01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß...

14
MAE 656 - Advanced Computer Aided Design 01. Introduction – Doc 04 Numerical Simulation of Beam Elements

Transcript of 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß...

Page 1: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

MAE 656 - Advanced Computer Aided Design

01. Introduction – Doc 04

Numerical Simulation of Beam Elements

Page 2: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Introduction

Most of the exiting bar structures have rigid connections between the bars instead of hinges.

A rigid connection implies that all movements (displacements and rotations) are transferred from one bar to the other one.

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

Page 3: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

Now, for a single bar, we have to define the relation between three efforts and three movements:

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

with, and

Page 4: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

And each kij matrix has the following expression:

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

0 0

012 6

06 4

0 0

012 6

06 2

0 0

012 6

06 4

0 0

012 6

06 2

Page 5: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

Writing everything together we get

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

0 0 0 0

012 6

012 6

06 4

06 2

0 0 0 0

012 6

012 6

06 2

06 4

Page 6: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

Where do these values come from?

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

0 0 0 0

012 6

012 6

06 4

06 2

0 0 0 0

012 6

012 6

06 2

06 4

Let’s study how is affected the force array if we modify one displacement:

Page 7: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

FormulationThis is, if we apply a displacement:

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

We have to apply a force in node 2:

∙∙

∙∙ 1

And we will obtain a reaction force in node 1:

∙∙ 1

This is what it is written in the stiffness matrix!

Page 8: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

FormulationLet’s study another case:

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

We have to apply in node 2:

12∙ 1

And we will obtain a reaction force in node 1:

6∙ 1

12∙ 1

6∙ 1

Page 9: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

If the bar is not horizontal, we will have to rotate it:

Defining L as:cos sin 0sin cos 00 0 1

The relation between global and local is:

∙ ∙and

∙ ∙and

Page 10: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Formulation

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

∙ ∙ ∙ ∙ ∙ ∙

∙ ∙

Knowing the relation between local and global for any force or vector, the rotation matrix is defined as:

00

The rotation matrix is applied to the force and displacement vector of the beam. Using the known relation between these two fields, it is possible to obtain the expression of the stiffness matrix in global coordinates:

Page 11: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

Implementation

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

Once knowing the expression of the stiffness matrix, it is possible to calculate it for the different bar elements that compose the structure.

Once the stiffness matrix of each beam element is calculated for each element, it has to be assembled in the global stiffness matrix of the structure, based on the bar connectivities:

⋮ ⋮⋯ ⋯

⋮ ⋮⋯ ⋯

Column j

Column i

Row i

Row j

Now, each kij is a 3x3 matrix!

Page 12: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

3D Case

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

In a 3D case, instead of three forces in each node (axial, shear, and bending moment) we will have 6 forces.

And, instead of 3 movements we will also have 6.

Therefore, the stiffness matrix of the structure will be of size 12x12 (divided in 4 kij matrices of 6x6)

Page 13: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

3D Case

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

Page 14: 01. Introduction – Doc 04 · MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04 B ß â Ö L G ß â Ö∙ ß â Ö B Ú ß â Õ L 6 Í∙ ß â Ö L 6 Í∙ ß â

3D Case

MAE 656 – cba Dr. Xavier Martinez, 2012 01. Intro – Doc 04

Rotation of the stiffness matrix:

∙ ∙

with:

and:cos cos coscos cos coscos cos cos

Being X, Y, Z the global axes and x, y, z the local ones