00 Interaction Edisi Mgb 11-Dec-2013

83
INTERACTION THEORY [NEW PARADIGM] FOR SOLVING THE TRAVELING SALESMAN PROBLEM (TSP) 11 Desember 2013, Bandung Balai Pertemuan Ilmiah ITB Anang Zaini Gani MAJELIS GURU BESAR INSTITUT TEKNOLOGI BANDUNG

description

Explanation of Interaction Theory

Transcript of 00 Interaction Edisi Mgb 11-Dec-2013

Page 1: 00 Interaction Edisi Mgb 11-Dec-2013

INTERACTION THEORY

[NEW PARADIGM] FOR SOLVING THE TRAVELING

SALESMAN PROBLEM (TSP)

11 Desember 2013, Bandung

Balai Pertemuan Ilmiah ITB

Anang Zaini Gani

MAJELIS GURU BESAR

INSTITUT TEKNOLOGI BANDUNG

Page 2: 00 Interaction Edisi Mgb 11-Dec-2013

SEJARAH SINGKAT

Mengembangkan suatu metode untuk : TSP

dan Facilities Planning. GaTech USA

Interaction Theory, ITB, Bandung, Indonesia

PLANET, GaTech USA

Aplikasi untuk TSP. (the ORSA / TIMS) St.

Louis, MO. USA

Aplikasi untuk Transportation Problem, (the

ORSA / TIMS) Washington DC. USA

Dihadapan Senat Guru Besar ITB

International Workshop on Optimal Network

Topologies (IWONT)

1965 :

1966 :

1969 :

1987 :

1988 :

1992 :

2012 :

Page 3: 00 Interaction Edisi Mgb 11-Dec-2013

3

AZG 2013

Page 4: 00 Interaction Edisi Mgb 11-Dec-2013

4

AZG 2013

Page 5: 00 Interaction Edisi Mgb 11-Dec-2013

5

AZG 2013

Page 6: 00 Interaction Edisi Mgb 11-Dec-2013

6

AZG 2013

Page 7: 00 Interaction Edisi Mgb 11-Dec-2013

7

INTRODUCTION

OBJECTIVE

BACKGROUND

INTERACTION THEORY

COMPUTATIONAL

EXPERIENCES AND

EXAMPLE

CONCLUSION

AZG 2013

(Keywords: Graph; P vs NP; Combinatorial Optimization;

Traveling Salesman Problem; Complexity Theory; Interaction

Theory; Linear Programming; Integer Programming ;

Network).

Page 8: 00 Interaction Edisi Mgb 11-Dec-2013

8

INTRODUCTION

AZG 2013

Page 9: 00 Interaction Edisi Mgb 11-Dec-2013

9

The area of Applications :

Robot control

Road Trips

Mapping Genomes

Customized Computer Chip

Constructing Universal DNA Linkers

Aiming Telescopes, X-rays and lasers

Guiding Industrial Machines

Organizing Data

X-ray crytallography

Tests for Microprocessors Scheduling Jobs

Planning hiking path in a nature park

Gathering geophysical seismic data

Vehicle routing

Crystallography

Drilling of printed circuit boards

Chronological sequencing

AZG 2013

Page 10: 00 Interaction Edisi Mgb 11-Dec-2013

The problem of TSP is to find the shortest

possible route to visit N cities exactly once and

returns to the origin city.

The TSP very simple and easily stated but it is

very difficult to solve.

The TSP - combinatorial problem

the alternative routes exponentially increases

by the number of cities.

1/2 (N-1)!

4 cities = 3 possible routes

4 times to 16 cities = to 653,837,184,000.

10 times to 40 cities =1,009 x1046

IF 100,000 CITIES...... (possible routes?)

AZG 2013

10

Page 11: 00 Interaction Edisi Mgb 11-Dec-2013

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 – 2 – 3 - 4

1 – 2 – 3 – 3 - 1 1 – 3 – 2 – 4 - 1

AZG

2013

Page 12: 00 Interaction Edisi Mgb 11-Dec-2013

AZG

2013

Page 13: 00 Interaction Edisi Mgb 11-Dec-2013

AZG

2013

Page 14: 00 Interaction Edisi Mgb 11-Dec-2013

AZG

2013

Page 15: 00 Interaction Edisi Mgb 11-Dec-2013

SOAL 33 KOTA

ALTERNATIVE RUTE 32!/2 =

131.565.418.466.846.756.083.609.606.080.000.000

KOMPUTER PALING TOP $ 133.000.000 ROADRUNNER CLUSTER DARI UNITED STATES DEPARTMENT OF ENERGY DIMANA 129.6600 CORE MACHINE TOPPED THE 2009 RANKING OF THE 500 WORLD’S FASTES SUPER COMPUTERS, DELIVERING UP TO 1.547 TRILION ARITHMETIC OPERATIONS PER SECOND.

DIPERLUKAN WAKTU 28 TRILIUN TAHUN

SEDANGKAN UMUR UNIVERS HANYA 14

MILIAR TAHUN (W. Cook)

INI MEMANG GILA

AZG

2013

Page 16: 00 Interaction Edisi Mgb 11-Dec-2013

7 (tujuh) problem

matematika pada

millenium ini

1. The Birch and Swinnerton-

Dyer Conjecture

2. The Poincare Conjecture

3. Navier-Stokes Equations

4. P versus NP Problem

5. Riemann Hypothesis

6. The Hodge Conjecture

7. Yang-Mills Theory and The

Mass Gap Hypothesis.

