041547535 x

316

description

Tailor made concrete structures

Transcript of 041547535 x

TAILOR MADE CONCRETE STRUCTURESNEWSOLUTIONSFOR OUR SOCIETYPROCEEDINGS OF THE INTERNATIONAL FIB SYMPOSIUM 2008, AMSTERDAM,THE NETHERLANDS, 1921 MAY 2008Tailor MadeConcreteStructures:NewSolutionsFor Our SocietyEdited byJ oost C. WalravenTechnical University of Delft, Delft, The NetherlandsDickStoelhorstDutch Concrete Society, Gouda, The NetherlandsCRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business2008Taylor & FrancisGroup, London, UKTypeset byCharonTecLtd(A MacmillanCompany), Chennai, IndiaPrintedandboundinGreat BritainbyAntonyRowe(A CPI-groupCompany), Chippenham, WiltshireAll rightsreserved. Nopart of thispublicationor theinformationcontainedhereinmaybereproduced, storedinaretrieval system, or transmittedinanyformor byanymeans, electronic, mechanical, byphotocopying,recordingor otherwise, without writtenprior permissionfromthepublishers.Althoughall careistakentoensureintegrityandthequalityof thispublicationandtheinformationherein, noresponsibilityisassumedbythepublishersnor theauthor for anydamagetothepropertyor personsasaresultof operationor useof thispublicationand/or theinformationcontainedherein.Publishedby: CRC Press/BalkemaP.O. Box447, 2300AK Leiden, TheNetherlandse-mail: [email protected] www.taylorandfrancis.co.uk www.balkema.nlISBN13: 978-0-415-47535-8(Hardback+CD-ROM).Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Tableof ContentsPreface XIXSponsors XXIKeynote LecturesConcretebridges: Newdemandsandsolutions 3J. CombaultHowTheNetherlandssurvive, aworldwideexample 5S. SchaapTheWorldChampionsSoccer inSouthAfricain2010 7D. JordaanDamsafetyinChinaandthelifespanevaluationof oldconcretedams 9J. Jia, C. Zheng & C. ZhaoTheRijksmuseuminAmsterdam 15A. OrtizPrefab, theAmericanWay 17T.J. DArcy on behalf of PCITheEuropeanStandardfor Prefabrication 19M. MenegottoFibresinConcrete, Research, Rules, Practice 21E.H. Horst FalknerPublicPrivatePartnership, tool or trend 23A. EchbergTheconstructionproject of theSagradaFamlia 25J. Gmez, R. Espel & J. FaulVOral PresentationsLife cycle designAssessment of corrosioninreinforcedconcretebeams 35D.I. Banic, D. Bjegovic & D. TkalcicCorrosionof reinforcement barsisnot anymoreinevitability 36P. Guiraud & F. MoulinierNewaspectsindurabilitybridgedesign 37M. Empelmann, V. Henke, G. Heumann & M. WichersCarbondioxideasastimulusfor lifecyclethinkingincement andcarbonneutralconcretebuilding 38P.A. Lanser &A.M. BurgerServicelifedesignof concretestructuresbynumerical modellingof chlorideingress 39M.M.R. Boutz, G. van der Wegen, P.E. Roelfstra & R. HaverkortInfluenceof curingontheporestructureof concrete 40W.J. Bouwmeester van den Bos & E. SchlangenLifecyclemanagement of infrastructures: Integrationof disciplinesaskeysucces-factor 41A. van der HorstResidual service-lifeof concretefaadestructureswithreinforcement incarbonatedconcreteinNordicclimate 42J.S. Mattila & M.J. PenttiTheroleof ControlledPermeabilityFormworkinlifecycledesign 43P. McKenna & C. BaxiDesignedperformancesustainableconcrete 44B.M. Piscaer & S.W. DanielsenTailor-madeconcretestructures Casestudiesfromprojectsworldwide 45C.K. EdvardsenRebuildingLeCorbusiersWorldExhibitionPavilion; ThePomeElectroniqueinBrussels, 1958 46R. NijsseWhyhistoricconcretebuildingsneedholisticsurveys 47H.A. HeinemannDesign strategies for the futureExpansionjointswithlownoiseemission 51T. Spuler, G. Moor & C. OSuilleabhainOverviewof PCIsresearchanddevelopment program 52C.D. Sutton & P. JohalResearchonvolumechangemovement andforcesinprecast concretebuildings 53G. Klein & R. LindenbergThePCI headedstudanchorageresearchprogram: Scopeandhighlightsof findings 54N.S. Anderson & D.F. MeinheitDevelopment of aseismicdesignmethodologyfor precast concretefloor diaphragms 55R.B. Fleischman, C.J. Naito & J. RestrepoVIDevelopment of arational designmethodologyfor precast L-shapedspandrel beams 56G. Lucier, C. Walter, S. Rizkalla, P. Zia, G. Klein & D. LoganUnderground structuresReal opportunitiesfor ultrahighstrengthconcreteintunneling 59T.W. Groeneweg, C.B.M. Blom & J.C. WalravenNorth/SouthLineAmsterdam, undergroundstationCSonStationIsland Complexbuildingtechniquesonanartificial island 60R.M. van der Ploeg, J. Dorreman & J.C.W.M. de WitTunnelsof improvedseismicbehaviour 61S. Pompeu SantosBehaviour of segmental/meter panels for basementsandsubways 62D.K. Kanhere &V.T. GanpuleTheNew Rijksmuseum Theart of goingunderground 63D.D.J. Grimmelius &A.M. de RooCorrosionmonitoringfor undergroundandsubmergedconcretestructures examplesandinterpretationissues 64R.B. Polder, W.H.A. Peelen & G. LeegwaterDesigningcast-in-situFRC tunnel linings 65B. Chiaia, A.P. Fantilli & P. ValliniConcretetunnel segmentswithcombinedtraditional andfiber reinforcement 66G. Tiberti, G.A. Plizzari, J.C. Walraven & C.B.M. BlomFireresistanceof concretetunnel linings 67J.L. VitekMonitoring and inspectionSegmental bridgebehavior duringbridgetesting 71M. Zupcic, D. Banic, D. Tkalcic & Z. PericMonitoringthe352meter longMonacofloatingpier 72M. de Wit & G. HovhanessianCambersof prestressedprecast bridgegirders, predictionvs. reality 73M. Chandoga, A. Jaroevi c, J. Halvonik, A. Pritula & P. PenekMonitoringof electricallyisolatedpost-tensioningtendons 74B. ElsenerRemotemonitoring: Cost-effectiveandself-sufficient 75T. Spuler, G. Moor & C. OSuilleabhainMonitoringof MoscowCoveredCenter load-carryingstructures 76A.I. Zvedov &V.R. FalikmanDiagnosisPerformancepredictionsof bridgestructuresbasedondamagepatterndetectionandextremevaluemethods 79A. Strauss, R. Wendner, K. Bergmeister, U. Santa & D.M. FrangopolVIIDiagnosisof thestateof concretestructuresafter fire 80E. Annerel & L. TaerweChloridesingressasanenvironmental loadonKrkbridge 81I. Stipanovi c Oslakovi c, D. Bjegovi c & D. Mikuli cTBMsbackfill mortars Overview Introductionof Rheological Index 82L. Linger, M. Cayrol & L. BoutillonStructural behavior withreinforcement corrosion 83V.I. Carbone, G. Mancini & F. TondoloFillinginspectiontechnologyof grout inJ apan 84T. Oshiro, K. Aoki, M. Hara &A. ShojiLoadcapacityassessment of AntonioDovali J aime bridgeusingstaticanddynamictests 85O. Ortiz, J. Tllez, F.J. Burgos, A. Patrn, E. Reyes, V. Robles, C. Cremona &M.E. Ruiz-SandovalSafetyappraisal of anexistingbridgeviadetailedmodelling 86M. Pimentel, J. Santos & J.A. FigueirasCauseandrepair of detrimentallycrackedbeaminreinforcedconcretebridgepier 87M. Yoshizawa, K. Sasaki, T. Usui, J. Sakurai & S. IkedaInnovative materialsDesignof tworeactivepowder concretebridges 91M. Rebentrost & R. AnnanFireresistingconcrete 92B.P. Van den BosscheInnovativeultra-highperformanceconcretestructures 93G.A. Parsekian, N.G. Shrive, T.G. Brown, J. Kroman, P.J. Seibert, V.H. Perry &A. BoucherStrengtheningof HuisnebridgeusingUltra-High-PerformanceFibre-ReinforcedConcrete 94T. ThibauxDuctalPont duDiablefootbridge, France 95M. Behloul, R. Ricciotti, R.F. Ricciotti,P. Pallot & J. LeboeufShear carryingcapacityof Ultra-HighPerformanceConcretebeams 96J. Hegger & G. BertramHighperformancematerials Advancesincompositeconstructions 97J. Hegger & S. RauscherTextileReinforcedConcrete Realizationinapplications 98J. Hegger, M. Zell & M. HorstmannSubsequent sealingof buildingsmadeof textilereinforcedconcrete 99R. Mott &W. BrameshuberOptimizedHigh-PerformanceConcreteinGroutedConnections 100S. Anders & L. LohausTailoredsuperplasticisersfor tailor madeconcretestructures 101M. Corradi, R. Khurana, R. Magarotto & S. MoroVIIIJ ointlessprestressedconcreteviaduct usingECC 102M. Fujishiro, K. Suda &Y. NagataPumpingof Self CompactingConcrete: Aninsight intoadailyapplication 103D. Feys, R. Verhoeven & G. De SchutterReplacement of shear reinforcement bysteel fibresinpretensionedconcretebeams 104P. De Pauw, L. Taerwe, N. Van den Buverie &W. MoermanPropertiesandapplicationsof DUCONA micro-reinforcedultra-high-performanceconcrete 105J. Schneider & J. ReymendtDeformationbehavior of reinforcedUHPFRC elementsintension 106V. Sigrist & M. RauchStructural performanceof pretensionedmember withUltraHighStrengthFiberReinforcedConcrete 107T. Ichinomiya, N. Sogabe, Y. Taira &Y. HishikiMeasuringthepackingdensitytolower thecement content inconcrete 108S.A.A.M. Fennis, J.C. Walraven &T.G. NijlandDevelopment of abacteria-basedself healingconcrete 109H.M. Jonkers & E. SchlangenUseof polypropylenefibrestoreduceexplosivespallinginconcretesexposedtofire 110J.A. Larbi, A.J.S. Siemes & R.B. PolderSteel fibreonlyreinforcedconcreteinfreesuspendedelevatedslabs: Casestudies, designassistedbytestingroute, comparisontothelatest SFRC standarddocuments 111X. Destre & J. MandlEvaluationof thebondstrengthbehavior betweensteel barsandHighStrengthFiberReinforcedSelf-CompactingConcreteat earlyages 112F.M. Almeida Filho, M.K. El Debs &A.L.H.C. El DebsResearchonthecrackingcontrol andpumpabilityof HPC inS-C segment of SutongBridge 113H. Zhang, S.K. Li & J.F. TaoDevelopment strategiesfor foamedcement paste 114J.U. Pott & L. LohausExpandingtheapplicationrangeof RC-columnsbytheuseof UHPC 115M. Empelmann, M. Teutsch & G. StevenQualityconcretesurfacesmeanalonger lifeasset 116D.J. WilsonTextileReinforcedConcrete(TRC) for precast Stay-in-Placeformworkelements 117I.C. Papantoniou & C.G. PapanicolaouBridgesutilizinghighstrengthconcrete 118J. Strasky, I. Terzijski & R. NecasCodes for the futureModellingof shear-fractureof fibre-reinforcedconcrete 121G.G. Lee & S.J. FosterIXTheAmericanP2P initiative 122K.W. DayDispersionof themechanical propertiesof FRC investigatedbydifferent bendingtests 123B. Parmentier, E. De Grove, L. Vandewalle & F. Van RickstalBA-Cortex: Learningtoolsfor EC2 124C. Lanos, V. Bonamy, P. Guiraud & C. CasandjianShear resistanceof bridgedeckswithout shear reinforcement 125G.A. Rombach & S. LatteTransverseflexural andtorsional strengthof PrestressedPrecast Hollow-CoreSlabs 126A. PisantyInfluenceof bond-sliponthebehaviour of reinforcedconcretebeamtocolumnjoints 127M.L. Beconcini, P. Croce & P. FormichiImprovement intheplasticrotationevaluationbymeansof fracturemechanicsconcepts 128M. Corrado, A. Carpinteri, M. Paggi & G. ManciniReliability-basedcodecalibrationandfeaturesaffectingprobabilisticperformanceofconcretebridge 129I. Paik, S. Shin & C. ShimCodesfor SFRC structures A Swedishproposal 130J. SilfwerbrandShear strengthinone- andtwo-wayslabsaccordingtotheCritical Shear CrackTheory 131A. Muttoni & M.F. RuizStrut-and-tiemodellingof short spanbeams 132J. Sagaseta & R. VollumModellingof shrinkageinducedcurvatureof crackedconcretebeams 133R. Mu, J.P. Forth, A.W. Beeby & R. ScottInvestigationof crackssurfaceroughnessandshear transfer strengthof crackedHSC 134V.P. MitrofanovProblemsonHarmonizationof UkraineandEU NormativeBasesintheAreaofConcreteStructures 135P. Kryvosheyev, A. Bambura &Yu. SlyusarenkoDevelopingnonlinear analysismethodsfor codesof practice 136D.A. KuchmaSafetywithprestrainedelasticrestraints 137D.L. Allaix, V.I. Carbone & G. ManciniConcretestressblocksof MC 90andEC2. Howsafearethey? 