01-Axioms of Probability

download 01-Axioms of Probability

of 19

Transcript of 01-Axioms of Probability

  • 7/31/2019 01-Axioms of Probability

    1/19

    Chap 1 Axioms of Probability

    Ghahramani 3rd edition

  • 7/31/2019 01-Axioms of Probability

    2/19

    p2.

    Outline

    1.1 I nt roduct ion1.2 Sample space and events

    1.3 Axioms of probabilit y

    1.4 Basic Theorems

    1.5 Cont inuit y of probabil it y funct ion

    1.6 Probabili t ies 0 and 11.7 Random select ion of point s f rom int ervals

  • 7/31/2019 01-Axioms of Probability

    3/19

    p3.

    1.1 Introduction

    Advent of Probabili t y as a math discipline

    1. 4-sided die: Ancient Egypt ; 3500 B.C.

    2. 6-sided die: 1600 B.C.

    3. Dice: China; 7t h-10th centur ies

    4. Playing cards: Much more recent

  • 7/31/2019 01-Axioms of Probability

    4/19

    p4.

    Introduction

    St udies of Chances of Event sI ta ly

    Luca Paccioli (1445-1514)

    Niccolo Tart aglia(1499-1557)

    Girolamo Cardano(1501-1576)

    Galileo Galielei(1564-1642)

    France

    Blaise Pascal(1623-1662)Pierre de Fermat(1601-1665)

    Chr ist ian Huygens(1629-1695) Dutch

    1657 fi rst prob. bookOn Calculat ions in Games of Chance"

  • 7/31/2019 01-Axioms of Probability

    5/19

    p5.

    Introduction

    James Bernoull i( 1654-1705)Abraham de Moivre(1667-1754)

    Pierre-Simon Laplace(1749-1827)

    Sim eon Denis Poisson( 1781-1840)Karl Fr iedr ich Gauss(1777-1855)

    RussiaPafnut y Chebyshev(1821-1894)

    Andrei Markov(1856-1922)

    Aleksandr Lyapunov(1857-1918)

  • 7/31/2019 01-Axioms of Probability

    6/19

    p6.

    Introduction

    1900 David Hilbert (1862-1943) pointed out t he

    problem of the axiomat ic t reat ment of the t heory

    of probabil i t y

    Emile Borel(1871-1956)

    Serge Bernst ein( 1880-1968)

    Richard von Mises(1883-1953)

    * 1933 Andrei Kolmogorov( 1903-1087) Russian

    successfully ax iomat ized t he t heory of probabili t y

  • 7/31/2019 01-Axioms of Probability

    7/19

    p7.

    1.2 Sample space and events

    Experiment (eg. Tossing a die)

    Outcome(sample point )

    Sample space= { al l outcomes}

    Event : subset of sample space

    Ex1.1 tossing a coin once

    sample space S = { H, T}

    Ex1.2 fl ipping a coin and t ossing a die if T

    or f l ipping a coin again i f H

    S= { T1,T2,T3,T4,T5,T6,HT,HH}

  • 7/31/2019 01-Axioms of Probability

    8/19

    p8.

    Sample space and events

    Ex1.3 measuring t he l i fet ime of a l ight bulb

    S= { x : x 0}

    E= { x: x 100} is t he event t hat t he l ightbulb last s at least 100 hours

    Ex1.4 all families w it h 1, 2, or 3 children(genders specif ied)

    S= { b,g,bg,gb,bb,gg,bbb,bgb,bbg,bgg,

    ggg,gbg,ggb,gbb}

  • 7/31/2019 01-Axioms of Probability

    9/19

    p9.

    Sample space and events Event E has occurred in an experiment :

    I f t he out come of an experim ent belongs t o E.

    Take event s E, F as sets and sample space S t hen

    can be defined st raight forw ard.

    Can also def ine

    if { E1, E2, } is a set of event s

    ESEFEFEFEEFFE c ,,,,

    iiiiinii

    ni EEEE

    1111

    ,,,

  • 7/31/2019 01-Axioms of Probability

    10/19

    p10.

