ) ( )ττ −∗ ∗hh

( ) ( ) ( )hCCF of in- / output: ( ) ( )∗= ττ XXXY rr ( )τh

PDS of output process: ( ) ( )= ωω jSjS ( ) 2ωjH no phase information!PDS of output process:

Cross-power density spectrum:(between input and output)

( ) ( ) ⋅= ωω jSjS XXYY ( )ωjH

( ) ( ) ⋅= ωω jSjS XXXY ( )ωjH

no phase information!

Response of a Linear System0-9

( p p )

Response of a linear system to a random input signalResponse of a linear system to a random input signalwhite noise as input signal of a linear system:

( ) ( ) ( ) ( )τττδτ EE rNrNr ⋅=∗⋅= 2/2/( ) ( ) ( ) ( )τττδτ hhhhYY rNrNr ⋅=∗⋅= 2/2/ 000

2( ) ( ) 20 2/ ωω jHNjSYY ⋅=

( ) ( ) ( ) ( )τττδτ hNhNrXY ⋅=∗⋅= 2/2/ 000

( ) ( )ωω jHNjSXY ⋅= 2/0

Response of a Linear System0-10