AZG

2013

Page 17: 00 Interaction Edisi Mgb 11-Dec-2013

17

CH 150

76

96

89

8

7

84

30

6348

73

34

5916

111105

33

126

52

93

124

35

12

149

62

3113

10

94

88

121

79

150

77133

15

21

78

115

4104

22

72

64

112

136

145

49

144

8014 122

143

100

51079582

103

981

87

137132

65

85142

18

75

26

146

97

54

92 46

90

56

83141

58

55

50

2981

11025

20

51

109

43

67

3823

32

131

134

138 120

429 28

6372

19

99

114

102

108

70

135

8

41

36

69

57

127

39

101

116

12

24118

5340

139

47

6111

129

117

17

60

1314074

130

123

663127

148

10691

119

44

71

128

68

45

147

AZG 2013

150 CITIES

150 cities = 5.7134x10262

Alternative routes

Page 18: 00 Interaction Edisi Mgb 11-Dec-2013

18

CH 150

76

96

89

8

7

84

30

6348

73

34

5916

111105

33

126

52

93

124

35

125

149

62

3113

10

94

88

121

79

150

77133

15

21

78

115

4104

22

72

64

112

136

145

49

144

80

14 122

143

100

51079582

103

98

1

87

137132

65

85142

18

75

26

146

97

54

92 46

90

56

83141

58

55

50

2981

11025

20

51

109

43

67

3823

32

131

134

138 120

429 28

637

2

19

99

114

102

108

70

135

86

41

36

69

57

127

39

101

116

12

24118

5340

139

47

61

11

129

117

17

60

13

14074

130

123

663127

148

10691

119

44

71

128

68

45

147

AZG 2013

150 CITIES

Page 19: 00 Interaction Edisi Mgb 11-Dec-2013

The shortest traveling salesman route going through all 13,509

cities in the United States with a population of at least 500 (as of

1998). Illustration: Courtesy of David Applegate, Robert Bixby,

Vasek Chvatal and William Cook

AZG 2013

Page 20: 00 Interaction Edisi Mgb 11-Dec-2013

20

OBJECTIVE

AZG 2013

Page 21: 00 Interaction Edisi Mgb 11-Dec-2013

21

. "The P versus NP

Problem" is considered one

of the seven greatest

unsolved mathematical

problems

AZG 2013

Page 22: 00 Interaction Edisi Mgb 11-Dec-2013

22

One important statement about the NP-

complete problem (Papadimitriou & Steiglitz) :

a. No NP-complete problem can be solved by

any known polynomial algorithm (and this is

the resistance despite efforts by many brilliant

researchers for many decades).

b. If there is a polynomial algorithm for any NP-

complete problem, then there are polynomial

algorithms for all NP-complete problems.

THIS IS CHALLENGE TO PROVE

P= NP MUST BE PURSUED!

AZG 2013

Page 23: 00 Interaction Edisi Mgb 11-Dec-2013

23

BACKGROUND

AZG 2013

Page 24: 00 Interaction Edisi Mgb 11-Dec-2013

The class of problem :

(P problem) solved in polynomial time

(NP Problem). that cannot be solved in

polynomial time

P vs NP

impossible to solve the NP-complete problem in

polynomial time, (P ≠ NP).

OR

NP problem can be solved in P time (P = NP).

until now no-one has been able to prove whether

P ≠ NP or P = NP.

AZG 2013

24

If the TSP can be solved using an algorithm in

polynomial time, this will prove that NP problem

can be solved in polynomial time (P = NP).

Page 25: 00 Interaction Edisi Mgb 11-Dec-2013

TSP dealing with the resources :

1. Time (how many iteration it takes to

solve a problem)

2. space (how much memory it takes to

solve a problem).

THE MAIN PROBLEM :

1. THE NUMBER OF STEPS (TIME) INCREASES

EXPONENTIALLY ALONG WITH THE INCREASE IN

THE SIZE OF THE PROBLEM.

2. HUGE AMOUNT COMPUTER RESOURCES ARE

REQUIRED

NEW PARADIGM (BREAKTHROUGH)

AZG 2013

25

Page 26: 00 Interaction Edisi Mgb 11-Dec-2013

PARADIGM

OLD NEW

1. LP & DERIVATIVES 2. HEURISTIC (PROBABILISTIC) 3. PROCEDURE IS

COMPLICATED 4. NEEDS RESOURCES OF TIME

AND MEMORY UNLIMITED 5. CHECKING ALL ELEMENTS

6. P = NP VS P ≠ NP ? 7. KNOWLEDGE IS HIGH

8. LONG OPERATING TIME

1. INTERACTION THEORY 2. DETERMINISTIC 3. PROCEDURE IS SO SIMPLE 4. RESOURCES NEED IS

LIMITED

5. CHECKING LIMITED ELEMENTS (PRIORITY)

6. P=NP 7. SIMPLE ARITHMATIC

8. SHORT OPERATING TIME

(EFFICIENT AND EFFECTIVE)

AZG 2013

26

Page 27: 00 Interaction Edisi Mgb 11-Dec-2013

SUMMARIZES THE MILESTONES OF SOLVING

TRAVELING SALESMAN PROBLEM.

