02-Loehr PPT Load transfer and failure modes for deep foundation

download 02-Loehr PPT Load transfer and failure modes for deep foundation

of 25

Transcript of 02-Loehr PPT Load transfer and failure modes for deep foundation

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    1/25

    Load Transfer and Failure Modes

    or eep oun a ons n ar

    Slopes

    J. Erik Loehr, Ph.D., P.E.

     Associate Professor 

    University of Missouri 

    Passive slope reinforcement schemes

    FillSoil Dowels

    Shotcrete

    Stiff Clay

    Relic Shear Surface

    Nails

    Railway

    2after Bruce and Jewell, 1986

    ReticulatedMicropiles

    Firm Stratum  soil nails

     sliding surface

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    2/25

    Mobilization of resistance

    Most deep foundations are passive elements

    that require relative pile-soil movement to

    Relative mobilization of axial and lateral

    components depends primarily on

    • Orientation of reinforcement

    • Stiffness of soil and reinforcement

    • Structural and geotechnical limit states

    3

    Load transfer 

      S o  i  l   M

     o  v e m

     e n  t

    4

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    3/25

    Failure modes for piles in slopes

    Soil failure

    • passive (lateral) failureabove/below sliding

    Sliding

    SlopeSurface

    ReinforcingMember 

    Sliding

    Location after 

    Sliding

    • pullout (axial) failureabove/below slidingsurface

    Structural failure• flexural failure

    • shear failure

    Surface

    FailedSoil

    RelativeMovement

    Initial LocationFailedSoil

    RelativeMovement

    Sliding

    Initial Location

    Slidin

    Initial Location

    • axial failure- compression

    - tension Serviceability limits

    5

    Failure ofmemberin bending

    RelativeMovement

    li iSurface

    Failure ofmemberin Shear 

    RelativeMovement

    Large-scale model tests

    6

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    4/25

    Reinforced slope (s/d≈3) w/ capping beam

    7

    Reinforced slope (s/d≈2) w/ capping beam

    8

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    5/25

    Reinforced slope (s/d≈4) w/o capping beam

    9

    t-z analyses for axial load

    axial  

    Input Profile of Axial Soil Movement

    Cap Bearing

     

    Pile AxialStiffness (EA)

    Soil ShearResistance (t)

    Sliding Surface

     Axial Componentof moving soil

    10

     

    zSoil EndBearing (Q)

    Stable Soil(no soil movement)

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    6/25

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    7/25

    Lateral load transfer – “long” pile

    0-400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

    0-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

    Pile Deflection (in)

    5

    10

    15

    20

    5

    10

    15

    20

       D  e  p   t   h   (   f   t   )

    sliding surface

    limit soil

    pressure

    13

    30

    35

    40

      =0.01 in

      =0.1 in  =0.3 in

      =1.0 in

      ℓ 

      ℓ 

      ℓ 

      ℓ 

    30

    35

    40

    Lateral load transfer – “long pile” mode

    0

    -400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

    0

    -1.2 -0.6 0.0 0.6 1.2

    Pile Deflection (in)

    0

    -60 0 60 120 180

    Bending Moment (kip-in)

    0

    -3.0 -1.5 0.0 1.5 3.0

    Shear Force (kip)

    5

    10

    15

    20

    25

    5

    10

    15

    20

    25

       D  e  p   t   h   (   f   t   )

    5

    10

    15

    20

    25

    5

    10

    15

    20

    25

    sliding surface

    14

    30

    35

    40

    30

    35

    40

    30

    35

    40

      =0.01 in

      =0.1 in

      =0.3 in

      =1.0 in

      ℓ 

       ℓ 

       ℓ 

      ℓ 

    30

    35

    40

    limit soil

    pressure

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    8/25

    Lateral load transfer – “short pile” mode

    0-12 -6 0 6 12

    Pile Deflection (in)

    0-400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

      =5

    10

    15

    20

       D  e  p   t   h   (   f   t   )

    5

    10

    15

    20

      .