138L.C.D. Shehata, A.L. Paula & I.A.E.M. ShehataShear designof FRC memberswithlittleor noconventional shear reinforcement 139F. Minelli & G.A. PlizzariA newfuture-orientedModel Codefor concretestructures 140J.C. Walraven &A.J. Bigaj - van VlietA model for SFRC beamswithout shear reinforcement 141P. Colajanni, A. Recupero & N. SpinellaXModifying and adapting structuresSeismicresponseassessment andupgradingof acomplexof sevenRC buildingsusingFRPs 145T.B. Panagiotakos, A.J. Kosmopoulos & B. KoliasFirst full scaleapplicationof astructurestrengthenedwithorganicprestressing A casestudy 146P. Pacheco, A. Guerra, P. Borges & H. CoelhoEliminatingbridgepiersusingstaycableswithunconventional layouts 147A.M. Ruiz-Teran &A.C. AparicioThewideningof LosSantosbridge. A casestudyof atailor-madestructure 148H. Corres Peiretti, A. Prez Caldentey, J. Romo, J. Len Gonzlez, F. Prieto &J. Snchez DelgadoStrengtheninganddesignof shear beams 149N. Randl & J. KunzAssessment of remainingstructural capacitybycomputer simulation 150J. Cervenka, V. Cervenka, R. Pukl & Z. JandaExperimental testsonrepairedandretrofittedbridgepiers 151T. Albanesi, D. Lavorato, C. Nuti & S. SantiniEnhancedsafetywithpost-installedpunchingshear reinforcement 152J. Kunz, M.F. Ruiz &A. MuttoniStrengtheningof prestressedviaductsbymeansof areinforcedconcreteoverlay 153R.W. Keesom, W.J. Bouwmeester van den Bos, M. van Kaam &A.Q.C. van der HorstAdvancednumerical designfor economical cathodicprotectionfor concretestructures 154R.B. Polder, W.H.A. Peelen, F. Lollini, E. Redaelli & L. BertoliniArchitectural concretePrecast facadeselementsfor thenewMuseumof AcropolisinAthens 157A.N. ApergisThinpost-tensionedconcreteshell structures 158S. Dallinger & J. KolleggerInfra-lightweight concrete 159M. Schlaich & M. El ZareefChallengingconcretestructurewithablendof architectural fair facedconcrete 160V. GuptaBondbehaviour betweenGFR barsandinfra-lightweight concrete 161M. El Zareef & M. SchlaichDesignandconstructionof opendeckbridge 162T. Abo, M. Ooba, S. Yoda & S. SuzukiNewAmsterdamPublicLibrary(OpenbareBibliotheekAmsterdam) 163J. Paul, F. van Berge Hengouwen, H. Mulder & C. Tait van der PuttenConcreteintheoptimal networkarch 164P. TveitThenewLisbonindoor sportscomplex 165J.N. BastosXINewVodafonebuildinginOporto A whiteconcretejaggedshell 166C.M. Quinaz &A.P. BragaInnovativefootbridgesusedasurbanfurniturefor our citiesfor thefuture 167A. Gonzlez SerranoFabricformworkfor flexible, architectural concrete 168N. Cauberg, B. Parmentier, D. Janssen & M. MollaertDeveloping a modern infrastructureOffshorefoundationinconcrete Cost reductionbyserial production 171H. MathisDesignandconstructionof animmersedconcretetunnel usinganintegrateddockfacility 172C. Bauduin & P. DepuydtBridgesoverTimbabriver: Highperformanceconcreteinthemiddleof thejungle 173B.P. Van den BosschePrecast segmental designandconstructioninChina 174D. Xu, H. Li & C. LiuTheuseof robotsandself-compactingconcretefor uniqueconcretestructures 175L.N. Thrane, T.J. Andersen & D. MathiesenBehavior of amultiplespanscable-stayedbridge 176S. Arnaud, N. Matsunaga, S. Nagano & J.-P. RagaruDevelopment of anewviaduct structuretoachieveahigh-amenityunder-viaduct space 177H. Sugisaki, K. Kobayashi, T. Watanabe & S. IkenoStudyonstructural behavior characteristicsof concretefilledsteel tubegirder bridges 178W.J. Chin, J.Y. Kang, E.S. Choi & J.W. LeeImmersedparkingfacilities 179R.J. van Beek & H.M. VlijmSlipformingof advancedconcretestructures 180K.T. Fossa, A. Kreiner & J. MoksnesTagusCrossingat Carregado(Portugal): A project respectful of itssensitiveenvironment 181A. Perry da Cmara, A. Portugal, F. Virtuoso & M. MoussardHighRiseBuildings. Thechallengeof anewfieldof possibilitiesfor theuseofstructural concrete 182H. Corres, J. Romo & E. RomeroDirect loadtransmissioninsandwichslabswithlightweight concretecore 183E. Schaumann, T. Valle &T. KellerTheMetrolinkFinbackBridge, Manchester 184S.W. Jones & R.G. WrigleyTotal precast solutionfor largestadiumprojectsmeet tight schedule 185T.J. DArcyHPFRC platesfor groundanchors 186M. di Prisco, D. Dozio, A. Galli, S. Lapolla & M. AlbaXIIDesigning structures against extreme loadsOuter concretecontainmentsof LNG-tanks Designagainst thermal shock 189J. Roetzer &T. BaumannEconomicaspectsindesignof enhancedearthquakeresistant r/cbuildings 190M. MezziSeismicresponseof bridgesonpilefoundationsconsideringsoil-structureinteraction 191F. Dezi, S. Carbonari & G. LeoniFasteningtechniqueinseismicareas: A critical review 192C. Nuti & S. SantiniMRI validationof FEM modelstodescribemoistureinducedspallingof concrete 193S.J.F. Erich, A.B.M. van Overbeek, A.H.J.M. Vervuurt, G.H.A. v.d. Heijden, L. Pel &H.P. HuininkExperienceandtestsof thefire-resistant plaster coatinginboredtunnels 194F.W.J. van de Linde, B.J. van der Woerd & L. MulderThemeritsof concretestructuresfor oil andgasfieldsinhostilemarineenvironments 195T.O. Olsen, S. Helland & J. MoksnesMPU HeavyLifter A lightweight concretevessel for heavyoffshoreliftingoperations 196T. Landb, E.B. Holm & H. LudescherDetail designof theMPU HeavyLifter 197H. Ludescher, S.A. Haugerud & M. Fernndez RuizComputer modelingandeffectivestiffnessof concretewall buildings 198M.IJ. Schotanus & J.R. MaffeiInelasticseismicresponseanddamageanalysisof atall bridgepier 199X. Zhu, J.-W. Huang & L.-Y. SongExperimental investigationontheseismicbehaviour of connectionsinprecast structures 200R. Felicetti, G. Toniolo & C.L. ZentiDesignapproachfor diaphragmactionof roof decksinprecast concretebuildingunder earthquake 201L. Ferrara & G. TonioloIncreasing the speed of constructionJ ust intimemixtureproportioning 205K.W. DayDubai metrochallengefor afast trackconstruction 206Y. Gauthier, S. Montens, P. Arnaud &T. PaineauBalancedlift method A newbridgeconstructionmethod 207S. Blail & J. KolleggerFast trackconstructionof 9.5kmlongelevatedexpresswaybylargescale, prefabricationof superstructure 208S. SenguptaAnalternativetunnellingapproachtoaccelerateurbanundergroundexcavationunder water 209F. Cavuoto, G. Colombo & F. GiannelliXIIIPoster PresentationsLife cycle designTheinfluenceof highslagdosagesincement onfrost andde-icingsalt resistanceof concrete 213S. Uzelac, A. Hranilovi c Trubi c, I. usti c & D. WrthCasestudy: LCC analysisfor KrkBridge 214I. Stipanovi c Oslakovi c, D. Bjegovi c & J. Radi cEffect of GGBSadditiveonchlorideionbindingof cements 215K. Kopecsk & Gy. BalzsDesign strategies for the futureOptimisedConcreteQualityControl 219K.W. DayFull-scaletest onapilesupportedfloor slab steel fibreconcreteonlyor inacombinationwithsteel 220J. Hedebratt & J. SilfwerbrandMonitoring and inspectionDamageassessment of fiber reinforcedcement matrixunder cycliccompressiveloadusingacousticemissiontechnique 223Y.S. Kim, S.W. Kim & H.D. YunOnline-monitoringof concretestructures: Cost-effectivenessandapplication 224Y. Schiegg, L. Steiner & S. RihsDiagnosisSystematicconditioninvestigationof concretestructures 227J. Lahdensivu, S. Varjonen & M. PenttiSeismicresponseof corrodedr.c. structures 228A. Saetta, P. Simioni, L. Berto & R. VitalianiNondestructivetestsfor existingR.C. structuresassessment 229S. Biondi & E. CandigliotaInnovative materialsTheresearchonearlyagethermal crackingcontrol of C50HPC inmaintower ofSutongBridge 233G.Z. Zhang, L.Q. Tu & S.K. LiRock-fill Concrete, anewtypeof concrete 234M. Huang, X. An, H. Zhou & F. JinStructural concept, staticanddynamicpropertiesof RPC-BSSwithhighdurability 235L. Jiang, R. Gao & L. LiBy-product materialsintheproductionof next generationSCC 236A.D. Kanellopoulos, M. Mathaiou, M.F. Petrou, I. Ioannou & M. NeophytouXIVLowstrengthself compactingconcretefor buildingapplication 237K.K. Sideris, A.S. Georgiadis, N.S. Anagnostopoulos & P. ManitaConfirmationtestsof integrationof UFC formsleft inplace 238M. Katagiri, K. Kakida &T. NiheiOptimizingreadymixconcretefor specificenvironmental conditions 239J.A. Ortiz, M.E. Zermeo, A.C. Parapinski, A. Aguado, L. Agull & F.A. AlonsoTailor madebridgedesignwithUltra-High-PerformanceConcretes 240R.P.H. VergoossenDevelopment of Self-ConsolidatingConcreteinHawaii usingbasalt aggregates 241I.N. Robertson, G.P. Johnson & R. IshisakaImprovedself-compactingconcretemixesfor precast concreteindustry 242A. Ioani, O. Corbu & H. SzilagyiUHPFRC prestressedbeamsasanalternativetocompositesteel-concretedecks:Theexampleof Pinel Bridge(France) 243T. ThibauxUltraHighPerformanceConcrete: Mixdesignandpractical applications 244N. Cauberg, J. Pirard & O. RemyShear strengthof reinforcedconcretebeamswithrecycledaggregates 245S.K. Ji, W.S. Lee & H.D. YunCodes for the futureComparingtheEC2, ACI andCSA shear provisionstotest results 249E.C. Bentz & M.P. CollinsReviewof Europeanstandardsandguidelinesfor groutsfor pre-stressedstructures 250J. Tritthart, I. Stipanovi c Oslakovi c, P.F.G. Banfill & M. SerdarBiaxial tensilestrengthof concrete Answersfromstatistics 251L. Lemnitzer, L. Eckfeldt, A. Lindorf & M. CurbachMeasurementsof thetransmissionlengthof pre-tensionedstrands 252C. Bosco & M. TalianoA hybridRC-encasedsteel joist system 253C. Amadio, L. Macorini, F. Patrono & G. SuraciStrengtheningof reinforcedconcreteroof girder withunbondedtendonscrackingduetotheexploitation 254A.S. Seruga & D.H. FaustmannDevelopment of fielddatafor effectiveimplementationof themechanisticempiricalpavement designprocedure 255N. Ala, M.A. Stanigzai, A. Azizinamini & M. JamshidiTheeffect of wiredrawinglubricant residuesonthebondcharacteristicsof prestressingstrand 256A. Osborn, J. Connolly & J. LawlerWindloadingparameters Measurementsvs. Croatianstandard 257A. Krecak & P. SesarPost-tensionedslabonground 258C.K. CheongXVArchitectural concreteNSPArnhemCentral Transfer hall 261M. de Boer, J.L. Coenders, P. Moerland, S. Hofman & J.C. PaulDeveloping a modern infrastructureDesignof twocurvecablestayedbridgeswithoverlappingdeckssupportedbyasingleX shapetower 265C.F. Ribeiro, C. Watanabe & H.A. NogueiraCable-stayedbridgeover theLabeat Nymburk Hybridstructuretailoredfor simpleconstruction 266M. Kaln, V. Kvasni cka, P. N emec &A. BrnukUltimatelimit stateanalysisof asegmentedtunnel lining 267A.J.T. Luttikholt, A.H.J.M. Vervuurt & J.A. den UijlConceptual designof offshoreconcretestructures 268T.O. OlsenDesignandconstructionof DELTA CITY shoppingmall concretestructureinBelgrade 269S. Marinkovic, V. Kokovic, I. Ignjatovic &V. AlendarSmall concretepedestrianbridgewithintegral abutments Analternativesolutionforpedestrianbridgesover highways 270A. Keil, S. Hagenmeyer & J. SchneiderRavinedestroisbassins BridgeinLaReunionIsland. A successful applicationofextradosedprestressing 271P. Charlon & J. FrappartDesigning structures against extreme loadsSeismicbehaviour of precast columntofoundationjoint 275G. Metelli & P. RivaProbabilisticcorrelationof damageandseismicdemandinR/C structures 276M. Botta & M. MezziSeismicresponseof coupledwall-framestructuresonpilefoundations 277S. Carbonari, F. Dezi & G. LeoniDisplacement baseddesignof BRB for theseismicprotectionof