Year Research Team Size of Instance

1954 G. Dantzig, R. Fulkerson, and S.

Johnson

49 cities

1971 M. Held and R.M. Karp 64 cities

1975 P.M. Camerini, L. Fratta, and F.

Maffioli

67 cities

1977 M. Grötschel 120 cities

1980 H. Crowder and M.W. Padberg 318 cities

1987 M. Padberg and G. Rinaldi 532 cities

(109,5 secon)

1987 M. Grötschel and O. Holland 666 cities

1987 M. Padberg and G. Rinaldi 2,392 cities

1994 D. Applegate, R. Bixby, V.

Chvátal, and W. Cook

7,397 cities

1998 D. Applegate, R. Bixby, V.

Chvátal, and W. Cook

13,509 cities

(4 Years)

AZG 2013

27

Page 28: 00 Interaction Edisi Mgb 11-Dec-2013

SUMMARIZES THE MILESTONES OF SOLVING

TRAVELING SALESMAN PROBLEM.

Year Research Team Size of Instance

2001 D. Applegate, R. Bixby, V. Chvátal,

and W. Cook

15,112 cities

(ca. 22 Years)

2004 D. Applegate, R. Bixby, V. Chvátal,

W. Cook and K. Helsgaun

24,978 cities

2006 D. Applegate, R. Bixby, V. Chvátal,

and W. Cook

85,900 cities

2009 D. Applegate, R. Bixby, V. Chvátal,

and W. Cook

1,904,711 cities

2009 Yuichi Nagata 100.000

Mona Lisa

AZG 2013

28

Page 29: 00 Interaction Edisi Mgb 11-Dec-2013

29

TECHNIQUE AND METHOD

FOR SOLVING TSP

• NEURAL NETWORK

• GENETIC ALGORITHM

• SIMULATED ANNEALING

• ARTIFICIAL INTELLEGENT

• EXPERT SYSTEM

• FRACTAL

• TABU SEARCH

• NEAREST NEIGBOR

• THRESHOLD ALGORITHM

• ANT COLONY OPTIMIZATION

• LINEAR PROGRAMMING

INTEGER PROGRAMMING

• CUTTING PLANE

• DYNAMIC PROGRAMMING

• THE MINIMUM SPANNING

TREE

• LAGRANGE RELAXATION

• ELLIPSOID ALGORITHM

• PROJECTIVE SCALING

ALGORITHM

• BRANCH AND BOUND

• ASAINMENT

HEURISTIC EXACT SOLUTION

AZG

2013

Page 30: 00 Interaction Edisi Mgb 11-Dec-2013

30

OBJECTIVE FUNCTION

• d(i,j) = (direct) distance between

city i and city j.

z x(i, j)d(i, j)j1

n

i1

n

AZG

2013

Page 31: 00 Interaction Edisi Mgb 11-Dec-2013

Constraints

• Each city must be “exited” exactly once

• Each city must be “entered” exactly once

x(i, j)j1

n

1 , i 1,2,...,n

x(i, j)i1

n

1 , j 1,2,...,n

Subtour elimination constraint

• S = subset of cities

• |S| = cardinality of S (# of elements in S)

• There are 2n such sets !!!!!!!

x(i, j) Si , jS

1, S {1, 2,...,n}

AZG

2013

Page 32: 00 Interaction Edisi Mgb 11-Dec-2013

32

NUMBER OF LINIER INEQUALITIES

AS CONSTRAINS IN TSP

• If n=15 the number of countraints is 1.993.711.339.620

• If n=50 the number of countraints 1060

• If n=120 the number of countraints 2 x 10179 or to be exact :

26792549076063489375554618994821987399578869037768707804846519432957724703086273401563211708807593998691345929648364341894253344564803682882554188736242799920969079258554704177287

AZG 2013

Grotschel

Page 33: 00 Interaction Edisi Mgb 11-Dec-2013

33

INTERACTION THEORY

AZG 2013

Page 34: 00 Interaction Edisi Mgb 11-Dec-2013

INTERACTION THEORY

In 1965 Anang Z. Gani [28] did research on the Facilities Planning

problem as a special project (Georgia Tach in 1965)

Supervision James Apple

Later, J. M. Devis and K. M. Klein further continued the original

work of Anang Z. Gani

Then M. P. Deisenroth “ PLANET” direction of James Apple

(Georgia Tech in1971)

Since 1966, Anang Z. Gani has been continuing his research and

further developed a new concept which is called “The Interaction

Theory” (INSTITUT TEKNOLOGI BANDUNG)

The model is the From - To chart the which provides quantitative

information of the movement between departments

AZG 2013

34

Page 35: 00 Interaction Edisi Mgb 11-Dec-2013

The model is the From - To chart the which

provides quantitative information of the

movement between departments (common

mileage chart on the road map).

