01•Ch 1(F5 wave)

32
Longman Project! Overhead Transparencies Physics Form 5 © Pearson Malaysia Sdn.Bhd. 2007 CHAPTER 1 1 1 Waves 1.1 Understanding Waves Waves transfer energy load motor (a) Vibration of a plastic bob on water (b) Vibration of a loaded spring (c) Vibration of a tuning fork (d) Oscillation of a simple pendulum Waves Examples of vibration Sound wave

description

electromagnetism

Transcript of 01•Ch 1(F5 wave)

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    1

    Waves

    1.1 Understanding Waves

    Waves transferenergy

    load

    motor

    (a) Vibration of a plastic bob on water

    (b) Vibration of a loaded spring

    (c) Vibration of a tuning fork(d) Oscillation of a simple

    pendulum

    Waves

    Examples of vibration

    Sound wave

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    2

    Waves

    1.1 Understanding Waves

    Displacement Graphs of Waves

    x/cm

    T

    T

    - a - a

    a

    -xo

    xo

    T

    t/sO

    x/cm

    a

    -xo

    xo

    O distance/cm

    Amplitude, a= maximum displacement, Xo

    Amplitude, a= maximum displacement, Xo

    Period, T= time taken for one complete

    wave

    Wave length, = distance travelled by a

    complete wave

    Frequency, f= number of complete waves

    in one second

    Velocity of wave, v

    v = f = T

    Displacement time Displacement distance

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    3

    Waves

    1.1 Understanding Waves

    Type of Waves

    compression

    Direction of wave

    Direction of vibration

    C CR

    rarefaction

    Direction ofvibration

    Direction ofpropagation

    Direction ofvibration

    Direction of wave

    Direction of vibration

    Direction ofpropagation

    Direction of vibration

    Direction of wave

    Direction of vibration

    Direction of wave

    Direction of wave Direction of wave

    Longitudinal wave

    Water waves, light waves,electromagnetic waves, etc.

    Sound waves, impulses along aslinky spring, etc.

    Transverse wave

    Directions of vibrating particles

    Propagation of waves

    Examples

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    4

    Waves

    1.1 Understanding Waves

    X

    X

    X

    y

    y

    y

    turned180o

    turned90o

    polarised

    polarised

    no waveis formed

    polarised wavesingle slit

    Transverse wave

    cross-slit

    Xy

    polaroidTransverse wave

    Bright image

    Less brightimage polaroidsunglasses

    Too dark to see

    Polarisation of Transverse Wave

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    5

    Waves

    1.1 Understanding Waves

    Same frequency

    Forcingagent

    Forcedobject

    Forcedvibration ofmaximumamplitude

    Resonance

    transferingenergy

    Experiment to show resonance

    A B C D EX y

    X yA B C D E

    Pendulums E and B havethe same naturalfrequency.

    E vibrates with highenergy/amplitude.

    Q

    Q E loses energy to A, B, C

    and D but B gains moreenergy.

    B vibrates with highamplitude.B vibrates in resonance.

    c

    Q

    weight

    y

    E

    DC

    B

    A

    X

    Resonance

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    6

    Waves

    1.1 Understanding Waves

    Without damping With damping

    displacement/cm

    t/s

    displacement/cm

    t/s

    Compare

    Constant Amplitude (energy) Decreasing

    Constantperiod, T

    frequency, fspeed, v

    Constant

    External damping Internal damping

    Work done againstexternal force

    Work done by vibratingatoms or molecules

    Damping Oscillations

    Loss of energy in damped oscillations

  • white paper

    lamp

    stroboscope

    transparent tray

    sponge

    motor

    drainhose

    spherical bob

    wooden barwater

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    7

    Waves

    1.2 Analysing Reflection of Waves

    Proper adjustments

    Constant water depth

    Sponge

    Speed of motor

    Height of lamp

    Stroboscope

    to ensure constant speed/wavelength

    to reduce reflection of water waves

    to adjust the speed of water waves

    for illumination and focussing of image

    to freeze the wave pattern

    Ripple Tank

    plane wave circular wave

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    8

    Waves

    1.2 Analysing Reflection of Waves

    to ensure constant speed/wavelength

    to reduce reflection of water waves

    to adjust the speed of water waves

    for illumination and focussing of image

    to freeze the wave pattern

  • 1 2v1 v2 v1=

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    9

    Waves

    1.2 Analysing Reflection of Waves

    Formation of Light Fringes of Water Ripple

    2

    waterripples

    whitepaper

    planes of light

    acting as convex lens

    Bright Bright Bright DarkDark

    B B BD D

    Bright fringes (image)

    motor speed q f1q 1p motor speed p f2 p 2q

    speed of wave isconstant

    1 2v1 v2 v1=

    Effect of Motor Speed

  • N (normal) N (normal)