R.C. frames 278T. Albanesi, A.V. Bergami & C. NutiSeismicbehavior of residential concretewalls 279S.M. Alcocer, A. Snchez-Alejandre, J. Carrillo, R. Uribe & . PonceModificationof theconcretepropertiesafter fire 280G.L. Balzs & . LublyState-of-the-art structural designsandaxial shorteningstudiesof super highcolumnsinatall building 281P. Boonlualoah & S. BoonlualoahResultsof anexperimental researchonprecast structuresunder seismicactions 282F. Biondini & G. TonioloXVIIncreasing the speed of constructionIncremental launchingof final compositebridgedeck 285L. SasekShear loadcapacityof concreteslabswithembeddedducts 286J. Schnell & C. ThieleConstructionof lowLanger bridges 287S. Yoda, M. Ooba, M. Koga & S. SuzukiRapidconstructionof longspanprecast concreteboxgirdersfor IncheonBridgeviaductsconstructedwithFSLM 288K.Y. Choi, D.O. Kang, K.L. Park, C.H. Lee, H.Y. Shin & M.G. YoonAuthor index 289XVIITailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8PrefaceSincethelast FIP congress10yearshavegoneby, alot hashappenedintheneworganisationfib.Thesuccessful Congressesin2002and2006inOsakaandNaples, manytechnical publications, theprepara-tionsfor anewmodel code, alivelyset of Commissions, TaskGroupsandSpecial ActivityGroups, all showfibisaliveandkicking.Thereforeorganisingtheofficial 2008fib symposium, 10yearsafter themerger of FIP andCEB duringtheFIP Congress in1998inAmsterdam, is avery special occasion. It gavetheorganisers, thesponsors awarmfeelingabout thedevelopment of fib.Whenweset uptheorganisationof theevent wewereoverwhelmedby thesupport wegot fromcompaniesinTheNetherlands. Authorities, Contractors, Suppliers, Consultants, etc. helpedusat averyearlystage, sowecouldstart off. Onceagainweshowedweareinterestedincontactswithour colleaguesall over theworld. Andtheresult wasgreat; theresponsetoour request for Call for Papersresultedinatotal number of morethan390abstractsfromall over theworld. Wehavetothankall authorsfor their support toour event.TheScientific Committeehadatoughjobtoreviewall theseabstracts. Wearevery grateful for thiseffort.Andnowyouseethefinal result; theproceedings of thesymposiumandasymposiumprogrammewecanbeproudof.Many newpapers about innovation, newdesign rules and design strategies, architectural developments inconcreteconstruction; it isonlyasnatchof thetotal offer youwill findintheprogramme. Onceagainit showsConcreteisDeveloping; fib isdevelopingtoo.DickStoelhorst,Secretaryfib 2008SymposiumAmsterdam.XIXTailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8SponsorsXXIKeynote LecturesTailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Concretebridges: NewdemandsandsolutionsJ acquesCombaultPresident of IABSE; Technical Director of Finley Engineering Group, USACURRICULUMVITAEJ acques is oneof theworlds leading experts in thedesign and construction engineering of cable-stayed andlong-spanbridges. Duringhisdistinguished, award-winningcareer, J acquesplayedamajor roleinsomeof themost innovativebridgeprojects of thepast several decades, includingtheSunshineSkyway BridgeinTampa,theBrotonneBridgeontheSeineRiver inFrance, theRion-AntirionintheGulf of Corinth, Greece, andtheSutongBridgeProjectinChina. A frequentcollaborator withlegendarybridgedesigner J eanMuller, J acquesisatwo-timenomineeasENR magazinesManof theYear.His long list of honors and recognitions also includes theFederation International du Beton Medal of MeritAwardin2004, theAwardof LAssociationFrancaisepour laConstructionin1991, andthreeInnovationAwardsfromGroupeGTM. Healsoservedasvicepresident of theInternational Associationfor BridgesandStructuralEngineering(IABSE) andhasbeenakeynotespeaker at manyindustryconferencesandmeetings.Inadditiontoservinginkeydesignandtechnical advisoryrolesonsomeof themostcomplexbridgeprojectsintheworld, J acquesisrecognizedfor developingfar-reachinginnovationsinthefieldsof pre-fabricatedconcreteandsteel-concretecompositebridges. HehasamastersdegreeinengineeringfromtheEcoleCentraledeLyon,spent many years as a professor at the Ecole Nationale des Ponts et Chausses in the field of constructiontechniques, andhaspublishedmorethan30scientificandtechnical papers.3Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8HowTheNetherlandssurvive, aworldwideexampleSybeSchaapChairman of the Association of Water Boards, The NetherlandsCURRICULUMVITAEFamily name: SchaapFirst name: SybeTitle: Dr. Ing.Date of birth: 20-05-1946Nationality: NetherlandsEducation: Agricultural CollegeLeeuwardenEconomy/Social Science/PhilosophyFreeUniversityAmsterdamDissertationPhilosophyAmsterdamHabilitationPhilosophyPragueMembership of President of theDutchUnionof Water boardsprofessional bodies:Present position: SenatorChairmanWater boardGroot SallandLecturer PhilosophyAmsterdam/Prague, CzechRepublicDirector ConsultancyCompaniesNetherlands/EasternEuropeKey qualifications:Main position of Mr. Schaap since 1986: Chairman of Water boards in polder areas in central Netherlands.Tasks: protection against water floods and conditioning of thequantity and thequality of surfacewater. Thewater conditioning task is highly integrated with agricultural demands and thedevelopment of nature. Afterbeingafarmer intheNetherlandsfor afewyears, Mr. Schaapstartedagricultural consultancyactivitiesall overEurope, inrecent years combinedwithagricultural productioninUkraine. Theconsultancy activities includethewiderangeof water management incentral Europeandthirdworldregions.InMay 2007Mr. Schaapwas electedSenator of theRoyal Kingdomof theNetherlands for theLiberal PartyVVD.Note: Powerpoint presentationbythisauthor canbefoundintheCD-ROM.5Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8TheWorldChampionsSoccer inSouthAfricain2010DannyJ ordaanCEO 2010 FIFA World Cup Organisation South AfricaCURRICULUMVITAEDaniel Alexander Danny J ordaan(bornSeptember 03, 1951) isaSouthAfricansportsadministrator aswellasaformer lecturer, politicianandanti-apartheidactivist. Heisbestknownfor leadingSouthAfricassuccessfulFootball WorldCup2010bid.Born in Port Elizabeth, acity on thesoutheast coast of SouthAfrica, J ordaan got involved in anti-apartheidactivitiesbyjoiningtheSouthAfricanStudents Organisation(SASO) intheearly1970s. ThisorganisationwasfoundedbySteveBikoinorder todefendtherightsof black students. Later, J ordaanalsobecameamember oftheUnitedDemocraticFront andtheAfricanNational Congress(ANC).Followinghis studies, J ordaanbecameateacher in1974. From1970to 1983hewas aprovincial cricket andfootball player. In the latter sport, he achieved professional status for a brief period. His political and sportinterestssooncombinedandhebecameanactivistinvariousorganisationsfightingtobreakdownracial barriersinsport.From1983to1992heservedasthepresidentorvice-presidentof varioussoccerboards.In1993hewasappointedasadirector of theCapeTownOlympicBidCompany.Hispolitical careeralsoprogressed; in1990hewaselectedasthechairpersonof theANCbranchinPortElizabethNorth. After thefirstfullyinclusiveSouthAfricanelectionsin1994, hebecameamember of parliamentfor theANC, apositionhehelduntil 1997.In1997, hewaselectedasthechief executiveofficer of theSouthAfricanFootball Association(SAFA). Hesub-sequentlyheadedSouthAfricasunsuccessful Football WorldCup2006bid, gaininggreatrespectinternationallyfor hiswork. Asaconsequence, healsoledSouthAfricasFootball WorldCup2010bid, thistimesuccessfully.J ordaanhasservedonthemarketingandtelevisionboardof FIFA since1998. Hereceivedaspecial presidentialawardfromPresidentNelsonMandelain1994aswell asthepresidential sportachievementawardfromPresidentThaboMbeki in2001. HewonSouthAfricasmarketingpersonof theyear awardin2000.J ordaanhasaBA HonoursdegreefromtheUniversityof SouthAfrica.In2004, hewasvoted44thintheTop100Great SouthAfricans.7Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8DamsafetyinChinaandthelifespanevaluationof oldconcretedamsJ inshengJ ia& CuiyingZhengChina Institute of Water Resources and Hydropower Research;Chinese National Committee on Large DamsChunZhaoChina Institute of Water Resources and Hydropower ResearchABSTRACT: Moreandmoreolddamsareoperatedfor morethan50years. Evaluationonthelifespanandthereal safetystatusbecomesachallengingtaskfor thedamsociety, especiallyfor Chinabecauseof morethan6000damstobeevaluatedandrehabilitatedwithinthenext 3years. BasedontheinvestigationonFENGMANgravitydam, whichis91.7mhigh, operatedfrom1943andsufferedtoomuchuplift pressure, freezeandthawproblem, etc., discussions on thelifespan evaluation of theold concretegravity dams havebeen made. Thereasonablecoefficient of damsafety has beendiscussedandrehabilitationschemes havebeenrecommended.Meaningful resultshavebeenachievedbasedonthecasestudy.Keywords: Damsafety, Lifespan, Rehabilitation.1 LIFE SPANSOF OLDCONCRETE DAMSANDDAM SAFETY INCHINAForconcretegravitydamsbuiltsincethe20thcentury,therearenostandardsfor thenormal workingperiod(lifespan)inChinaorothercountries.Accordingtolit-eratures, alargenumber of damslower than30meterswerebuilt1000yearsago, butfewof themexistnowa-days. Most of these dams have failed and their lifespan was short. Themain reason is that thelevel ofdesign, construction, andreinforcementwasverylow,for example, floodcontrol standardwaslow, or therewereobviousshortcomingsindamstructuresandcon-struction quality, or thetechnology of operation andmaintenancewerelimited. Sincethe20thcentury, thedesignandconstructionof concretegravitydamshavebeenstandardizedandtechnologies inreinforcementaregettingmoreandmoreadvanced, whichhaveledto longer lifespan of concretedams. Lifespan of adamnot only depends on thequality of dambut ontheenvironment and theneeds of thesociety. At thesametime, it alsohascloserelationshipwiththerein-forcement. Lifespanof concretegravitydamscanbedividedintonatural lifespan, environmental lifespanandeconomic lifespan. Natural lifespanmainly liesontheownconditionsof dams. Becauseof structures,materials, earthquakes, floodsor other reasons, somedams may become defective and need to be rebuilt,disusedor removed, whichcanbeconsideredtoreachtheir natural lifespan. For thosewhich arebreachedduetonatural reasons(excludingwarsorterrors, etc.),it canalso beconsideredto havereachedtheir natu-ral lifespans. For example, morethan3,000dams inChinaand1,000damsinUnitedStateswerebreachedandarrivedat their natural lifespan. Onegravitydamwithheightover50metersinCanadawasreportedthatithadseriouslyproblemsafteroperatingformorethan50years, thecostof reinforcementmaybehigher thanthat of rebuildinganewoneandthefinal decisionisto rebuilt it in2003. This canalso beconsideredforthe damto reach its natural life span. When a damneed to beabolished becauseof reservoir silt or theneedsof environmental protectionor thechangingofdampurpose, it can all be considered that the damhasalready reachitsenvironmental lifespan. After aperiod of operation, the security and functions of adamarefar belowcomparedwithanewdams, wecanconsider that thedamhasalready reachitseconomiclifespan. Duringthenatural lifespanof adam, therecouldbeseveral economic lifespancycles. Differentdams havedifferent economic lifespan. Thenormalserviceperiodof concretestructureis50yearsdefinedbysomecountries, butaccordingtooperationstatusofgravitydamsaroundtheworldsince20thcentury, theeconomic lifespans of gravity dams may beover 50years. Besides, therearealsosomewithserviceperiodlessthan50years. Consideringthetechnologyrelatedandbehavior of damchangingobviouslywithtime, it9haspractical significancetocarryout comprehensiveevaluationandstudiesondamsafetyattheireconomiclifespanandtrytomakethesafetyrecovertothelevelof anewdam.Another factor which affects reinforcement is theenvironmental lifespanof dams. Sometimes, theenvi-ronmental lifespanmaybeobviouslyshorter thanthenatural lifespan and it will also haveimpact on theeconomic life span of the dam. For example, manyriversintheworldaresediment-ladenriverandthesed-imentinreservoirwill reducethecapacityof reservoirdirectly.Althoughmeasureshavebeentakentoallevi-atesiltationtosomeextent, lifespanof suchreservoirssometimes is limited, even shorter than 100 years,which will affect theschemes of reinforcement. Thereservoirabolishingwill causetheendingof economiclifespanof dams.Accordingtostatistics, among87,076reservoirsinChina, thereareabout 37,800 with safety problems.Toensurethesecurity, studiesandreinforcementhavebeencarriedout inrecent years. Inthenewschemes(20072009), thereinforcement of 6240damswill beconducted. Some of themare very difficult to dealwith. Themainproblemsareasfollowing,(1) Flood control problems: Due to increasing ofhydrologydataandsafetyrequirement,floodcon-trol standard of reservoirs can not meet withthenew operation conditions and thedischargeabilityof reservoirsbecomesinsufficient.(2) Seismic problems: AccordingtoSeismicParameterDistributionMapof China(GB18306-2001) andcurrentSpecification, Safetyconsider-ingseismicloadingcasesof manyreservoirscannot meet withthecurrent requirements.(3) Stabilityof dams: Becauseof insufficientindamsectionorcracksexistedorjointsopenning,manydamshavetoberehabilitated.(4) Theleakageanduplift problems.(5) CrackandAgingproblems.(6) The metal structures and electrical equipmentproblems: Metal structures andelectrical equip-ment areagingor seriously erodedthat they canhardly operate normally, which have seriouslyaffectedthesafetyof reservoirs.(7) Management facilities and observation equip-mentsarenot ingoodconditions.(8) Reservoir silt andlandslide.(9) Freezingandsawingproblems.(10) others.The large-scale construction and management onhydro projects have been conducted for 50 years inChina and many effective methods and experiencesonreinforcement andheighteninghavebeenaccumu-lated. Butproblemsof howtodeterminetheeconomiclife span, how to carry out the long-term safetyevaluationsof thedamsshouldbefurther studied.2 MAINPROBLEMSAFTER NEWCOMPREHENSIVE EVALUATIONONFENGMANDAMFengmanconcretegravitydamissituatedat themainstreamof thesecondSonghuaRiver, 24kmtodown-streamJ ilinCity, J ilinProvince. Itissituatedinseverecold area. Its mean annual temperature is 5.3. Thehighest mean monthly temperature is 24.3 and thelowestis19.7. Themaximumheightof thedamforits original designwas 90.5mandthedamcrest ele-vation is 266.5m. Damconstruction started inApril1937andwater impoundingstartedinNov. 1942. Theproject wascompletedandoperatedinOct. 1953. Bytheendof reinforcement in1996, themaximumdamheightis91.7mandthedamcrestelevationis267.7m.Thedamcrestis1080mlong, dividedinto60damsec-tions, eachof whichis18mlong. Arrangedfromtheleft to the right bank, the 9th to 19th damsectionsof thedamareoverflowdamsections, the21stto31stareintakesectionsforpowergeneration.Theupstreamslopeof damsectionis0.05anddownstreamslopeis0.78. Duringtheconstruction, thedamcross sectionwasdividedintoA, B, CandDblocksbythelongitudi-nal joints.Thetypical crosssectionafterreinforcementisasshowninFig. 1.Inordertoguaranteethesafetyof oldconcretedamsover 50 years, it is really necessary to do the com-prehensive evaluation based on studies on FengmandaminChina. Mainproblemsandmainachievementsfrom evaluation up to now for the project are asfollowing,(1)Problems of stability related to seismicassessmentOriginal conclusion: Withweaklongitudinal jointsand sub-longitudinal joints, the stress level of somepositionof Fengmandamishigher thantheallowablevalueandthesafetycannotbeguaranteedfor seismicloadandsomepartsof Fengmandammaybedestroyedfor used earthquakeparameters. Based on results oforiginal analyses, anchoringhaveto beinstalledandhadbeeninstalledbefore1997fromthetoptofounda-tionandthedamhadbeenaddedto91.7mhigh(1.2mhigher thanoriginal dam) for improvingthestabilityof thedam. Withconsideringthereliabilityof anchor-ingandother issues, it isstill asafety problemunderseismicloadingcases.Newconclusion: Consideringnewprogressesmadeinpast 20years, seismic parameters havebeencom-prehensively evaluated based on current standard.It is found that the acceleration coefficient can bedecreased from 0.161 to 0.131 and not to 0.22 orevenhigher as early estimated. Thenewresults havesignificant influenceonfuturerehabilitationwork.(2) floodcontrolOriginal conclusion:Thespillwayconsistsof eleven6mby12morificesluiceways. Dischargecapacityof10Detail ECurtain groutingInspection holeBituminous concrete impermeable layerInspeciton gallery1:0.05Concrete impermeable layerdam axisMax. flood level 267.70Flood control level 260.50Normal water level 263.50267.71:0.78Designed excavation lineActual excavation lineOriginal dam faceDam face after excavationDam face after reinforcementFigure1. Typical crosssectionof dam.1300m3/sbythe10turbinesinthepowerhouseisusedfor floodcontrol beforefor thereservoir at El. 266.5andEl. 267.7.New conclusion: The discharge capacity of theplant would not be allowed to use when the reser-voir level at 267.7to guaranteethesafety. Thefloodcontrol problems will be more critical for the cur-rent designstandardscomparedwithoriginal onesinhistories. It shouldbecarefully evaluatedtoconsiderthepossibility to usepre-dischargebasedonreliablehydrological monitoring and prediction system. Fur-thermeasurestoincreasethecapacityforfloodcontrolshouldbestudied.(3) Serious Leakage of the Damand high upliftpressureOriginalconclusion: With poor integrity anddefects, suchascrackandhoneycomb, seriousleakagefromthedambodyandjointsoccurredafterimpound-ment, which affected the integrity and durability ofdam.Whenthereservoirwaterlevel reachedEl. 255min 1950, leakage measured in the galleries reached16,380L/minandthewet areainthedownstreamsur-facewasabout24947m2.Afterrehabilitationformanytimes, leakagetoday reduces to 39L/min totally andwet area in the downstreamsurface at El. 256.55mis about 440m2 in2004, most of whichis locatedatspillwaysections. Whileaverageuplift pressurecoef-ficients for blocks of 8, 14, 22, 28, 35, 40, and47atdifferent position monitored in 1996 are 0.84, 0.48,0.63, 0.16and0. Thedistances betweentest holes tothedamaxisare2.9m, 6.5m, 12m, 39mand51.6mrespectively. Monitor data at block 15 in 2005 givesimilarresults. Groutingmeasurecouldbereliableandhasbeendonemanytimestodecreasetheleakageanduplift.Newconclusion: Highuplift pressureis still abigproblemtobesolvedinthefuture. Groutingmeasurescan be used but not enough especially for decreas-ingtheuplift inthebody. Geomembraneinstallationunder water can be a reasonable choice for furtherrehabilitation.(4) Poor Qualityof ConcreteOriginal conclusion: Strength of damconcreteof90d in the original design should be 150kg/cm2,but actual strengthof concretewas only 120kg/cm2,90kg/cm2oreven60kg/cm2atdifferentpartsof dam.Aggregateandcement usedwerenot ingoodquality.Water reducing admixtureand air-entraining admix-ture agent were not used and there was no freezingresistant consideration for all concrete even thoughthedamlocatesat extremelycoldarea. Concretemixproportion in construction had problems and therewas no temperaturecontrol. Outer concreteof 0.6mthick has been replaced in recent years during reha-bilitation. Whilemost part of concretein upper anddownstreamside of damhave very low strength of11about 50kg/cm2. Grouting measurecan improvethesituation.Newconclusion: Groutingmeasureisnot enough.Drainagemeasure, thickeningthedambody andetc.arenecessaryfor further action.(5) Longitudinal jointsof DamOriginal conclusion: Fengman dam was dividedinto blocks by transverse joints, longitudinal joints,sub-transversejoints and sub-longitudinal joints. Nospecial treatment was done to most of these joints.Noshearingresistant structureandjoint groutingwasmadeinAB longitudinal joints fromEL.220 to EL.242(Fig. 1). Althoughgroutingwas carriedout dur-ingoperationfor manytimes, unboundedlongitudinaljointsof thedambodyarestill aproblem. Model test,static and dynamic analyses made before show thatthejointshavebiginfluenceonstressdistributionandstability. Stronganchoringmeasuresshouldbecarriedout consideringpossiblehigher seismicload.Newconclusion:Stronganchoringmeasuresarenotsoimportant asbefore.(6) FreezingandThawingProblemOriginal conclusion: Withpoor qualityof concreteandserious uplift pressureof thedam, somesurfaceconcretewasdestroyedby freezingandthawingcon-dition, especially for spillway sections. In 1986, thedamagedconcreteof theupstreamsurfaceaboveele-vation245mandof thedownstreamsurfacefromtoptogroundlevel wereexcavated0.4mandwerecoveredby1mreinforcedconcretewithhighstrengthandfrostresistance.Thedamcrestwasheightenedby1.2m. Forspillway, thedownstreamsurfacewasreplacedbynewconcretewith1.5mthicknessandwasfixedwithlotsof anchorage(3.5mdeep).Newconclusion:Thefreezingandthawingproblemisstill abigandchallengingproblemsuptonowanditwill decreasethesafety obviously. Theoriginal mea-suresarenotenoughandconcretewiththicknessmorethan4mshouldbeput onthesurfacedownstreamtoachievesimilar safetystandardasanewdam.Main rehabilitation work finished before 1997 isfollowing,(1) Bituminous concrete lining with a thickness of10cmwasplacedontheupstreamsurfacebetweenEl.245mto El. 226mbeforethefloodseasonin1990.(2) Grouting to dambody and foundation was oneof the main measures adopted for reducing theseepageandupliftpressure. Groutingwascarriedout in37damsectionsindifferent years.(3) Pre-stressedanchorswereinstalledtoimprovethedamsafety under earthquakeloading cases. 378pre-stressedcablesintotal withdifferent loadinggradeswereinstalledinNo.7to49damsections,in which 361 cables wereinstalled in dambody(excludingthetest anchors) and17cables, inthedamfoundation.