The absolute value or the number of a

element as an individual of a matrix can not

be used in priority setting

the TSP matrix has two values,

1. the initial absolute value (interaction

value)

2. the relative value (interaction coefficient)

DIM = The Delta Interaction Matrix

AZG 2013

35

Page 36: 00 Interaction Edisi Mgb 11-Dec-2013
Page 37: 00 Interaction Edisi Mgb 11-Dec-2013

37

BAHWA SETIAP ELEMEN ATAU UNSUR MEMILIKI SPESIALISASI

UNTUK DAPAT BERKEMBANG & TUMBUH

INTERAKSI TIDAK HANYA TERJADI DUA ELEMEN

INTERAKSI TIDAK HANYA DALAM BENTUK; AKSI REAKSI, JARAK, KEUANGAN, BIAYA,FREKUENSI, KOMUNIKASI & KAITAN KIMIA DAN FISIKA PERSOALAN YANG DIHADAPI NILAI ABSOLUT

ANGKA ABSOLUT INTERAKSI

INTERAKSI KOMBINASI (COMBINED EFFORT)

INTERAKSI KOMBINASI INI DAPAT DIUNGKAPKAN DALAM BENTUK KOEFISIEN INTERKASI

KOEFISIEN INTERAKSI MERUPAKAN NILAI RELATIF DARI COMBINED EFFORT

DENGAN MELUPAKAN NILAI ABSOLUT DAN MENGGUNAKAN KOEFISIEN INTERAKSI

POKOK PIKIRAN TEORI INTERAKSI

AZG

2013

Page 38: 00 Interaction Edisi Mgb 11-Dec-2013

AZG 2013

38

Two parallel lines

Page 39: 00 Interaction Edisi Mgb 11-Dec-2013

Two parallel lines distorted

(Hering illusion)

AZG 2013

39

Page 40: 00 Interaction Edisi Mgb 11-Dec-2013
Page 41: 00 Interaction Edisi Mgb 11-Dec-2013
Page 42: 00 Interaction Edisi Mgb 11-Dec-2013
Page 43: 00 Interaction Edisi Mgb 11-Dec-2013
Page 44: 00 Interaction Edisi Mgb 11-Dec-2013

1 2 3 4

1 0 700 10 20

2 2 0 800 15

3 4 3 0 10

4 10 2 30 0

RELATIVE VALUE

AZG 2013

44

Page 45: 00 Interaction Edisi Mgb 11-Dec-2013

The formula for the interaction

coefficient ( ci,j ) is:

ci,j = xi,j2/(Xi. .X.j).

Xi. =

m

j 1

xij (i = 1 ……. m )

X.j =

n

i 1

xij (j = 1 ……. n )

AZG 2013

45

Page 46: 00 Interaction Edisi Mgb 11-Dec-2013

TSP

INTERACTION THEORY

TSP P=NP

GENERAL

AZG

2013

Page 47: 00 Interaction Edisi Mgb 11-Dec-2013

APPLICATION OF THEORY INTERACTION

• Traveling Salesman Problem (Symmetric and Asymmetric, minimum and maximum).

• Transportation Problem. • Logistic. • Assignment problem. • Network problem • Set Covering Problem. • Minimum Spanning Tree (MST) • Decision Making. • Layout Problem. • Location Problem • Financial Analysis. • Clustering. • Data Mining

AZG

2013

Page 48: 00 Interaction Edisi Mgb 11-Dec-2013

Formulation of the TSP with Interaction

Theory is very simple.

THE FORMULATION AND THE ALGORITHM

• The main activity of the exsisting

algoritms of TSP is searching to find

the optimal solution from so many

alternatives.

• The selection is related to the priority.

AZG 2013

48

Page 49: 00 Interaction Edisi Mgb 11-Dec-2013

The algorithm is

divided into two

general phases:

Preparation phase

Processing phase

AZG 2013

49

Page 50: 00 Interaction Edisi Mgb 11-Dec-2013

1. Preparation phase

consists of main 5

steps:

o Defining distance between cities or the

interaction matrix (IMAT)

oNormalization of IMAT (NIMAT)

oCalculating the interaction coefficient

matrix (ICOM)

oSorting the interaction coefficient as the

sorted ICOM (SICOM)

oPrioritizing the interaction between

cities using the delta interaction matrix

(DIM)

AZG 2013

50

Page 51: 00 Interaction Edisi Mgb 11-Dec-2013

AZG 2013

51

Page 52: 00 Interaction Edisi Mgb 11-Dec-2013

2. Normalization of IMAT (NIMAT)

Normalization of IMAT is necessary to

normalize the matrix elements with each

element is added in front of the numbers

with the numbers 1 + zero is taken from

the digits of the largest element

AZG 2013

52

Page 53: 00 Interaction Edisi Mgb 11-Dec-2013

53

3. The Interaction coefficient

matrix (ICOM)

The interaction coefficient represents the

relative value of interaction between

elements to other elements

The formula of the

interaction coefficient is: ci,j = xi,j2/(Xi. .X.j)

AZG 2013

Page 54: 00 Interaction Edisi Mgb 11-Dec-2013

3. The Interaction Coefficient Matrix (ICOM)

AZG 2013

54

Page 55: 00 Interaction Edisi Mgb 11-Dec-2013

55

* c(ij)

< c(ij + 1)

j = 1, ……….,n-1

* c(i1)

= minj c

ij i = 1, ……….,m

Note of the element: The top value is the original ICOM column number

The bottom value is the sorted interaction coefficient

AZG 2013

Page 56: 00 Interaction Edisi Mgb 11-Dec-2013

56

Note of the element: The top value is the original the DIM column number The bottom value is the sorted incremental value

AZG 2013

Page 57: 00 Interaction Edisi Mgb 11-Dec-2013

2. Processing phase

Processing phase is searching process is

to choose the shortest path.