    =0.5 in

      =1.0 in

      =10.6 in

    ℓ 

      ℓ 

      ℓ 

      ℓ limit soil

    pressure

    15

    30

    35

    40

    30

    35

    40

    sliding surface

    Lateral load transfer – “short pile” mode

    0

    -12 -6 0 6 12

    Pile Deflection (in)

    0

    -3000-2000-1000 0 1000

    Bending Moment (kip-in)

    0

    -30 -15 0 15 30

    Shear Force (kip)

    0

    -400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

    5

    10

    15

    20

       D  e  p   t   h   (   f   t   )

    5

    10

    15

    20

    25

      =0.1 in

      =0.5 in

      =1.0 in

      =10.6 in

      ℓ 

      ℓ 

      ℓ 

      ℓ 

    5

    10

    15

    20

    5

    10

    15

    20

    limit soilpressure

    16

    30

    35

    40

    30

    35

    40

    30

    35

    40

    30

    35

    40

    sliding

    surface

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    9/25

    Lat. load transfer – “intermediate” mode

    0-40 -20 0 20 40

    Pile Deflection (in)

    0-400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

      =0.1 in  5

    10

    15

    20

       D  e  p   t   h   (   f   t   )

    5

    10

    15

    20

      .

    =0.5 in

      =10 in

      =30 in

      ℓ 

      ℓ 

      ℓ 

    sliding surface

    limit soilpressure

    17

    30

    35

    40

    30

    35

    40

    Lat. load transfer – “intermediate” mode

    0

    -40 -20 0 20 40

    Pile Deflection (in)

    0

    -1000 0 1000 2000 3000

    Bending Moment (kip-in)

    0

    -30 -15 0 15 30

    Shear Force (kip)

    0

    -400 -200 0 200 400

    Lateral Soil Reaction (kip/in)

    5

    10

    15

    20

       D  e  p   t   h   (   f   t   )

    5

    10

    15

    20

      =0.1 in

      =0.5 in

      =10 in

      =30 in

      ℓ 

      ℓ 

      ℓ 

      ℓ 

    5

    10

    15

    20

    5

    10

    15

    20

    slidingsurface

    limit soilpressure

    18

    30

    35

    40

    30

    35

    40

    30

    35

    40

    30

    35

    40

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    10/25

    Summary – load transfer and failure modes

    Numerous failure modes

    Controlling failure mode varies with

    Load transfer for deep foundations in slopesis complex• Depends on

    - Soil and pile stiffness

    - Sliding depth

    - Orientation of reinforcement

    - Structural and geotechnical limit states

    Generally dangerous to assume loaddistribution

    19

    Design Resistance for Deep

    Foundations in Earth Slopes

    J. Erik Loehr, Ph.D., P.E.

     Associate Professor 

    University of Missouri 

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    11/25

    Challenges for predicting resistance

    Deformation required to mobilize resistance

    Soil provides both load and resistance

    Numerous limit states

    Must consider compatibility and serviceability

    of axial and lateral resistance

    21

    Limit states for soil reinforcement

    Soil failure

    • passive (lateral) failure above or below sliding surface

    •  

    Structural failure

    • flexural failure

    • shear failure

    • axial failure

    - com ression- tension

    Serviceability limits

    22

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    12/25

    Prediction of reinforcement resistance

    1. Estimate profile of soil movement

    2. Resolve soil movement into axial and lateralcom onents

    3. Independently predict mobilization of axial andlateral resistance

    a. Using “p-y” analyses for lateral load transfer 

    b. Using “t-z” analyses for axial load transfer 

    4. Select appropriate axial and lateral resistancew cons era on g ven o compa y anserviceability

    23

    Soil movement components

    Slope Surface

     

    lat.

    lat. 

    axial 

     

    24

    SlidingSurface

     axial 

     

    soil 

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    13/25

    Lateral resistance from p-y analyses

    Use “soil movement” option (L-Pile v4.0M or v5)

    For an assumed depth of sliding:1. A l dis lacements in soil above slidin surface 

    2. Determine response from p-y analyses

    3. Mobilized resistance is shear force in member atdepth of sliding

    4. Repeat steps 1 through 3 with incrementallyincreasing displacement until a limit state is reached

    Shear force at sliding depth when first limit stateis reached taken to be available resistance forthat sliding depth

    25

    Mobilization of lateral resistance

    0

    -80 -40 0 40 80

    Mobilized Shear Force (kip)

      =0.1 in  

    0

    0.0 1.0 2.0 3.0 4.0 5.0

    Pile Deformation (in)

    0

    -1500 -750 0 750 1500

    Mobilized Bending Moment (kip-in)

    10

    20

    30

      =1.0 in

      =3.0 in

      

      

    clay

    slide

    10

    20

    30   D  e  p   t   h   (   f   t   )

    10

    20

    30

    26

    40

    50

    rock

    40

    50

    40

    50

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    14/25

    Mobilization of lateral resistance

    40

    45

    50

    15

    20

    25

    30

    35

       M  o   b   i   l   i  z  e   d   S   h  e  a  r   F  o  r  c  e   (   k   i  p   )

    27

    0

    5

    10

    0.0 1.0 2.0 3.0 4.0 5.0 6.0Total Slope Movement (in)

    Axial resistance from t-z analyses

    For an assumed depth of sliding:

    1. Apply displacements in soil above sliding surface

    -.