(4) Heighteningof dam. Accordingto thedamrein-forcement design, thedamcrest has been raisedby1.2mtoimprovestabilityof damandincreasefloodcontrol ability.Theworkaboveisreasonablebutenoughtoachieveaneweconomiclifespanfor theolddam.3 SAFETY EVALUATIONBASEDONNUMERICAL ANALYSISBY FEM FORFENGMANDAMTotruthfullyreflectthepractical safetysituationof theFengmandamandachieveclearresultscomparedwithcurrentdam, simulationanalyseshavebeenmadewithconsidering construction processes and longitudinaljoints and construction joints. Wholecoursesimula-tionanalysisof BL47fromtheconstructionperiodtotheoperationperiodisconducted.Athree-dimensionalFE model isbuilt, whichtakesintoaccount of all fac-tors that will affect thestressing and deformation ofthedam.In simulation analysis process, the constructionprocess is simulated according to construction datarecorded, usingmeasureddataof air temperatureandwater level as boundary conditions. The calculationperiod is fromOctober, 1941 to December 2005. Intheconcreteconstructionperiod, theminimumcalcu-latingstepis0.5d, whilethemaximumcalculatingstepis5d.Inoperationperiod,calculatingstepis10d.Thereare 2,707 calculating steps in the whole simulationanalysisprocessintotal.Inwholecoursesimulation, theadiabatictempera-tureriseof theconcretematerial insimulationanalysisis determined according to practical mixing ratio ofthe concrete and the maximuminternal temperatureobservedonsite.Thefinal elasticmodulus,coefficientof linearexpansionandcoefficientof temperaturecon-ductivityaredeterminedaccordingtoobserveddataofdisplacement andtemperaturebybackanalysis. MainparameterscanbeseeninTable1.Accordingtothewholecoursesimulationcalcula-tion, temperaturefield, stress fieldanddisplacementfieldof BL47atanytimecanbeobtained. Comparingthe horizontal displacement at damtop obtained bysimulationanalysis withmeasureddata(SeeFig. 2),itcanbefoundthatthesetwoareconsistentwitheachother, whichindicatesthatthesimulationanalysiscanreflect thepractical operatingconditionof thedam.According to the envelope diagramof minimumtemperaturefieldduringoperationfrom1990to2005(Fig. 3), negativetemperaturemay occur inconcreteof damtopanddownstreamsideduringwinter, whichmaycausefrostthawingfractureduetosever seepagein damconcrete. The depth of negative temperaturezone of downstreamside is about 4.5m. Accordingtothecontour diagramof1inwinter (Fig. 4), tensile12Table1. Valueof material thermodynamicparameters.E Specificgravity Poissons Coefficient of temperature Specificheat Coefficient of linearMaterial (GPa) (kg/m3) Ratio conductivity(m2/h) (kJ /kgC) expansion(106/C)Bedrock 15 2750 0.21 0.00342 0.967 7Concrete 11 2350 0.25 0.0043 0.978 7MY2 4 6 8 1012922 4 6 8 1012932 4 6 8 1012942 4 6 81012952 4 6 8 1012962 4 6 8 1012972 4 6 8 1012982 4 6 8 1012992 4 6 81012002 4 6 8 1012012 4 6 8 1012022 4 6 81012032 4 6 8 101204-2.00.02.04.06.08.010.01 2(1-calculated_value;2-observed_value)displacement (mm)Figure2. Calculatedhorizontal displacement comparedwithobserveddataat damtopof BL 47.Figure3. Envelopediagramof minimumtemperaturedur-ingoperation(C).stress withmaximumvalueof 0.8MPais distributedin areaof damshell, in most part of which concretehas lowtensilestrengthof about 0.5MPa. Thedepthof tensile stress zone of downstream side is about3.2m. Furthermore, tensile stress of 0.20.8MPa isFigure4. Contour diagramof 1inwinter (MPa).distributedindamheel withwidthof 6mor so. Cal-culatedresultsshowthatthevalueanddistributionareaof tensilestressindamheel maydecrease,whiletensilestressdistributedinconcreteof damcenter waycauselongitudinal jointsandconstructionjointstoopen.Resultsof simulationanalysisshowthat most partof longitudinal joints of Fengman damhave openedgradually even duringtheconstruction period. More13Table2. Resultsof overloadinganalysis.Items Case1 Case2 Case3Overloadcoefficient 3.26 1.67 1.111.14than70%of longitudinal jointsareopeneduptonow,whichmakesit impossiblefor thedamtobear loadasawholeandhasdeterioratedtheworkbehavior of thedam.Accordingtocalculation, safetyfactor of slidingresistancealongdambase,whenconsideringtheaffectof longitudinal jointsandstresshistory, is1020%lessthan that evaluated by traditional methods, in whichnosuchfactorsaretakenintoaccount.Tosomeblocksof Fengmandamwithfaultspassingthroughbedrock,potential riskof unstabilityundersomeworkconditionmayexist.Overloadinganalysisunderdifferentconditionshasbeencarriedouttoevaluatethesafetyof Fengmandamcomparedwithasimilar newdam: (1) Case1: over-loading analysis on a newly built damin nowadayswhichhasthesamedamsectionasFengmandamandlongitudinal jointsarewell dealt; (2) Case2: overload-inganalysisonadamwiththesamedamsectionandconcretequality as Fengmandamwhilelongitudinaljointsarewell dealt; (3) Case3: overloadinganalysisonFengmandamunder workconditionsof nowadays.TheresultscanbeseeninTab. 2. Obviously, poor con-cretequality andaffect of longitudinal joints aretwoimportant factors, which haveled to thedecreaseofdamsafety.To increase the safety of Fengman dam, it is anoptionto addnewconcreteonthedownstreamface.When4-meter-thick concretelayer isadded, overloadcoefficient will increase to 2.332.47 even no rein-forcementisdonetolongitudinal jointsandsafetyfac-tor of slidingresistancealongdambasewill increasemorethan17%, whichwill meet therequirementsofslidingresistance.4 MAINSUGGESTIONSFOR FUTUREREHABILITATIONFOR FENGMANDAM(1) Addingnewconcretewith4to6-meter-thicknessonthedownstreamfaceThickening the damalong downstreamface willincreasethesafety of thewholedamand also makenegativetemperatureandtensilestresstransfer tonewhighstrengthconcrete, whichwill improvesafety ofthedamtoasimilar newone.(2) Decreasingtheleakageanduplift measuresLeakage, highupliftpressure, freezeandthawsitu-ationareseriousproblemsthatcantbeignored. Feng-manreservoir withmorethan10billioncubicmetersstoragecapacityisverydifficult toempty. Accordingtofeasibilitystudies, several optionshavebeenputfor-ward: (a) Install Geo-membraneonupstreamsurfacewithCarpi tech, whichcanbedonepartlyunderwater;(b) Designandbuildaspecial removablecoffer damusedtoformadrysitesothat it ispossibletorebuildanupstreamsurfaceof dam; (c) UsingNewconcretecoremethodto replaceconcreteof somedistancetoupstreamface with new concrete part by part so asto formaconcreteimpervious wall; (d) others. Geo-membraneinstallationontheupstreamfaceisthefirstchoicecombinedwithother measuresuptonow.(3) NewdrainagesystemtodecreaseupliftpressureIt is clear that if new drainage systemcould beconstructed, theupliftpressureespeciallyfor spillwaysections will bedecreased. Based on FEM analyses,to construct a drainage systemand a new drainagetunnel 2munder thedownstreamsurfaces andabout40mawayfromthedamaxiscouldfunctionwell.ThismethodhasbeenusedbyShuifenGravitydaminChinaand demonstrated well for about 40 years operationlocatedinsimilar condition.(4) Further groutingondambodyGroutingondambodyisstill anoptiontoimprovethestrength of concreteand control seepage. Exper-iment has been doneon damsection 14 and 36, theresultsisnotasgoodasestimated. Furtherstudieswillbemadefor achievingbetter results.REFERENCES(1) J inshengJ IA,Yihui LU, etc. Comprehensiveevaluationon Fengman dam, ChinaInstituteof Water ResourcesandHydropower Research, J une, 2007.(2) J insheng J IA, etc. Solutions to Fengman dam reha-bilitation, China Institute of Water Resources andHydropower Research, J une, 2007.14Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8TheRijksmuseuminAmsterdamAntonioOrtizCruz y Ortiz arquitectos, Sevilla, SpainCURRICULUMVITAE1948 BorninSeville.1971 DegreeinArchitecture, School of Architecture, Madrid.1971 PartnershipwithAntonioCruz.Academic experience2004 HonoraryProfessor, University of Seville.2002 KenzoTangeVisitingDesignCritic, GraduateSchool of Design, Harvard University.200001 VisitingProfessor, University of Navarra, Pamplona.1998 VisitingProfessor, GraduateSchool of Design, Columbia University.199596 VisitingProfessor, University of Navarra, Pamplona.199495 VisitingProfessor, GraduateSchool of Design, Harvard University.199293 VisitingProfessor, colePolytechniqueFdraledeLausanne (EPFL).1992 VisitingProfessor, Department of Architecture, Cornell University.198990 VisitingProfessor, GraduateSchool of Design,Harvard University.198789 VisitingProfessor, EidgenssischeTechnischeHochschule(ETH), Zurich.197475 Professor, School or Architecture, Seville.15Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Prefab, theAmericanWayThomasdArcyonbehalf of PCI17Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8TheEuropeanStandardfor PrefabricationMarcoMenegottoUniversity of Rome, ItalyCURRICULUMVITAEFamily name: MenegottoFirst name: MarcoTitle: Prof. Ing.Date of birth: 31-01-1940Nationality: ItalyPresent position: Full Professor of Structural Engineering(since1980),UniversitLaSapienza, RomaResearch: Nonlinear analysisof concretestructures, Seismicengineering,Heritagestructures, Prefabrication, ConcretematerialCoordinator of researchprogramsof national importanceReviewer for therelevant journalsandresearchcentresDesign: Consultant for designandrehabilitationof buildingandcivil engineeringstructuresParticipation in scientific bodiesFormerlyCNR (National ResearchCouncil)Member of CommissiononStructural ConcreteUNI (ItalianStandardizationAgency)Member of CommissionStructural EngineeringCEB TGDesignbyTesting: MemberCommissionStructural Analysis: MemberGTGPrefabricatedStructures: ReporterCommissionBucklingandInstability: Co-ChairmanRILEM TC Load-bearingConcretePanels: ConvenerEEC Eurocode2: Liaisonmember for ItalyIABSE Permanent CommissionConcrete: ChairmanUNESCO Consultant for assessment of stabilityof heritageconstructionsFIP Council: Vice-President, for ItalyCommissionPrefabrication: Co-Chairmanfib WG7.3: MemberPresentlyAICAP (ItalianStructural ConcreteAssociation)VicePresidentASSIRCCO (ItalianAssociationfor ConsolidationandUpgradeof Constructions)VicePresident19CSLLPP (HighCouncil of PublicWorksof Italy)Expert memberCEN TC250/SC2: DelegateTC229: Member of SteeringandCoordinationGroupTC229 TC250Liaisonofficerfib Council: Delegatefor ItalyCommissionPrefabrication: ChairmanSpecial ActivityGroupfor theNewModel Code: MemberHonours CTE (ItalianTechnical BuildingSociety)Medal for PrefabricationSport Rowing20Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8FibresinConcrete, Research, Rules, PracticeE.H. Horst FalknerABSTRACT: Fibres in concrete is an innovative technic. Fibres have a steady increasing importance forstructural andstrengtheningapplications. Fibresaremodifyingthe. of concreteinamoreductilebehaviour.Thepresentationgivesanoverall viewabouttheprogressof thelastdecademaderesearchrulesandapplication.Concrete is the top material being used worldwide.Concreteenables any shapewewant andmeanwhileconcretestrengthreachestheoneof steel.Wearepleasedtohavedefinedstrongandheavyfibres such as reinforced steel bars or prestressingsteel inconcretestructures.Concretewithsmall fibresmaybethechampion inmaterial formanyfuturestructures. Fibresinconcretemade of steel, glass or polyurethane do not onlyimprovethematerial in structural behaviour of con-crete but are contributing for better serviceabilitybehaviour, morerobustnessanddurablestructures.The contributing will give an overall view toresearch, rules and application in practice of fibrereinforcedconcretestructures.21Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8PublicPrivatePartnership, tool or trendAndreaEchbergDivision Director Marquarie, London, UKCURRICULUMVITAEBackground:Andrea