The searching process is to choose the

shortest path. The searching is related

to the priority

Guide line to use the DIM for

determining the optimal solution (8

Columns)

AZG 2013

57

Page 58: 00 Interaction Edisi Mgb 11-Dec-2013

58

COMPUTATIONAL

EXPERIENCES AND

EXAMPLE

AZG 2013

Page 59: 00 Interaction Edisi Mgb 11-Dec-2013

EXAMPLE ASYMETRIC TSP

1. THE INTERACTION MATRIX (IMAT) 7X7

AZG 2013

59

Page 60: 00 Interaction Edisi Mgb 11-Dec-2013

AZG 2013

60

2. Normalization of IMAT (NIMAT) 7X7

109002

75848 x 75153

= 20.843

Page 61: 00 Interaction Edisi Mgb 11-Dec-2013

3. The Interaction Coefficient

Matrix (ICOM) 7X7

1 2 3 4 5 6 7

1 21.145 20.843 19.016 20.769 20.283 21.075 20.790

2 20.094 21.411 20.481 19.193 20.753 20.449 20.290

3 20.435 19.144 21.337 20.081 20.840 21.095 20.007

4 20.169 20.962 20.499 21.461 19.082 20.506 19.799

5 21.000 19.197 20.586 20.188 21.377 20.395 19.233

6 19.099 20.734 20.838 20.386 20.051 21.232 20.823

7 21.214 20.324 20.079 20.394 21.158 18.584 21.387

AZG 2013

61

Page 62: 00 Interaction Edisi Mgb 11-Dec-2013

4. The Sorted ICOM (SICOM) 7X7

1 3 5 4 7 2 6 1

19.016 20.283 20.769 20.790 20.843 21.075 21.145

2 4 1 7 6 3 5 2

19.193 20.094 20.290 20.449 20.481 20.753 21.411

3 2 7 4 1 5 6 3

19.144 20.007 20.081 20.435 20.840 21.095 21.337

4 5 7 1 3 6 2 4

19.082 19.799 20.169 20.499 20.506 20.962 21.461

5 2 7 4 6 3 1 5

19.197 19.233 20.188 20.395 20.586 21.000 21.377

6 1 5 4 2 7 3 6

19.099 20.051 20.386 20.734 20.823 20.838 21.232

7 6 3 2 4 5 1 7

18.584 20.079 20.324 20.394 21.158 21.214 21.387

AZG 2013

62

Page 63: 00 Interaction Edisi Mgb 11-Dec-2013

5. The Delta Interaction

Matrix (DIM) 7X7

1 3 5 4 7 2 6 1

0 1.267 1.753 1.774 1.827 2.059 2.129

2 4 1 7 6 3 5 2

0 901 1.097 1.256 1.288 1.560 2.218

3 2 7 4 1 5 6 3

0 863 937 1.291 1.696 1.951 2.193

4 5 7 1 3 6 2 4

0 717 1.087 1.417 1.424 1.880 2.379

5 2 7 4 6 3 1 5

0 36 991 1.198 1.389 1.803 2.180

6 1 5 4 2 7 3 6

0 952 1.287 1.635 1.724 1.739 2.133

7 6 3 2 4 5 1 7

0 1.495 1.740 1.810 2.574 2.630 2.803

SOLUTION : 1-3-2-4-5-7-6-1 (2758)