    3. Mobilized resistance is axial force in member at depth

    of sliding

    4. Repeat steps 1 through 3 with incrementally

    increasing displacement until a limit state is reached

     Axial force at sliding depth when first limit state

    is reached taken to be available resistance for

    that sliding depth

    28

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    15/25

    Mobilization of axial resistance

    0

    0 20 40 60 80 100 120 140 160

    Mobilized Axial Load (kip)

      =0.1 in  

    clay

    slide

    10

    20

    30   D  e  p   t   h   (   f   t   )

      =0.3 in

      =0.42 in

      =0.5 in

      

      

      

    29

    rock

    40

    50

    Mobilization of axial resistance

    120

    140

    160

    40

    60

    80

    100

       M  o   b   i   l   i  z  e   d   A  x   i  a   l   F  o  r  c  e   (   k   i  p   )

    30

    0

    20

    0.00 0.25 0.50 0.75 1.00 1.25 1.50

    Total Slope Movement (in)

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    16/25

    Repeat for other sliding depths…

    Result is two resistance functions that describeresistance versus position along reinforcement

    31

    Resistance functions (per member)

    0

    0 50 100 150

    Lateral Resisting Force (kip)

    0

    0 50 100 150 200 250

     Axial Resisting Force (kip)

    clay

    10

    20

    30

       S

       l   i   d   i  n  g   D  e  p   t   h   (   f   t   )

    d

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    17/25

    Resistance functions (per lineal foot)

    00 10 20 30 40 50

     Axial Resisting Force (kip/ft)

    00 5 10 15 20 25

    Lateral Resisting Force (kip/ft)

    10

    20

    30

       S   l   i   d   i  n  g   D  e  p   t   h   (   f   t   )

    clay

    10

    20

    30

       S   l   i   d   i  n  g   D  e  p   t   h   (   f   t   )

     = -

    33

    40

    50 rock

    40

    50

    Member resistance divided by member spacing

    Summary – design resistance

    Predicting load transfer is the difficult part

    Must consider all limit states, including

    compa y an serv cea y

    Resistance changes with location of sliding

    surface

    Process is presently tedious

    34

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    18/25

    A Few Issues

    35

    Issues

    Mode of soil movement

    Drained vs. undrained loading

    Factors of safety

    p-y and t-z models

    • influence of member size and spacing

    • influence of member inclination

    • drained models for cla s Cap/group/network effects

    36

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    19/25

    Drained vs. undrained analyses

    Check short- and long-term conditions

    • Possible to have drained loading of slope, but

    • Prudent to evaluate both & use least resistance

    Question whether can use “sand” models to

    evaluate drained loading for clays

    37

    Factors of Safety

    Factor of safety against slope instability just like

    other slope applications

    reinforcement resistance is subject of debate

    • Slope analyses already includes margin of safety

    •  Applying factor of safety to non-controlling limit states

    has no benefit

    • It is not appropriate to apply factor of safety toreinforcement resistance alone

    • I personally believe should not apply factor of safety to

    reinforcement resistance

    38

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    20/25

    p-y and t-z models

     Approach is at least semi-empirical

    Not a lot of good data available

    • - -

    - Brown and Chancellor, 1997

    - Liang, 2000

    - Hasenkamp and Turner, 2000

    • Large-scale laboratory model tests

    - Boeckmann, 2006

    - ex or,

    - Bozok, 2009

    39

    p-y and t-z models – limit soil pressure

    0.0

    0 100 200 300 400 500 600 700 800 900 1000

    Limit Soil Pressure (psf)

    1.0

    2.0

    3.0

    4.0

       D  e  p   t   h   (   f   t   )

    DeBeer & Carpentier Ito & MatsuiReeseFlemingBromsPoulos

    40

    .

    6.0

    7.0

    8.0

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    21/25

    Brown and Chancellor, 1997

    41

    Bending moments – Littleville

    0

    -40 -20 0 20 40

    Bending Moment (in-kips)

    redicted

    0

    -40 -20 0 20 40

    Bending Moment (in-kips)

    redicted

    10

    20

    30   D  e  p   t   h   (   f   t   )

    measured (2+70U)

    measured (1+70U)

    downslope

      p mod  = 0.2

    10

    20

    30   D  e  p   t   h   (   f   t   )

    measured (2+70U)

    measured (1+70U)

    upslope

      p mod  = 0.2

    42

    40

    50  tot  = 0.31-in

    40

    50  tot  = 0.39-in

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    22/25

    Axial resistance – Littleville

    0-60 -40 -20 0 20 40 6

     Axial Load T, kip (+=tension)

    0-60 -40 -20 0 20 40 60

     Axial Load T, kip (+=tension)

    10

    20

    30   D  e  p   t   h ,  z   (   f   t .   )

    downslope

     

    10

    20

    30   D  e  p   t   h ,  z   (   f   t .   ) upslope

      = 0.3

     z ult  = 0.06-in

    43

    40

    50predictedmeasured (2+70U)

    measured (1+70U)  tot  = 0.24-in

      .

     z ult  = 0.06-in40

    50

    predicted

    measured (2+70U)

    measured (1+70U)

      tot  = 0.34-in

    Predicted mobilization – Littleville

    80

    100

    120

    Upslope Micropile

    Sliding Depth = 33-ft

    140

    16.0

    18.0

    Upslope Micropile

    Slide Depth = 33-ft

    -

    -40

    -20

    0

    20

    40

    60

       M  o   b   i   l   i  z  e   d   A  x   i  a   l   F  o  r  c  e   (   k   i  p   )

     

    6.0

    8.0

    10.0

    12.0

    .

       M  o   b   i   l   i  z  e   d   S   h  e  a  r   F  o  r  c  e   (   k   i  p   )

     

    44

    -120

    -100

    -80

    0.0 1.0 2.0 3.0 4.0

    Total Slope Movement (in)

    pre c on

    prediction A*

    calibration points

    0.0

    2.0

    4.0

    0 5 10 15 20

    Total Slope Movement (in)

    s c ay mo e

     API sand model

    alternate

    calibration points

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    23/25

    Model tests – no cap

    25

    30

        o    m     )

    44 (2.8) 25

    30

      o  m   )

    10

    15

    20

      n   A   l  o  n  g   P   i   l  e   (   i  n .

       f  r  o  m    b

      o   t LPile (2.8)

    10

    15

    20

      n   A   l  o  n  g   P   i   l  e   (   i  n .

       f  r  o  m    b

      o   t 44 (2.8)

    t-z (2.8)

    45

    0

    5

    -300 -200 -100 0 100 200 300

    Induced Bending Moment (lb-in)

       P  o  s   i   t   i

    0

    5

    -1000 -500 0 500 1000

    Induced Axial Load (lb)

       P  o  s   i   t   i

    TC

    Model tests – with cap

    40

    45

      o  m   )

    44 (1.9)40

    45

      o  m   )

    44 (1.9)

    15

    20

    25

    30

    35

      n

       A   l  o  n  g   P   i   l  e   (   i  n .

       f  r  o  m    b

      o   t   t t-z (1.9)

    15

    20

    25

    30

    35

      n   A   l  o  n  g   P   i   l  e   (   i  n .

       f  r  o  m    b

      o   t e .

    46

    0

    5

    10

    -1000 -500 0 500 1000Induced Axial Load (lb)

       P  o  s   i   t   i

    TC

    0

    5

    -1500 -500 500 1500

    Induced Bending Moment (lb-in)

       P  o  s   i   t   i

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    24/25

    Results

    2.0

    Kubo's tests

     Awoshika's tests

    0.5

    1.0

    .

        p   -    m    u     l     t     i    p     l     i    e    r

    Recommended by

    Reese's et al., 2006

    0.0-35 -25 -15 -5 5 15 25 35

    Batter angle (Degree)

    Recommended by

    Bozok, 2009

    Summary – a few issues

    Performance depends on soil movement

    Check short- and long-term conditions

    ac or o sa e y app e o s ope s a y

    Uncoupled method suitable when no cap or

    when cap influence is limited

    Influence of cap difficult to model with current

    tools

    Work needed on p-y and t-z models

    • Some evidence that current models appropriate

    • Some evidence that modified models needed

    48

  • 8/17/2019 02-Loehr PPT Load transfer and failure modes for deep foundation

    25/25