joined Macquarie in J anuary 2006, prior to which she worked at ABN AMRO in the InfrastructureCapital team.Andreahasover tenyearsof projectfinanceexperiencepredominantlyintheinfrastructuresector.Shestartedher career at LondonUndergroundsPFI advisoryteamworkingonsomeof theveryfirst UK PFIs.FollowingthatAndreaworkedfor twoyearsintheNatural ResourcesprojectfinanceteamattheIndustrial Bankof J apan(nowMizuho) beforejoiningABNAMRO.Experience:SincejoiningMacquarie, Andreahasworkedonavarietyof infrastructureprojectswithafocusondevelopingPPP projectsacrossEuropeasaprincipal shareholder.Andreas key strengths include:Structuringinfrastructureprojectsfromasponsor perspectiveincludingcontributingacrossthefull spectrumoffinancial structuring, biddingstrategyandleadership.Negotiatingcommercial issuesbetweenthespecial purposecompanyandthepublicsector andconstructionandfacilitiesmanagement sub-contractors.Andreas recent project experience in infrastructure includes:National Grid Transco RDNs, UK2.5billionprincipal financebidfor theSouthof Englandregional gasdistributionnetworkincludingnegotia-tionswithNGT anditsadvisers, capital structuring, dbtstructuring, equity, opeartorstrategyandlegal, technical,financial, regulatoryandpensionsandinsuranceduediligence.Ministry of Finance Refurbishment PPP, the NetherlandsDirectorresponsibleforsuccessful principal bidas80%sponsorof theSafireconsortium(ABNAMRO,Strukton,GTI,BurgersErgonandISSNederland)forthe120millionMinistryof FinancerefurbishmentPPPintheHague.Mestre Hospital PPP, ItalyLeadArranger totheAstaldi ledconsortiumfor the225millionMestreHospital PPP. Thiswasthefirst PPPhospital inItalywithfull FM risktransfer totheprivatesector. It wasawardedEuropeanPPP of theYear award2005byProject FinanceInternational.N31 Road PPP, the NetherlandsFinancial Adviser totheCombinateeMiddelsseeConsortiumfor theN31roadPPP intheNetherlands.Armoured Vehicle Training Services PFI, UKFinancial Adviser tothepreferredbidder, LandmarkTraining, for theArmouredVehicleTrainingServicesPFIincludingdevelopment of apass/fail basedpayment mechanism.Tubelines, UKLeadArranger toTubelinesfor theLondonUndergroundPPP.23Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Theconstructionproject of theSagradaFamliaJ osepGmez, RamonEspel & J ordi FaulABSTRACT: TheSagradaFamliaisGaudsunfinishedwork, towhichheexclusivelydedicatedhislastyearsof life. Eventhoughheonlygottobuildasmall partof thetotal, hedefinedtherestthroughmodelsanddrawings.Gaudsdesignfor theinsideof theTemplewasbasedonanewgeometricarchitecturewhichmadeextensiveuseof ruledsurfaces(paraboloids, hyperboloids), openinganewfieldwhichlater architectshavefollowed.Thefollowingarticleaimsat showingtheconstructioncomplexityof thesestructures; especiallytheTemplenaveswiththevaultsat 30, 45and60mheightswill bediscussed. Thiswill showhowtheconstructionmethodisadaptedtotheconstructionneedsaccordingtothegeometricshape, size, position, material repetitionsof eachvault.1 FOREWORDTheTempleof theSagradaFamliaisthelastCathedralto which the classic concept of an evolutive con-struction process, of over acentury in duration, canbe applied. Located in Barcelonas city centre, it isthe most mature work of Antoni Gaud, the archi-tectpar excellence of CatalanModernismintheearlytwentiethcentury.AlthoughGaudsinitial philosophyis maintained, theconstruction process must changeaccordinglytotheevolutionof thetimesbuildingtech-nology. Therefore, the evolution of its constructionprocess closely mirrors that of the general buildingtechniquesof theepoch.Gauds originality and innovative use of con-struction techniques areboth present in theSagradaFamlia.2THE SAGRADA FAMILIA DESCRIPTIONTheTempleof theSagradaFamlia, isabasilical, latin-cross planbuilding, withfivelongitudinal naves andthreemorenaves forming thetransept (Figure1). Itis surrounded by a rectangular cloister, with twelveperimetral towers, symbolizingtheApostles(95to115meters high), crowning thetwo existing and anotherprojectedfaades. Besides, sixbigtowerswill bebuilton top of the vaults. The central tower, measuring170m, represents J esus Christ and is surrounded bythefour 125mtall Evangelists towers andthe120mtowerof theVirginMary,Thetallesttowersaresituated Figure1. Planof theTempleof theSagradaFamlia.25Figure 2. Section of the Temple through the transept,showingthelocationof thevarioustypesof vaults.in thecentreof thetransept and on top of theapse,solving themaximumdifficulty for theRenaissancearchitects, whilethenavesdont needbuttresses, sur-passingGothic architectureby meansof astatic loadequilibriuminitsdesign.One of the most important innovations of theSagradaFamiliaareits ruledsurfaces (hyperboloids,paraboloids, helicoids, etc.), whichwill comprisethegreater part of itselements(fromwindowstoroofs).Since1910Gaud almost exclusivelydedicatedhisefforts to the design of the Sagrada Famlia almostexclusively. In 1914 Gaud designed a new spacefor the inside of the temple, with a new architec-turebasedonruledandother geometries (Figure2).Gauds approach was to rationalise the structuresby enhancing different aspects of Gothic architec-ture.Thesestructuresandbranchinginternal columns,designedaccordingtoantifunicularloadequilibriums,Figure3. Columnsof thenaves.substitute the buttresses in their role of transmittingvertical loadstothefoundations.In thefinal solution, thecolumns will bedouble-turn helicoids,the roofing will be formed byparaboloids and the interior part ofthe vaultswill consist on hyperboloids overlapping transitionparaboloids. Their complex assembly was clearlydefined in the 1/10 scale models and in their pho-tographs. In1936his workshopwas burnt down, butthemodelssurvivedbecausetheyweremadeof plas-ter, thusresistingfire, allowinghisfollowerstorebuildsomeof them.Buildingaspectsrelatedtotheuseof concreteandprecast concretearealso important. Hedecided thatthevaults shouldformamonolithic formthat wouldtake the shape of a hyperstatic structure capable ofwithstandingareductioninthenumber of someof itselements (arches or columns). This resulted in theseceilings being designed as hyperboloids constructedout of reinforced concrete, a material that can takeon any shapeand would enableGaud to design thevaults as unifiedstructural elements. Figure3showsthetiltingpillarsof themainnaves.26Gaud designs and builds the pinnacles for theNativityfaadetowersoutof reinforcedconcrete. Thefour belfriesof thetowersof theNativity Faadeendin24.6-metre-longspiresbuilt withanucleusof rein-forced concrete. Furthermore, theexternal pieces ofthe top 17 metres of the spires, which are coveredinMuranoglass, arecraftedfromprefabricatedrein-forcedconcretepiecesmadeintheonsiteworkshops.ItmayseemthatintheseelementsGaud usedcon-creteinthesamedecorativefashionasinhisearliestworks.This, however, isnotthecase: theprefabricatedpiecesthattopthesespiresareover3metrestall andareaffixedtothebuildingat aheight of over 100metres.This meant that they had to bebuilt fromamaterialthatcouldresistthetensionthatcouldarisebothduringhandlingandinthefinal configuration. Hisresponsetothischallengewastousereinforcedconcrete. Overtime, mostof thearchitectural elementsof theSagradaFamilia were found to be perfectly suited to beingcraftedinreinforcedconcrete.3 EVOLUTIONOF THE WORKSAfterGaudisdeath, theconstructionprocesswascon-tinued. The fire that ravaged Gauds workshop in1936destroyedmost of hisplansandstudies, but thearchitect Domnec Sugraescontinuedwiththecon-structiondespitemomentsof oppositionfromsociety.Theconstructionprocess maintainedthespirit of theearliererathroughthesubstantial involvementbythreeof Gauds direct collaborators (Isidre Puig Boada,FrancescQuintanaandLlusBonetGar) andasearchfor innovationinthebuildingprocess.At this moment, the organisation of the progressof theproject andof theconstructionof theSagradaFamliastandsout fromother current works, becauseof the characteristics and information of Gaudsproject andbecausethemainresponsibility, bothfortheproject andtheconstruction, belongstothesameorganisation, The Construction Board of the Expia-toryTempleof theSagradaFamlia. Thisorganisationis also the promoter. In theTemple, it has thereforebeenpossiblesincethefirst planningphases, tohavethecollaboration of thedifferent agents involved, sothat thedirect protagonistsof futureconstructioncanbe informed of project decisions and provide theirexperience. Thus, the preparation of the project andthe construction are being done with the collabora-tion of the different specialists responsible for eachphaseof theprocess thedirectorarchitects, thearchi-tects responsible for the structures project, those incharge of the project and its construction and pro-duction. This relationshipfacilitates thequest for thebestprojectsolutions, takingintoaccountfaithfulnesstowards the original project, aesthetic and structuralvalues andtheconstructionmethodandprocess. Ontheother hand, theproject headsintervenewhenit isnecessary to resolveproblems duringtheproductionprocessor construction.All of thisispossiblebecausethedepartmentsinchargeof preparingtheproject, oftheproduction and theconstruction, work under thedirection of the architect, J ordi Bonet, in the sameofficelocatedunderthemainnave, wheretheypreparethedocuments necessary toensureconstructionwithquality, efficiencyandinaccordancewiththeproject,anddecidetogether ontheprogrammesfor coordinat-ing it and establishing terms in order to achievetheobjectivesset bytheConstructionBoard.The structures project,commissioned to theoffice of the Facultative Direction architects CarlesBuxad, J oanMargaritandJ osepGmezrequirescon-stant communicationwiththetechnical officeof theTempleinweekly meetings, andthefortnightly onesof theFacultativeManagement, inwhichthedifferentproposals of theprojects areassessed and improvedfromthe structural point of view, both in the initialphasesandintheconstruction. Thestructureprojects,along with the systems to carry themout, are alsoissuedanddiscussed.Obtaining plaster models directly fromcomputerdrawingsisfundamental intheentireprocess, becausethearchitectscananalyseamodel inthreedimensionssoon after having drawn it and mounted it into thegeneral models. Theyalsohavemodelsinpolystyreneexpanded to natural scale, which are used to pro-ducepieces in prefabricated concrete. Antoni Gaudhad a workshop of plaster modellers for producing1:10 and 1:25 scale models and models for sculp-tures or large, prefabricated pieces for thepinnaclesof theNativityFacade. Theworkshopsurvivestothisday andperformsthesamefunctions, withtheaidofthree-dimensional printers.Theconstructionof the4,500m2of theinterior oftheTemplebeganwiththemainnave. Thelower win-dows werebegun in 1979 and in 1986, thecolumnsfoundationwork wasundertakenwithconcretepilotssunktoadepthof 20metres, withthesubsequentcon-struction, until the year 2000, of columns, windowsandvaults for theaisle(inconcreteto aheight of 30metres) andof thecentral nave(withaflat-brickvaultat aheight of 45metres). Thevaults