AZG 2013

63

Page 64: 00 Interaction Edisi Mgb 11-Dec-2013

64

MATRIK BAYS29 -JARAK 509

1 2 3 4 5 6 7 8 9

1 0 107 241 190 124 80 316 76 152

2 107 0 148 137 88 127 336 183 134

3 241 148 0 374 171 259 509 317 217

4 190 137 374 0 202 234 222 192 248

5 124 88 171 202 0 61 392 202 46

6 80 127 259 234 61 0 386 141 72

7 316 336 509 222 392 386 0 233 438

8 76 183 317 192 202 141 233 0 213

9 152 134 217 248 46 72 438 213 0

10 157 95 232 42 160 167 254 188 206

11 283 254 491 117 319 351 202 272 365

12 133 180 312 287 112 55 439 193 89

13 113 101 280 79 163 157 235 131 209

14 297 234 391 107 322 331 254 302 368

15 228 175 412 38 240 272 210 233 286

16 129 176 349 121 232 226 187 98 278

17 348 265 422 152 314 362 313 344 360

18 276 199 356 86 287 296 266 289 333

19 188 182 355 68 238 232 154 177 284

20 150 67 204 70 155 164 282 216 201

MATRIK BAYS29 - KOEFISIEN

1 2 3 4 5 6 7 8 9

1 1201152 1188622 1188630 1188632 1188622 1188616 1188640 1188616 1188623

2 1188622 1201154 1188619 1188626 1188618 1188623 1188644 1188630 1188622

3 1188630 1188619 1201137 1188647 1188620 1188631 1188657 1188639 1188624

4 1188632 1188626 1188647 1201154 1188633 1188636 1188629 1188631 1188636

5 1188622 1188618 1188620 1188633 1201150 1188613 1188649 1188631 1188609

6 1188616 1188623 1188631 1188636 1188613 1201149 1188648 1188623 1188612

7 1188640 1188644 1188657 1188629 1188649 1188648 1201139 1188629 1188652

8 1188616 1188630 1188639 1188631 1188631 1188623 1188629 1201150 1188630

9 1188623 1188622 1188624 1188636 1188609 1188612 1188652 1188630 1201146

10 1188629 1188622 1188630 1188615 1188628 1188629 1188634 1188632 1188632

11 1188640 1188637 1188658 1188620 1188643 1188647 1188623 1188637 1188647

12 1188620 1188626 1188634 1188640 1188616 1188609 1188651 1188626 1188611

13 1188623 1188622 1188636 1188620 1188628 1188627 1188632 1188625 1188632

14 1188642 1188635 1188646 1188619 1188644 1188645 1188630 1188642 1188648

15 1188636 1188630 1188651 1188613 1188636 1188640 1188627 1188636 1188640

16 1188624 1188631 1188644 1188624 1188636 1188635 1188625 1188619 1188640

17 1188646 1188636 1188648 1188622 1188641 1188646 1188635 1188645 1188644

18 1188640 1188631 1188643 1188617 1188641 1188641 1188632 1188641 1188644

19 1188632 1188632 1188645 1188618 1188637 1188636 1188621 1188629 1188641

20 1188627 1188618 1188626 1188618 1188627 1188628 1188637 1188635 1188631

21 1188617 1188615 1188624 1188627 1188616 1188618 1188642 1188626 1188620

22 1188645 1188638 1188649 1188622 1188647 1188648 1188633 1188645 1188651

23 1188627 1188638 1188648 1188634 1188640 1188633 1188618 1188616 1188641

124 > 113 1188622 < 1188623

Page 65: 00 Interaction Edisi Mgb 11-Dec-2013

65

AZG

2013 Soal 150

Page 66: 00 Interaction Edisi Mgb 11-Dec-2013

66

AZG

2013 Soal 150

Page 67: 00 Interaction Edisi Mgb 11-Dec-2013

101 cities instance generate 31 solutions

657 cities instance gives 4 solutions

Monalisa Instance (100.000 cities), 7 solutions

AZG 2013

67

Computational experiences

Breakthrough for a TSP algorithm

The process of finding a solution :

•Requires only max 20 columns (DIM)

•a huge saving in time and storage space

Page 68: 00 Interaction Edisi Mgb 11-Dec-2013

68

Page 69: 00 Interaction Edisi Mgb 11-Dec-2013

1. Length ;Team ;Date

2. 6204999 ;Xavier Clarist ;27.8.2012

3. 6204999 ;Keld Helsgaun ;17.9.2012

4. 6204999 ;Yuichi Nagata ;1.2.2013

5. 6205000 ;Vladimir Shylo ;4.2.2013

6. 6205001 ;Xavier Clarist ;6.8.2012

7. 6205005 ;Keld Helsgaun ;1.8.2012

8. 6205015 ;Ivan Gradinar ;11.4.2013

9. 6205017 ;Vladimir Shylo ;25.1.2013

10. 6205028 ;Xavier Clarist ;30.7.2012

11. 6205064 ;Keld Helsgaun ;16.7.2012

12. 6205118 ;Roman Bazylevych, Bohdan Kuz, Roman Kutelmakh ;3.7.2013

13. 6205251 ;Mohammad Syarwani ;3.7.2013

14. 6205313 ;Mohammad Syarwani ;26.11.2012

15. 6205320 ;Ashley Wang ;4.11.2012

16. 6210923 ;Mohammad Syarwani ;8.10.2012

17. 6211995 ;Geir Hasle, Torkel Haufmann, Christian Schulz ;4.7.2013

18. 6221125 ;Marco Alves Ganhoto ;3.7.2013

19. 6251141 ;Wenhong Tian ;3.7.2013

20. 6424026 ;David Liu ;2.7.2013

21. 6598272 ;Cyrille Yemeli Tasse ;4.3.2013

Final Leader Board : The winner of the USA TSP Challenge (115.475)

Page 70: 00 Interaction Edisi Mgb 11-Dec-2013

70

TSP (Symmetric & Asymmetric

Transportation

Problems Graph

Network Problems

Scheduling

Decision

Making Clustering

Layout

Problems

Routing Data Mining

Financial

Analysis

Location

Problems

Assignment

Problems

AZG

2013

Page 71: 00 Interaction Edisi Mgb 11-Dec-2013

71

Computer Science

Transportasi

Militer

Ekonomi

Strategi

Finansial

Distribusi / Logistik

Psikologi

Kimia

Fisika

Biologi

Operations Research

Telekomunikasi

Industri Sosial

AZG 2013

Page 72: 00 Interaction Edisi Mgb 11-Dec-2013

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

38

86

16

61 85

91

100

98

37

92

59 93

99 96

6

89

52 18

83

60

5 84

17

45

8

46

47

36

49

64

63 90

32

10 62

11

19

48

82

7 88 31

70

30

20

66

71

65

35

34

78 81

9 51

33

79 3

77 76

50

1

69

27

101 53

28

26

12 80

68

29

24

54

55

25 4

39

67 23

56

75

41

22 74

72 73

21

40 58

13 94

95

97

87

2

57

15 43

42

14

44

Route for 101 cities ( 31 Optimal solutions)

AZG 2013

72

Page 73: 00 Interaction Edisi Mgb 11-Dec-2013

Portrait of Mona Lisa with Solution of a Traveling

Salesman Problem. Courtesy of Robert Bosch ©2012

( 7 Optimal solutions)

AZG 2013

73

Page 74: 00 Interaction Edisi Mgb 11-Dec-2013

• The conclusion is that the

Interaction Theory creates a new

paradigm to the new efficient and

effective algorithm for solving the

TSP easily (P=NP).