    Sample space and events

    Associat ive law s EU(FUG)= (EUF)UG Dist ribut ive law s (EF)UH= (EUH)(FUH)

    (EUF)H= (EH)U(FH)

    De Morgans 1 st law : (E U F) c = EcFc

    De Morgans 2nd law : (EF) c = Ec U Fc

    E = ES = E(FUFc) = EF U EFc

  • 7/31/2019 01-Axioms of Probability

    11/19

    p11.

    1.3 Axioms of probabilityDefinit ion(Probabilit y Axioms)

    S: sample space

    A: event ,

    Pr: a funct ion for each event A, i.e. Pr : 2S R

    Pr(A) is said to be t he probabilit y of A if

    Axiom 1 Pr (A) > = 0

    Axiom 2 Pr(S) = 1

    Axiom 3 I f { A1, A2, A3, } is a sequence of

    mut ually exclusive events t hen

    SA

    )Pr()Pr(11

    i iii

    AA

  • 7/31/2019 01-Axioms of Probability

    12/19

  • 7/31/2019 01-Axioms of Probability

    13/19

    p13.

    Basic Theorem

    Ex 1.15 I n a comm unit y of 400 adult s, 300 bike orsw im or do bot h, 160 sw im, and 120 sw im and bike.What is t he probabilit y t hat an adult , select ed atrandom from t his comm unit y, bike?

    Sol: A: event t hat t he person sw ims

    B: event t hat t he person bikes

    P(AUB)= 300/ 400, P(A)= 160/ 400,

    P(AB)= 120/ 400

    P(B)= P(AUB)+ P(AB) -P(A)

    = 300/ 400+ 120/ 400-160/ 400= 260/ 400= 0.65

  • 7/31/2019 01-Axioms of Probability

    14/19

    p14.

    Basic Theorem Ex 1.16 A number is chosen at random from t he

    set of numbers { 1, 2, 3, , 1000} . What is t heprobabil i t y t hat it is divisible by 3 or 5( I .e. eit her3 or 5 or both)?

    Sol: A: event t hat t he out come is divisible by 3

    B: event t hat t he out come is divisible by 5

    P(AUB)= P(A)+ P(B) -P(AB)

    = 333/ 1000+ 200/ 1000-66/ 1000= 467/ 1000

  • 7/31/2019 01-Axioms of Probability

    15/19

    p15.

    Basic Theorem

    I nclusion-Exclusion Pr inciple

    )...()1(...)(

    )()()...(

    211

    21

    nn

    kji

    jiin

    AAAPAAAP

    AAPAPAAAP

  • 7/31/2019 01-Axioms of Probability

    16/19

    p16.

    1.5 Continuity of probabilityfunction

    Recall t he cont inuit y of a funct ion f : R R

    fro every convergent seq { xn} in R.

    The cont inuit y of probabilit y funct ion is sim ilar.

    Def. A seq { En, n> = 1} of event of a sample space

    is called increasing i f

    it is called decreasing if

    )lim()(lim n

    n

    n

    n

    xfxf

    ;1321 nn EEEEE

    .1321 nn EEEEE

  • 7/31/2019 01-Axioms of Probability

    17/19

    p17.

    Continuity of probability function Thm 1.8(cont inuit y of probabil i t y function)

    For any increasing or decreasing sequence of

    events, { En, n> = 1} :

    l im P(En)= P( l im En)

  • 7/31/2019 01-Axioms of Probability

    18/19

    p18.

    1.6 Probabilities 0 and 1 I f E and F are events w it h probabili t ies 1 and 0,

    t hen it is not correct t o say t hat E is t he sample

    space S and F is the empt y set .

    Example: select ing a random point from ( 0,1)

    1. A= { 1/ 3} , P( A) = 0

    2. B= (0,1)-A, P(B)= 1

  • 7/31/2019 01-Axioms of Probability

    19/19

    p19.

    1.7 Random selection of pointsfrom intervals Def. A point is randomly selected from an interval

    (a, b) . The probabili t y t he subint erval ( c, d)

    contains t he point is defined t o be (d-c) / (b-a).