of thetranseptswerethencompletedandworkiscurrentlybeingdoneonthoseof thecentreof thetransept at aheight of 60metres. Intwoyearsthespaceataheightof 75metreswill becomplete, withavaultformedbyalargehyper-boloid; itwill firstbenecessarytoconstructthevaults,atheightsof 45and60metres, whichoccupyareducedcircular crownaroundthecentreof theapse.Theconstruction of each areaor part of theinte-rior of thenaves involves newchallenges of varyingcomplexity, withdifferent approaches, whichmust beresolvedusingtheexperiencethat has beenobtainedandby applyingup-to-datebuildingtechnology, ina27CONCRETE ARCHITECTURAL ELEMENTSMASSCONCRETE (fck25MPa) Fill wallsandwindowsinthenavesREINFORCEDCONCRETE (fck45MPa) Structural elementswithrelativesmaller loads Columnsof thenaves vaultsof thecentral nave Cloister Gloryfaade foundationsHIGH-STRENGTHCONCRETE Columnsof thetransept andcrossing(white: fck80MPa, grey: fck60MPa) Columnsof theapse Crossingwindows Columnsof theGloryfaadeSPRAY-APPLIED(fck25MPa) Vaultinginthecentral nave ChorusPREFABRICATEDCONCRETE Upper part of thecolumns Handrail of thechorus Spiral staircaseof theapse Windows Chapitelsof thechorus.processof improvingbuildingsolutionsandconstruc-tionandorganisationmethods.4 BUILDINGMATERIALSANDTECHNIQUESFORTHETEMPLE NAVESAs wehaveseen, thebuildingmaterials andsystemsused in theconstruction of thenaves respond to theproposals in Gauds project stone columns andwindows,vaultsof visiblereinforcedconcreteandflat-brick vault (Catalan vault), stoneroofs andVenetianglass mosaics. A structure of reinforced concrete, amaterial alreadyusedbyGaud ontheNativityFaade,whichhehadalsoproposedforthevaultsof thenaves,begins inthefoundations andfinishes intheinteriorsupport structurefor theroofs. Thevaultsat 30maregenerallybuiltof concrete.Thehyperbolicvaultsat45m. or higher uparebeingbuilt usingceramicmateri-als, asGaud hadforeseenandashiscollaborator andbiographer J oanBergshaswritteninhisworks.Intheearly1980s, andafterthePassionFaadewascompleted, ageometric study of theSagradaFamiliawasundertaken,startingwithitscolumnsandtheinter-nal vaultingof thenaves. It wasknownthat almost alltheelements (columns, roofs, windows, domes, sac-risties, etc.) aredefined based on theintersection ofruled surfaces (hyperboloids, paraboloids, helicoids,etc.). After the analysis of the available models anddrawings, the Sagrada Familias technical staff wasabletofindmathematical equationsfor thesefigures.It was then necessary to find a way of representingthemthree-dimensionally that was quicker andmoreprecisethanGaudsplaster models.Since 1991, a teamled by J osep Gmez Serranohas used CADD-S5 software to draft new work onthechurch. This teamis specialisedin3D modellingand is additionally prepared for working with thethree-dimensional printer situated on thegrounds ofthe Sagrada Familia. This allows those working inthemodellingworkshopto work withagreat degreeof precision, which significantly reduces the costand timerequired to produceeach newpiece. Theseprograms have become an indispensable tool in theongoingconstructionof theSagradaFamilia.StoneThe large stone elements of columns and windowshavebeenproducedeither manually or withnumeri-cal control since1989usingadisc-sawwithtwoandahalf axlesandcurrentlywithfive-axlemachinery,withtheparticipation of workshops with alongtradition,along with coordination and control fromtheTem-pleto ensurequality and coherencewith theprojectas awhole. Thelower columns havebeen built withthestones that Gaud decided according to its resis-tance: sandstones fromtheMountain of Montjuc inBarcelona, granite, basalt andporphyry.Prefabricated concrete piecesPart of thecolumns, muchof thewindowsandpart oftheelementsof therailingsandvaultshavebeencon-structedwithprefabricatedreinforcedconcretepieceswith stainless steel and with the texture of the fourstonesof thelowercolumnsascoveringandformworkof thestructural reinforcedconcrete. Gaud alsoused28Figure4. Stonejoint.prefabricated pieces, for example in the Parc Gell,intheColniaGell Church, onthepinnacles of theNativity Faade (concrete prefabricated pieces withVenetianglassandplaster moulds), etc.Some of the 3 to 6-metre high prefabricatedcolumnshavebeenfabricatedwithincorporatedsteelreinforcement.Themodelsmaybeof plaster, ashasbeenthecaseforthelastninetyyearsintheTemple,orof polystyreneor polyurethanewithmechanisation. Themoulds aremadeof thesetwomaterialsandalsoof polyester andglass-fibre, dependingonthenumber of pieces tobeproduced.In order to reduce the fitting time, prefabricatedpieces aremountedat thefoot of theTemple, so thatlargeelementsmaybepositionedintheirplaces. Inthelastmonthsthewindowsof theapseat45mhighhavebeenconstructedwiththattechnique.Wecanseeatthephotographtheelevationof thereinforcement piecesandfinally howtheprefabricatedconcreteformworkisfilled.In order to fit certain pieces, a load positioner(hydraulictripod) hasbeencreatedandpatentedintheTemple, duetotheneedtomovevery delicatepieceswith cranes and to position themwith very smooth,precise movements in the work. It has a systemofhydraulic pistons, which remotecommands contractorextend, andthewholeelementhangsfromthecraneat thesametime.Columns made onsite using polyester formworksThestructureisfirstpositioned, followedbytheform-work into which the concrete will be poured. TheseFigures5,6. Windowsof theapse(2008).arecolumnsof high-resistanceconcreteintheareaofthetransept andinthebranchings of thecolumns oftheapse.The reinforced steel for the concrete is prefabri-catedinlargeelementsinorder toensureit performscorrectly andtoadvancetheentireprocessby savingassembly time in the work. Large formwork piecesarealsofactory-produced, followingthegeometry ofparaboloidsandhyperboloids.These columns, along with other columns andvaults currently being constructed, are made fromhigh-resistance (600kp/cm2800kp/cm2) concretes,produced in acentral concreteworks, located at thesiteitself. Withtheseconcretes, it is possibletocon-struct theproject withthesectionsdecidedbyGaud,but withthedemandsof current regulations.Thefoundations beganto bepouredfor thenavesin1986andtheinternal columnsin1991. Thesenewstructurescontainedafargreateramountof reinforce-ment thanpreviously built partsof thebuilding. Thisrequiredaveryworkableconcreteandfinallyalique-fier asanadditivetoguaranteethecorrect settlingoftheconcrete. Fromthat point on, liquefiershavebeentypicallyusedintheconcreteusedinthebuildingpro-cess at the Sagrada Familia (whether it is preparedoffsiteor mixedat theconstructionsite).29Figures7. Columnsmadeoutsidewithpolyesterformwork.High-strength concretewas first used in thecon-structionof thecolumnsof thetransept, atopof whichtheEvangelist Towers andthecentral domewill rest(1998). Thus, theproject requires structures that willbeableto withstand thecompression loads and thatwill also respect the shapes and diameters set forthby Gaud. Increasing the strength of the concretedecreasedtheamountof steel neededinthedenserein-forcements, facilitated the construction process andprevented the builders of the Sagrada Famlia fromhaving to bulk up thediameter of thecolumns. Thefinal choicewasmadeforhighperformancewhitecon-cretetobepouredinsitu(fck=80MPa)ratherthantheprefabricated architectural concrete (fck=35MPa)usedinthecolumnsof themainnave.The initial mix for white HSC for the SagradaFamliawasproposedbythetechnical managementoftheproject incollaborationwithtechniciansfromtheBettorcompany.Theresultsof thetestundertakenwithdifferent components wereusedto vary themixes oftheotherconcretesused.Theaimof usingthisconcreteistomeet thefollowingtechnical performancegoals: On-siteworkability(Slumptest >25cm) Lowporosityupondrying, andgooddurability A minimumstrength based on the needs of eachstructural element Furthermore, thewhiteconcreteshouldexhibittheappropriatecolourFigures8. Spiral staircaseof thegloryFaade.Spiral staircasesFor the construction in concrete of the slabs ofthe spiral staircase, a systemhas been invented forconstructingthemanymetresof stairsinthebuilding.Usinganintegratedhydraulic system, atruck movesalongmetal rails andsupports andhelicoidally posi-tionsthepolyester mouldusedtoshapethebaseof thestair slab. Oncetheslabhas beenconcreted, thesys-temhasade-mouldingmechanismtoavoidtheshapeof themouldbeingaltered. It isthenmovedupwardsagainalongtherails, andcontinuesinthisfashion.Thespiral staircases of theMain Faadearecon-structedwithalower steel helicoidwhichalsoactsasaformworkandstonehandrail.Concrete vaultsThe concrete vaults which represent hyperboloids,locatedat 30mover groundlevel, canbebuilt usingmoulds as formwork, dueto thefact that thereareagreat number of repeatedelements(20). Thissolutionisintroducedin1993,asanadaptationof ship-buildingtechniquestoarchitectural needs.Inthatsolution,themodulesthathavebeenrepeatedseveral times, havebeen modelled with plaster on anatural scaleinthemodellers workshopintheTem-pleand polyester moulds havebeen produced abovethem, the divisions having previously been studied,in order to have a certain amount of comfort whenerectingthemandde-mouldingthevault. Onceposi-tioned in their location onsite, they are first Gunite30Figures9. Polyester mouldsof thelateral naves.mortar-sprayed. Theformwork is thenfittedandit isconcreted.In thevault modules that arenot repeated, a sys-temof stray moulds has been sought, with a singleuse adapted to the different shapes of the regulargeometry usedby Gaud, usingthemost appropriatematerialsaccordingtotheshapesandmeasurements.Their productionisrather manual andcraftsman-like,butapproachesthemaximumpossiblemechanisation.Thesevaultsarebasicallylocatedwheretheapseandthenavemeet, andintheinsideof theGloryfaade.Thecapital or skylighthyperboloidshavebeenpro-duced with wooden ribs, cut in hyperboloid shapesandwhichonjoiningwithothers inacircular shapeondifferent levels, formwhat will becomethestruc-tureof theformwork, subsequently lined with 5mmmarinepanelling, which enables it to beinterturnedandadaptedasrequired.Production of a hyperboloid with woodThelarge-dimensionparaboloidsaremadebyproduc-ing an initial skeleton, based on metal bars weldedtogether, which follow the directrices and generatri-cesof theelement, subsequentlylinedwiththin, MDFpanelling,whichisgivenabathof waterwithacrylicsothat it softensandadaptsbetter tothedesiredshapes.Apse Choir GalleryThe formworks of small, high curvature hyperbolicparaboloids are made using measured steel barsweldedtogether side-by-side. Thespacesthat remainarethencoveredwithacombinationof epoxy resinsandsand, amixturewhichgivesthebarsthetextureofacontinuoussurface.Once allthese elements have been produced,another, quite complex job begins to position themin the space and fit them together. They are thenFigures10. Hyperboloidsproducedwithwoodenribs.Figures11. Hyperbolicparaboloids.underpinned, sothat theycantakethepressureof theconcreteandfinallytheentiremould,whichisexposedtotheopenair, iscoatedwithpaint inorder tofurtherprotect it beforeit