• Overall, the Interaction Theory

shows a new concept which has

potential for development in

mathematics, computer science

and Operations Research and their

applications

CONCLUSION AZG

2013

74

Page 75: 00 Interaction Edisi Mgb 11-Dec-2013

Four Mathematician Are Hired By The USA Government

To Solve The Most Powerful Problem In Computer

Science History

75

AZG 2013

Page 76: 00 Interaction Edisi Mgb 11-Dec-2013

76

THANK

YOU

AZG 2013

Page 77: 00 Interaction Edisi Mgb 11-Dec-2013

77

REFERENCES

1. Aarts, E.H.L., Korst, J.H.M., and Laarhoven, P.J.M., (1988) "A

Quantitative Analysis of the Simulated Annealing Algorithm: A Case Study

for the Traveling Salesman Problem", J. Stats. Phys. 50, 189-206

2. Apple, J.M., & Deisenroth, M.P., A Computerized Plant Layout Analysis

and Evalualion Technique (PLANFI). Proceedings, American Instilute of

Industrial Engineers, 23 rd Annual Conferencee and Convention.

Anaheim. Calif. 1972.

3. Applegate, D.L., Bixby, R.E., Chvátal, V., and Cook, W., (1998) ) "On the

solution of traveling salesman problems" Documenta Mathematica - Extra

Volume, ICM III 645-658.

4. Applegate, D. L., Bixby, R.E., Chvátal, V., Cook, W., 2006. The Traveling

Salesman Problem. Princeton University Press

5. Balaprakash, P., & Montes De Oca, M. A., (Eds.). (2006, November 06).

Ant Colony Optimization. Retrieved March 24, 2007.

6. Balas, E., & Guignard, M., (1979). Branch and bound/Implicit

enumeration. Ann. Discrete Math. 5, 185-191.

7. Bellman, R., (1962). Dynamic programming treatment of the traveling

salesman problem. Journal of the ACM (JACM), 9, 61-63. Retrieved

March 9, 2007.

8. Bellmore, M., & Malone, J.C., (1971). Pathology of Travelling Salesman

Sublourelimination Algorithms. Oper. Res. 19, 278-307, 1766.

AZG 2013

Page 78: 00 Interaction Edisi Mgb 11-Dec-2013

78

9. Bland, R.G., Goldfarb, D., Tood, MJ., (1981). The ellipsoid method: a survoy.

Oper. Res. 29. 29, 1039-1091.

10. Bureard, R.E., (1979). "Traveling Salesman and Assignment Problems: A

survey, "Annals of Discrete Mathematies, 4, 193-215.

11. Carpaneto, G., Totlf, P., (1980). Some new branching and bounding criteria for

the asymmetric travelling salesman problem. Management Sci. 26, 736-743.

12. Christofides, N., & Ellon, S., (1972). Algoritms for large-scale Traveling

Salesman Problems. Oper. Res. Quart. 23, 511-518.

13. Christofides, N., & Mingozzi, A., Toth, P., (1980). Exact algoritms for tbs

vehicle routing problem based on spanning tree and shorted patlx relaxations.

Malh. Programming 20, 255-282.

14. Chvátal, V., (1983). Linear Programming, Freeman. San Fransisco.

15. Clarke, G., and Wright, J., Scheduling of vehicles from a central depot to a

number of delivery points, Operations Research, 12 (1964) 568-581.

16. Cook, S A., (1971). "The Complexity of theorem Proving Procedures," Proc.

3rd ACM Symp. on theTheory of Computing, ACM, 151-158.

17. Cook, W.J., (2012). “In Pursuit of the Traveling Salesman”. Princeton

University Press.

18. Crowes, G.A.,(1958) , A method for solving traveling salesman problems.

Op.Res., 6, 1958, pp.791-812.

AZG 2013

Page 79: 00 Interaction Edisi Mgb 11-Dec-2013

79

19. Dantzig, G., Fulkerson, R., & Johnson, S., (1959). On a linear-

programming, combinatorial approach to the traveling-salesman problem.

Operations Research, 7, 58. Retrieved March 8, 2007.

20. Dantzig, G., Fulkerson, R., & Johnson, S., (1954). "Solution of a Large-

scale Traveling Salesman Problem," Operations Research2, 393-410.

21. Devlin, K. (2002). The Millenium Problems, The Seven Greatest Unsolved

Mathematical Puzzles of Our Time. Granta Books.

22. Dorigo, M., & Stèutzle, T., (2004). “Ant colony optimization”. Cambridge,

MA: MIT Press.

23. Crowder, H., and Padberg, M. W., (1980). Solving large scale symmetric

traveling salesman problems to optimality. In Management Science,

26:495-509

24. Fiechter, C.N., (1990) "A Parallel Tabu Search Algorithm for Large Scale

Traveling Salesman Problems" Working Paper 90/1 Department of

Mathematics, Ecole Polytechnique Federale de Lausanne, Switzerland.

25. Fisher, M.L., (1988). "Lagrangian Optimization Algorithms for Vehicle

Routing Problems," Operational Research '87, G.K. Rand, ed., 635-649.

26. Flood, M. M., (1956). The traveling-salesman problem. Operations

Research, 4, 61. Retrieved March 8, 2007.