    incident waves i

    reflected waves

    reflected wavesr

    reflected waves

    i = r

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    10

    Waves

    1.2 Analysing Reflection of Waves

    plane wave circular wave

    plane reflector

    concavereflector

    convexreflector

    Reflection of waves

    N N

    N N N N

    F

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    11

    Waves

    1.2 Analysing Reflection of Waves

    N N

    N N

    F

    N N

    reflected waves

    N (normal) N (normal)

    incident waves i

    reflected waves

    reflected wavesr

    reflected waves

    reflected waves

    I Image

    i = r

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    12

    Waves

    1.3 Analysing Refraction of Waves

    Examples of refraction

    Special case

    wavelength is

    speed v is also

    direction of waves

    Refraction of Waves

    deep water

    1

    shallow water Deep

    watershallow water

    deep water

    deep water

    deep water

    deep water

    shallow water

    shallow water

    shallow water

    v1

    N

    N

    N

    N

    deepwater

    deepwatershallow

    water shallowwater

    deepwater

    deepwater

    shallowwater

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    13

    Waves

    1.3 Analysing Refraction of Waves

    deep water

    12

    v2

    shallow water Deep

    water

    deep water

    deep water

    deep water

    deep watershallow water

    shallow water

    v1

    N

    N

    N

    N

    wavelength is decreased

    speed v is also decreased

    direction of waves does notchange : No refraction

    deepwater

    deepwatershallow

    water shallowwater

    deepwater

    deepwater

    shallowwater

    F

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    14

    Waves

    1.3 Analysing Refraction of Waves

    Refraction of Water Waves Near a Beach

    A B C D

    R

    E F G

    P

    Q

    X (cape)

    Y (sea bay)

    Depth of water Movement of water Amplitude ConditionPosition

    P

    Q

    R

  • A B C D

    R

    E F G

    P

    Q

    X (cape)

    Y (Sea bay)

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    15

    Waves

    1.3 Analysing Refraction of Waves

    Decreasing

    Shallow

    Deep

    Converging at P

    Spreading out

    Straight

    Highest

    Low

    High

    Very rough

    Calm

    Rough

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    16

    Waves

    1.3 Analysing Refraction of Waves

    Effect of Water Depth on Waves

    motor switched on(vibrating) A B C water

    waves

    glass(transparent)

    water

    Position

    A

    B

    C

    Depth of water

    3.0 cm

    2.0 cm

    1.0 cm

    f

    same

    same

    same

    long

    shorter

    shortest

    v

    fast

    slower

    slowest

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    17

    Waves

    1.3 Analysing Refraction of Waves

    same

    same

    same

    long

    shorter

    shortest

    fast

    slower

    slowest

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    18

    Waves

    1.4 Analysing Interference of Waves

    Interference of Waves

    Resultant amplitude

    Resultantamplitude

    a a

    Water waves

    a a2a

    -2a

    -a-acork a

    -a a = 0cork cork

    +

    2a

    a

    a a

    +-a

    a = 0

    Constructive interference Destructive interference

    Standing waves

  • S1

    S2

    a

    troughcrest AN

    AN

    AN

    N

    N

    x

    n = 0

    n = 1

    n = 1

    D

    Antinodal line

    Nodal line

    Constructive interference

    Destructive interference

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    19

    Waves

    1.4 Analysing Interference of Waves

    Vibrating

    Interference of Water Waves

    Production of coherent waves

    Wave pattern of interference

    Coherent waves

    same frequency same amplitude same phase or constant phase

    difference

    = axD

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    20

    Waves

    1.4 Analysing Interference of Waves

    Formula is where = wavelengtha = distance between two slitsx = distance between fringes