ispoured.31Figures 12. Flat-brick vaults (Catalan vault) hyperbolicparaboloids.Flat-brick vaults (Catalan vault)Thisisatraditional Catalanconstructiontechniqueforcoveringspaces andconstructingstairs. Threelayersof mortaredtileor brick aresuperimposedtocreateaveryresistant layeredcombination. At thenaveof theTempleof theSagradaFamlia, thissolutionwasusedforthefirsttimein1998,coincidingwiththechangeofthemaincrane. Theyarebasicallylocatedat the45mhighvaults, bothinthemainnaveandinthetransept,at the60mvaults inthecrossing, andinsomezonesof the30and45mvaultsintheapse.Onthedomes of theTemple, thefirst layer of tilefollows thestraight lines of thehyperboloids. In thespacesleftbytherowsof tiles, triangular elementsareplaced, decorated with green and gold glass, whichrepresent the palm-leaves that Gaud wanted on thedomes. Constructionanddecorationfollowthegeom-etryandconvert theflat-brick domesintoanelementthatenrichestheinterior.Thedomeisconstructedwithametal centeringwiththeshapeof ahyperboloid.Thisformstheguidesthatthebricklayer needstocorrectlypositiontheprefabricatedtilesandtrianglesof thefirstlayer correctly.Figures13. Creuer voltesa60mdalada.There are different contractors working on vari-ous areas, suchas bricklaying, workingwithsteel orstonemasonry, erectingof scaffoldingor restoringtheoriginal building fabric. The directors and supervi-sors of thesubcontracted companies or suppliers, aswell asthemanagersof thewoodwork, stonemasonryandmaintenanceworkshopsof thechurchbuilding, allparticipateintheorganisational process. Thegeomet-rical laws determinedby Gaud providethecommonlanguage for the collaboration of all the specialists,operativesandcompaniesinvolved.Largeassembly platforms at different levels makethe construction tasks easier and greatly assist inensuring the safety of the workers and visitors, anaspect towhichappropriateresources andefforts aredesignated. Theyarealsoespeciallyuseful whencon-structingtheTemples incliningcolumns andagreathelpwhenerectingnewscaffolding, usingsurveyingdevices such as lasers to make themas accurate aspossible.Two years fromnow, the interior of the SagradaFamlia will be completed, thanks to a coordinatedeffort from a coordinated team. Together they willhaveresolvedthedifferent challengesof itsconstruc-tionusingacombinationof traditional techniques ofbricklayers and stonemasons, the qualified work ofconstruction workshops and factories and theuseofnewcomputer and construction technologies. In thisway,itwill bepossibletoenjoythisextraordinaryplacethat Gaud bequeathedfor thefuture.32Oral PresentationsLife cycle designTailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Assessment of corrosioninreinforcedconcretebeamsD.I. Banic, D. Bjegovic& D. TkalcicCivil Engineering Institute of Croatia, Zagreb, CroatiaABSTRACT: Theeffect of corrosion, dueto chlorideattack, on reinforcing steel and concretewas studiedby performingaseries of tests onthirty specimens. Beamspecimens recommendedby theRILEM/CEB FIPCOMMITTEEwereused. Specimensconsistof twohalvesof areinforcedconcretebeam, rotatingaroundahingemechanism. Tidal andsplashzoneconditions aresimulatedby alternatewettinganddryingcycles, usingsaltspray, whichrepresentsthetypical seawater of theAdriaticSea, inalargeenvironmental chamber. Theprocessof acceleratedcorrosionincludesonecycleof wettinganddryingper day. Duringthethree-year experimentalprogram, measurements of density of corrosion current, electrochemical potential andresistanceweretaken,usingthelinear polarizationtechnique. Chloridepenetrationdepth, (mm) wascalculatedbymeansof knownexpressions. Thispaper describesmeasurement resultsandconclusionsoncorrosionpenetrationdepth.35Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Corrosionof reinforcement barsisnot anymoreinevitabilityP. GuiraudCIMBton, Paris, FranceF. MoulinierInstitut de Dveloppement de lInox, Saint Herblain, FranceABSTRACT: Corrosion of the reinforcement bars is the main cause of the defacement of the works. It isprincipallyduetothecarbonationof theconcreteandtothepenetrationof thechlorideionsthroughthecover.Corrosiongeneratesexpensesfor maintenanceandrepairs; it alsohasaneffect onsafetyandserviceabilityandat last reducessignificantlythelifedurationof theworks. Facedwiththeseenvironmental datathreedegreesofdesignstrategies/approachesarepossible: Tobuildascheapaspossibleandpay later for therepairskeepinginmindthat thelifespanof thework maybeveryreduced To useprocesses in order to delay theoccurrenceof corrosion and, out of predictivemodels, managethepreventiverepairs. Toconsider that corrosionisnot inevitability, andthat it canbedurably avoidedthroughtheuseof stainlesssteel rebarswhichdonot corrode.Stainlesssteel reinforcementbarsaremoreexpensivethancarbonsteel barsbuttheycanbeusedpartiallyjustonthemost exposedpartsof theworks, wherecorrosionmay occur; thislast solutionconsistsinpayingmoreinitially but gainonthrough-lifeoperational costs, andondurability. This approachwhichtakes into accounttheglobal costhasbeenappliedfor manyyearstoother industrial sectorsandshouldbeeasilytransposedtotheconstructionsector inorder topassdowntothefuturegenerationsadurableheritage.36Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8NewaspectsindurabilitybridgedesignM. Empelmann, V. Henke, G. Heumann& M. WichersInstitute for Building Materials, Concrete Construction and Fire Protection (iBMB), TechnicalUniversity of Braunschweig, Braunschweig, GermanyABSTRACT: Thepresent paper deals with design aspects of thelife-cycleoptimization for reinforced andprestressed concrete bridges. At the beginning the special requirements regarding the life-cycle of bridges,in comparison to normal concrete structures, will be shown. The minimumlife-cycle of the overall bridgeconstructionwill thenbecomparedwiththelife-cycleof singlebridgeelements. Bylinkingtheexpenditureformaintenanceandrepair withthelife-cycleof singlebridgeelements, weak points canbeidentified. Basedontheseresultseffectiveapproachestoincreasethelife-cycleof thetotal structurewill thenbepresented. Bymeansof atypical example, possibilitiesabletoquantifytheeffectivenessof optimizationmeasureswill beshown.37Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Carbondioxideasastimulusfor lifecyclethinkingincementandcarbonneutral concretebuildingP.A. Lanser &A.M. BurgerCement&BetonCentrum, s-Hertogenbosch, The NetherlandsABSTRACT: Sustainabilitycoversall social, economicandenvironmental aspectsof aproductall over itslifecycle. It requiresbothlifecyclethinkingandmultidisciplinary skills. Inthecement andconcreteindustry thekey wordsustainability is mostly linkedtothedepletionof natural resources, theuseof energy, thereuseofsecondary materials andto emissions. Yet thereareother faces of cement andconcrete. Cement factories areoftenaplacewherealternativerawmaterialsandnon-fossil fuelsareused. Andconcretehelpstosaveenergyintheusephase. It istimetomakeanewover-all balance!38Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Servicelifedesignof concretestructuresbynumerical modellingofchlorideingressM.M.R. Boutz & G. vander WegenINTRON, Sittard, The NetherlandsP.E. Roelfstra& R. HaverkortFemmasse, Sittard, The NetherlandsABSTRACT: A numerical model ispresentedtosimulatechlorideioningressinconcretestructuresexposedtovariableclimatological conditions. Thetransport mechanismsof (free) chlorideionsarebothdiffusionthroughand convection by porewater. This requires an advanced model for moisturetransport in both thesaturatedandthenon-saturatedarea. Incasethat thesurfaceof theconcretestructureisincontact withliquidwater, therateof thefront of thesaturatedareaiscontrolledbythebalancebetweensorptionanddiffusion. Thechloridebindingisothermisdescribedbyalinear or Langmuir typerelation. Thesalient practical featuresof themodelare: multi-layer, replacement of layers, imposing a chloride profile as initial situation. The model allows topredict theeffect of maintenanceactions ontheservicelifeof structural concrete, as illustratedfor theKingFahdCausewayinthePersianGulf.39Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Influenceof curingontheporestructureof concreteW.J. Bouwmeester vandenBosFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The NetherlandsBAM Infraconsult, Gouda, The NetherlandsE. SchlangenFaculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The NetherlandsABSTRACT: Most concretestructures aredesignedtolast for at least ahundredyears or more. Duringthislifetimethestructureis exposedto several environmental influences. Whether aconcretestructurecan resisttheseenvironmental influencesdepends, amongother things, ontheingressrateof liquidsandgasses. Therateof ingresshasadirectrelationwiththeporestructureanditsconnectivity, insidetheconcrete.Theporestructureanditsconnectivityareinfluencedbyseveral factorsduringdesignandconstruction.Animportantfactor duringtheconstructionphaseisthecuringof concrete. Toachievetherequesteddurablestructuretheconcretehastobecured. Toperformthiscuringseveral methodsareapplicable: liquidmembrane, plasticfilm, freshwater etc.Toinvestigatetheeffect of eachcuringmethodexperimentsareperformedwithtwotypesof cement (CEMI andCEM III/B). Theexperimentsconsist of water penetrationandrapidchloridemigrationtests. Inthepapertheresults of theexperiments arepresented. Basedontheresults canbestatedthat concretemadewithCEMIII/B ismoresensitivefor curingthanCEM I andit seemsthat water curingfor concretemadewithCEM I islesseffectivethanfor concretemadewithCEM III/B.40Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Lifecyclemanagement of infrastructures: Integrationof disciplinesaskeysuccess-factorAadvander HorstFaculty of Civil Engineering, Delft University of Technology, Delft, The NetherlandsABSTRACT: Thispaper addressestheintegral approachinthedevelopment of infrastructural schemes, witha strong focus on the interaction between design and construction aspects. Key aspects addressed are Con-structability, Reliability andEconomy. Aninteractionscheme, todevelopalternativeconcepts, is presentedaswell asaselectiontool tomakechoicesbetweenalternativesdeveloped. Examplesarepresentedtosupport theinteractionspresented.41Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8Residual service-lifeof concretefaadestructureswithreinforcement incarbonatedconcreteinNordicclimateJ.S. Mattila& M.J. PenttiTampere University Of Technology, Tampere, FinlandABSTRACT: Therepair strategyisusuallydecidedafter aconditioninvestigation. It revealsthecritical coverdepthi.e. thezonewherereinforcement is under therisk of corrosion. If thecorrosionis not widespread, thereinforcement withinsufficient cover is usually chiseledout andpatched. Therateof corrosionis usually nottakenintoaccount. However, theaveragerateof corrosionandtheresultingresidual service-lifemayvarywithinawiderange. Inthisstudy, corrosionratesof steel reinforcement incarbonatedconcretehavebeenmonitoredunder thereal climaticexposureinsouthernFinland. Thisrevealedthat theav