27. Fredman, M.L., Johnson, D.S., McGeogh, L.A., and Ostheimer, G., (1995).

Data structures for traveling salesmen. J.Algorithms, Vol.18, pp.432-479

AZG 2013

Page 80: 00 Interaction Edisi Mgb 11-Dec-2013

80

28. Gani, A.Z., (1965). Evaluation of Alternative Materials Flow Handling

Pattern. Special Project. Georgia Institute of Technology.

29. Gani, A.Z., (1987). The Application of the Interaction Theory for Solving the

Traveling Salesman Problem (TSP). Presented at the ORSA / TIMS Joint

National Meeting St. Louis, MO.

30. Garfinkel, R.S., and Neuhauser, G.L., 1972. Integer Programming. Wiley, New

York.

31. Glover, F., (1989). Tabu Search - Part I. ORSA Journal on Computing, 1, 190-206.

Retrieved December 15, 2006.

32. Grötschel, M., Padberg, M.W., (1979) “On the symmetric traveling

salesman problem I: inequalities. Math. Program.16, 255-280

33. Gutin, G., and Yeo, A., (2007). The Greedy Algorithm for the Symmetric

TSP.Algorithmic Oper. Res., Vol.2, 2007, pp.33—36.

34. Held, M.,& Karp, R.M., The traveling-salesman problem and minimum spanning

trees. Op.Res., 18, 1970, pp.1138-1162.

35. Helsgaun, K.,( 2009) General k-opt submoves for the Lin-Kernighan TSP

heuristic. Mathematical Programming Computation,.

36. Hopfield,J.J., and Tank, D., (1985) “Neural computations of decisions in

optimization problems”. Biological Cybernetics, 52:141-152,

37. Johnson, D.S.,& McGeoch, L.A., (1997) The Traveling Salesman Problem: A

Case Study in Local Optimization. In Aarts, E. H. L.; Lenstra, J. K., Local Search

in Combinatorial Optimisation, John Wiley and Sons Ltd, pp. 215¡V310,.

AZG 2013

Page 81: 00 Interaction Edisi Mgb 11-Dec-2013

81

38. Junger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.,

Reinelt, G., Rinaldi, G., Wolsey, L., (2010).” 50 Years of Integer

Programming 1958-2008: From the Early Years to the State”.Springer.

39. Khachian, L.G., (1972). A polynomial algorithm in linier programming (in

Russian). Dokl. Akad. Nauk SSSR 244, 1093-1096. Translation. Sovict Math.

Dolcl. 20, 191-194 (1979).

40. Karg, R. L., & Thompson, G. L., (1964). A heuristic approach to solving

traveling salesman problems. Management Science, 10, 225.

41. Karmarkar, N., (1984). A New polynomial-time algorithm for linier

programming. Combinalorica 4,373-395.

42. Karp, R., and Steele, J.M., (1985). "Probabilistic Analysis of Heuristics," in

The Traveling Salesman Problem, Lawler, Lenstra, Rinnooy Kan and

Shmoys, eds., John Wiley, 181-205.

43. Karp, R. M.,(1972). "Reducibility among combinatorial problems,"

in Complexity of Computer Computations: Proceedings of a Symposium on

the Complexity of Computer Computations, R. E. Miller and J. W. Thatcher,

Eds., The IBM Research Symposia Series, New York, NY: Plenum Press, pp.

85-103.

44. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., (1983),. Optimization by

Simulated Annealing. Science, 220 1983, pp.671-680.

45. Lin, S.,& Kernighan, B.W., An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Op.Res., 21, 1973, pp.498-516.

AZG 2013

Page 82: 00 Interaction Edisi Mgb 11-Dec-2013

82

46. Little, J. D., Murty, K. G., Sweeney, D. W., & Karel, C., (1963). An algorithm

for the traveling salesman problem. Operations Research, 11, 972.

47. Miller, C. E., Tucker, A. W., & Zemlin, R. A., (1960 ) Integer programming

formulation of traveling salesman problems. Journal ofManagement

Science,.

48. Miller, D., and Pekny, J., (1991). "Exact Solution of Large Asymmetric

Traveling Salesman Problems," Science251, 754-761.

49. Nagata, Y., and Kobayashi, S., (1997) Edge assembly crossover : A high-

power genetic algorithm for the traveling salesman problem. In Proc. of

ICGA’97, page 450-457. Morgan Kaufmann,

50. Padberg, M.W., and Rinaldi, G., (1991). "A Branch and Cut Algorithm for the

Resolution of Large-scale Symmetric Traveling Salesmen Problems," SIAM

Review33, 60-100.

51. Papadimitriou, C.H., Steiglitz, K.,[1982]. Combinatorial Optimization

Algorithm and complexity, Prentice-Hall, Englewood Cliffs, NJ.

52. Potvin, J.V. (1996) "Genetic Algorithms for the Traveling Salesman

Problem", Annals of Operations Research 63, 339-370.

53. Rego, C., Gamboa, D., Glover, F., Osteman, C., (2011) “Traveling Salesman

problem heuristic : leading methods, implementations and latest advances”,

European Journal of Operational Research 427-441.

AZG 2013

Page 83: 00 Interaction Edisi Mgb 11-Dec-2013

83

54. Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for

TSP Applications Springer-Verlag, Berlin.

55. Reinelt, G. (1991) "TSPLIB - A traveling salesman library", ORSA Journal

on Computing 3 376-384.

56. Concorde. http://www.tsp.gatech.edu/

57. Georgia Tech website on TSP.

58. Wikipedia entry on TSP.

AZG 2013