    (n = 0 and n = 1)D = distance between the slits

    and the screen

    = axD

    Youngs Double-Slit Experiment

    colour filter

    4 metres

    double slit

    screen

    double slit

    monochromatic light source

    a

    S1

    S2

    AN

    AN

    D

    n = 2

    n = 2

    n = 1

    n = 1

    n = 0x

    bright fringesscreen

    dark fringes

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    21

    Waves

    1.4 Analysing Interference of Waves

    (a) Single source small wavelength

    (b) Single source bigger wavelength

    Fringe patterns

    S1

    S1

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    22

    Waves

    1.4 Analysing Interference of Waves

    (c) Double sources small wavelength

    (d) Double sources bigger wavelength

    Fringe patterns

    S2

    S2

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    23

    Waves

    1.5 Analysing Diffraction of Waves

    Pattern of Waves By Diffraction

    Short obstacle Long obstacle

    Narrow slit Wide slit

    Small Big

    The bigger the wavelength, the better the diffraction

    1 Straight obstacle

    2 Effect of slit size ( stays the same)

    3 Effect of wavelength (slit size stays the same)

    Interference occurs nearer to the shorter obstacle

    Diffraction angle 1 > 2 Narrow slit produces better diffraction

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    24

    Waves

    1.5 Analysing Diffraction of Waves

    interferenceinterference

    12

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    25

    Waves

    1.5 Analysing Diffraction of Waves

    n = 2n = 1

    n = 0n = 1

    n = 2

    screen

    single slit

    Monochromatic light source

    For fringe n = o, : broadest and brightest As nq, width/brightness of fringe p

    Diffraction of Light

    single slit pin hole

    Diffractioninstrument

    Fringe patterns

    n = 3 n = 2 n = 1 n = 0 n = 1 n = 2 n = 3

    bright fringes

    dark fringes

    Characteristics

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    26

    Waves

    1.5 Analysing Diffraction of Waves

    lamp set cylindrical

    convex lens

    bright fringes

    XDiffraction grating3 000 lines cm1

    D

    x

    Formula is n = order of diffraction = wavelength of lightd = distance between two slits in

    a grating = angle of diffractionN = density of lines/slits

    n = d sin

    d = 1N

    Monochromatic source White light source

    Diffraction With Diffraction Grating

    Fringe patterns

    R R RV V V

    spectrum of white light

    white light

  • CRO

    stopwatch microphone

    60 510

    15

    20253035

    40

    45

    5055

    CRO

    CO2microphone

    Reflection

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    27

    Waves

    1.6 Analysing Sound Waves

    Longitudinal wave Requires a medium for

    transmission

    Properties

    Original sound

    Amplitude,aincreased

    Frequency, fincreased

    Higher pitchHigher loudness

    radio

    Diffraction

    Loud

    weak

    Loudweak

    Loud

    Interference

    Sound Waves

    PhenomenaRefraction

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    28

    Waves

    1.6 Analysing Sound Waves

    transmitter

    waterd

    detector

    fish

    in out

    probe

    ultrasonic

    foetus

    1 Using sonar to detect a school of fish or to determine the depth of water

    2 For diagnosis of the human foetus

    Ultrasonic used is safe Size of foetus can be estimated Picture taken is not very clear

    Some Uses of Sound Waves

    Depth of water

    d = v ( )

    where v = velocity of ultrasonic in watert = to and fro time

    t2

  • microphone

    Audio wave Radio wave

    low amplitude

    high amplitude

    carrier wave

    carrier wave

    lowerfrequency

    higher frequency

    AM modulator

    Radio frequency generator

    Amplifier Amplifier

    FM modulator

    AM waveform FM waveform

    Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    29

    Waves

    1.6 Analysing Sound Waves

    Amplitude modulation (AM) Frequency modulation (FM)

    Amplitude of radio wave ismodulated

    Frequency of audio wave andradio wave is not changed

    Subjected to loss andinterference

    AM

    Amplitude of radio wave isconstant

    Frequency of radio wave ismodulated

    Minimum loss Minimum interference

    FM

    CHARACTERISTICS

    AM and FM Waves

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    30

    Waves

    1.6 Analysing Sound Waves

    Radio wave

    Audio wave Transmitter

    Amplifier

    Radio frequency generator

    Modulator

    Amplifier

    Sateliteionosphere

    Relay-station

    Radio Localtransmitter

    Satelitestation

    TV Long-rangetransmitter

    Radio Waves (AM/FM) Transmitter

    Mode of Transmission

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    31

    Waves

    1.6 Analysing Sound Waves

    Simple Receiver For Radio Wave

    Block Diagram

    Circuit Diagram

    }

    Functions

    To receive all types of radio signals

    To tune the receivers frequency In resonance with received frequency Amplitude of wave received is increased

    To separate the audio frequency from the radio frequency

    To filter and earth the radio frequency

    To amplify the audio frequency

    To convert audio signal into sound

    Components

    A : aerial

    I : inductorC1 : variable

    capasitor

    D : diode

    C : capacitor

    T : transistor

    L : loudspeaker

    aerial

    Loud speaker

    AmplifierFilter for radio frequency

    DemodulatorTuner

    A

    C1I

    D

    C

    T

    L

    B

    Earthed

  • Longman Project! Overhead Transparencies Physics Form

    5

    Pearson Malaysia Sdn.Bhd. 2007

    CHAPTER

    111

    32

    Waves

    1.7 Analysing Electromagnetic Waves

    Electromagnetic Waves

    vertical electrical field

    90o

    horizontal magnetic field

    Frequencyf/Hz

    1023 1022 1021 1020 1019 1018 1017 1016 1015 1014 1013 1012 1011 1010 109 108 107 106 105

    1014 1013 1012 1011 1010 109 108 107 106 105 104 103 102 101 1 101 102 103 104

    Wavelength

    Frequencyf/ Hz

    Radio waves

    Xray Visible light Microwaves

    UHF VHF SW MW LW

    Gamma raysUltraviolet rays

    Infrared rays

    SW MW LW

    UHF VHF

    / m

    Gammarays

    Ultraviolet

    Visiblelight

    Micro-waves

    RadiowavesX-ray Infrared

    Electromagnetic Waves Spectrum

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 1200 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 2400 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 2400 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice