蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

64
1 蛍蛍 XAFS 蛍蛍蛍蛍蛍蛍蛍蛍蛍蛍 XAFS 蛍蛍 蛍蛍蛍蛍蛍蛍蛍蛍蛍蛍蛍蛍蛍 蛍蛍蛍蛍蛍蛍蛍蛍蛍 蛍蛍 蛍蛍 1. XAFS 蛍蛍蛍蛍蛍蛍 2. 蛍蛍蛍蛍蛍蛍 3. 蛍蛍蛍 4. 蛍蛍 XAFS 蛍蛍蛍蛍蛍蛍蛍

description

蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験. 高エネルギー加速器研究機構 物質構造科学研究所 野村 昌治. 1. XAFS 信号の検出法 2.  透過法の復習 3.  蛍光法 4.  蛍光 XAFS 用電離箱の利用. X線の照射によって引き起こされる様々な現象. (Thomson, Compton). X線による電子遷移. X線を吸収して内殻に空孔を生じるが、その寿命は 非常に短く、原子中の高いエネルギー準位の電子 が内殻に落ち、その差分のエネルギーを放出する. 選択則. 4f. 4d. 4p. 4s. 3d. 3p. 3s. 2p. - PowerPoint PPT Presentation

Transcript of 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

Page 1: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

1

蛍光 XAFS用電離箱を用いた蛍光 XAFS実験高エネルギー加速器研究機構物質構造科学研究所野村 昌治

1.  XAFS信号の検出法2. 透過法の復習3. 蛍光法4. 蛍光 XAFS用電離箱の利用

Page 2: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

2

X線の照射によって引き起こされる様々な現象

(Thomson, Compton)

Page 3: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

3

X線による電子遷移

吸収 発光

X線を吸収して内殻に空孔を生じるが、その寿命は非常に短く、原子中の高いエネルギー準位の電子が内殻に落ち、その差分のエネルギーを放出する

選択則

j 0 or 1 , l 1

1s

2s

2p

3s

3p3d

4s

4p4d4f

Page 4: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

4

XAFS信号の検出法

• 透過法: 基本のき• 蛍光法

SC 、蛍光 XAFS 用電離箱、SSD 、 M-SSD 、 BCLA (分光結晶)

+det.

• 電子収量法全電子収量、転換電子収量

• XEOL ( X-ray excited optical luminescence)

• 反射率• PAS (Photo-acoustic spectroscopy)

Page 5: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

5

透過法の限界透過法

○原理に忠実●感度に限界  wt%

0

0.5

1

1.5

2

2.5

8500 9000 9500 1 104

CU7104.D

t

E/eV

10mmoldm-3 Cu aq.

蛍法法 (FY)

○高感度 ~ 10ppm

●スペクトルが歪み易い

0

0.1

0.2

0.3

0.4

8500 9000 9500 1 104

CU7108

t

E/eV

10mmoldm-3 Cu aq.

Page 6: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

6

透過法の復習• 実験法• スペクトルの S/Nと試料の最適厚さ• 高次光の影響• 試料調整技術の影響

Page 7: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

7

XAFS実験法-透過法

・ XAFS の原理にほぼ忠実 本来は試料の有無による強

度変化を測定するが、同時測定している。

   I0 = IIN {1 - exp( - 0x0)}

   I = (IIN - I0) exp ( - SX)

   t = ln(I0/I)

   = ln {1 - exp( - 0x0)} + 0x0 +SX

下線部のみが試料の吸収を反映している。

  → 負の t も見られる

  IIN I0 I

放射光   電離箱 電離箱

実験室   電離箱 SC   比例計数管 SSD

Page 8: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

8

試料の最適厚さ-透過法 ののののの x)0 = 0.245

試料の吸収   X=2.55

  で S/N が最大S/N = 0.556 A/(IIN)1/2

A :  XAFS 振動成分

のののののののIIN :  入射光子数

I の検出効率   0.9 ~< 1IIN=  8×107ph/s ×10s

x)0 = 0.12

k3=1A-3 at k=16A-1

銀箔の k=16A-1付近での S/N比光子数が少ない場合は重要

通常の放射光を用いた実験では

それ程神経質になる必要はない

Page 9: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

9

試料厚さの制約-透過法

高次光の影響を抑制・ 測定域中の真の t の最大値

を4程度以下

光学スペクトルで cl<4 と同様

吸収端でのジャンプ( t )を余り大きくしない  (<2)

t ~ 3

吸収端前  2V

   ↓吸収端上  0.1V

試料によってはスペクトルの両端での強度差

0

0.5

1

1.5

2

2.5

8500 9000 9500 1 104

CU7104.D

t

E/eV

0.01moldm-3 Cu aq.

Page 10: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

10

高次光-透過法測定への影響

2d sin = nn = 1, 2, 3…)

 消滅則の利用高次光の割合 <10-4 を目安に

a: Ti(5m) + Al(30m)   1×10-1

b: Ti(5m) + Al(60m)   2×10-3   detune

c : Ti(5m) + Al(60m)   6×10-5  ミラー

Page 11: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

11

上記の試料をメノウ乳鉢で 20分すり潰し、手動加圧のペレット成型器でディスク成型

同じ試料でも、試料調整へのちょっとした配慮でスペクトルの質が向上する場合がある。多くの場合、 XAFSスペクトルの質は光子束ではなく、試料の均一性で決まる。

Geサンプルと BNを混ぜ、メノウ乳鉢ですり潰し、混合した後、油圧式プレスで成型した試料

30

20

10

0

2015105

透過法実験でのサンプル調整の重要性

k/A-1

k3 /A

3

BL-12C で 1 点 1 秒の蓄積Ge   K 吸収端

Page 12: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

12

試料の調製-透過法測定で最も重要な部分

均一で、適切な厚さの試料を

溶液試料粉末試料• 400mesh以下の粉末を塗布したテープを数枚重ねる

•ペレットを作る (BN、 PE、セルロース等で希釈)

•メンブレンフィルターで濾過•濃度の低い場合はセルに詰める

•セルに詰める(窓材としてはカプトン、ポリスチ、ポリプロ、アクリル、石英)

•ポリ袋に詰め、厚さ調整•厚さ可変セルも• テープ(糊)中の不純物

Br, S, Cl in Scotch tape

• ガラス中の亜鉛、 Be 中の Fe

• C 中の Fe 、 ZrO2 中の Hf

• Pt 、 Au と水銀汚染

十分に研究されている訳ではない

Page 13: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

13

透過法の限界 ののののの x)0 = 0.245

試料の吸収   X=2.55

  で S/N が最大S/N = 0.556 A/(IIN)1/2

A :  XAFS 振動成分

のののののののIIN :  入射光子数

I の検出効率   0.9 ~< 1

k3=1A-3 at k=16A-1  の条件では、上の数値を 1/4096する必要がある。

 → かなり頑張っても Cu/SiO2の系では 0.8wt%程度が透過法の限界

   Mo/SiO2なら 0.1wt%程度、 Ce/SiO2なら 0.03wt%程度が透過法の限界

1

10

100

1000

104

105

0.01 0.1 1 10

Cu_SiO2_trans_SN

1E81E91E101E11

S/N

c/wt%

Page 14: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

14

透過法の限界

5wt% CuO/BN

0.1wt% CuO/BN

Page 15: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

15

Attenuation length

0.01

0.1

1

10

100

10 20 30 40 50

att_len_SiO2t/mm

t/mm

E/keV

0.1

1

10

100

0 5 10 15 20 25 30

att_len_H2Oatt len(H2O)/mm

att len(H2O)/mm

E/keV

SiO2H2O

強度が 1/eに減衰する距離

Page 16: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

16

透過法実験で重要なこと

• 均一で、適切な厚さの試料を調製する。• 高次光を 10-4以下に抑制する。• 入射スリット後は X線ビームを切らない。• 取説に従い、検出系を正しく使う。

原理に忠実だが、試料調整・光学系調整に注意を要し、感度限界のある方法。

Page 17: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

17

透過法の限界透過法

○原理に忠実●感度に限界  wt%

0

0.5

1

1.5

2

2.5

8500 9000 9500 1 104

CU7104.D

t

E/eV

10mmoldm-3 Cu aq.

蛍法法 (FY)

○高感度 ~ 10ppm

●スペクトルが歪み易い

0

0.1

0.2

0.3

0.4

8500 9000 9500 1 104

CU7108

t

E/eV

10mmoldm-3 Cu aq.

Page 18: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

18

0.1wt% CuO/BN

蛍光法

透過法

蛍光法

透過法

(黒点線: 5wt%での透過法)

透過法の限界と蛍光法

Page 19: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

19

蛍光法

• 実験法• 蛍光量子収率• 蛍光 XAFSの原理、その適用限界• 透過法か蛍光法か• 散乱 X線の影響• Lytle検出器

Page 20: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

20

蛍光法• 蛍光 X線量が吸収 X線量に比例することを利用

• 高感度• 試料の不均一性に敏感でない• 基本的にバルクの情報

sample

I0 monitor

h

slit

fluorescencemonitor

適用対象に制約

・ thick and dilute希薄試料 ex. 0.01mol dm-3 aq.

・ thin and concentrated薄膜、吸着層  ex. 1000A の薄膜 実用性の高い方法

Page 21: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

21

蛍光量子収率

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80

F-yield

w(K)w(L3)

(K)

Z

Ca

Zr

Nd Hg

K :  Z=31   Ga で~ 0.5

M.O.Krause, J. Phys. Chem. Ref. Data, 8, 307 (1979)

Page 22: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

22

蛍光 XAFSの元祖

F

F

F

T

T

T

J. Jaklevic et al., Solid State Comm., 23, 679 (1977).

数式の記述間違いがある。

Page 23: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

23

thick, dilute samples

蛍光 X線強度

I0

: 検出器の張る立体角t: 全体の線吸収係数x: 目的元素の線吸収係数E : 入射 X 線のエネルギーEf : 蛍光 X 線のエネルギーd : 試料の厚さx : 光路長

thin, concentrated samples

dEII

dEE

xf

tft

)(4/

1)()(

0

)()(

)(4/

1)()(

0

EE

EII

dEE

tft

xf

tft

dEEEE

EI

xEdxExEII

fttftt

x

ftx

d

tf

)()(exp1)()(

)()4/(

)(exp)()(exp4

0

0 0

If

Page 24: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

24

銅箔- thin, concentrated

t(E)= 2463cm1

@ 9100eV

t(Ef)= 456cm1

= 8.96 gcm3

thin, concentrated samples

dEII

dEE

xf

tft

)(4/

1)()(

0

0

0.2

0.4

0.6

0.8

1

0.0001

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1 10

Cu_foil_fluo ratio u(E)+u(Ef)

{1-e

xp[- t(E

) - t(E

f)]d}

/{[

t(E)

+

t(Ef)]

d}

[u(E)+u(Ef)]d

t/um

x = t

Page 25: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

25

Mo foil- thin, concentrated

t(E)= 80.43cm1

@ 20.1keV

t(Ef)= 17.8cm1

= 10.2 gcm3

thin, concentrated samples

dEII

dEE

xf

tft

)(4/

1)()(

0

0

0.2

0.4

0.6

0.8

1

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Mo foilratio u(E)+u(Ef)

[u(E)+u(E f)]d

t/m

{1-e

xp[- t(E

) - t(E

f)]d}

/{[

t(E)

+

t(Ef)]

d}

x = t

Page 26: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

26

悪い例(厚すぎる試料:金属銅)

金属銅

透過法6m

蛍光法500m

蛍光法6m

蛍光法2m

透過法以外は正しいスペクトルでない。

標準試料の測定に要注意

Page 27: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

27

蛍光 X線強度

I0

: 検出器の張る立体角t: 全体の線吸収係数x: 目的元素の線吸収係数E : 入射 X 線のエネルギーEf : 蛍光 X 線のエネルギーd : 試料の厚さ

thin, concentrated samples

dEII

dEE

xf

tft

)(4/

1)()(

0

thick, dilute samples

)()(

)(4/

1)()(

0

EE

EII

dEE

tft

xf

tft

dEEEE

EI

xEdxExEII

fttftt

x

ftx

d

tf

)()(exp1)()(

)()4/(

)(exp)()(exp4

0

0 0

If

Page 28: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

28

Cu 水溶液、Mo 水溶液

Cu aq. Mo aq.

0

0.2

0.4

0.6

0.8

1

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100

0.01M Cu aq.ratio u(E)+u(Ef)

{1-e

xp[- t(E

) - t(E

f)]d}

[u(E)+u(Ef)]d

t/mm

thick, dilute samples

)()(

)(4/

1)()(

0

EE

EII

dEE

tft

xf

tft

0

0.2

0.4

0.6

0.8

1

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Mo_aq_fluoratio u(E)+u(Ef)

{1-e

xp[- t(E

) - t(E

f)]d}

[u(E

)+u(

Ef)

]d

t/mm

Page 29: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

29

SiO2 担持触媒

Cu/SiO2Mo/SiO2

0

0.2

0.4

0.6

0.8

1

0.01

0.1

1

10

100

1000

0.01 0.1 1 10

Cu_SiO2_fluoratio u(E)+u(Ef)

1-ex

p[-

t(E)

- t(E

f)]d

[u(E)+u(E f)]d

t/mm

0

0.2

0.4

0.6

0.8

1

0.01

0.1

1

10

100

1000

0.01 0.1 1 10

Mo_SiO2_fluoratio u(E)+u(Ef)

1-ex

p[-

t(E)

- t(E

f)]d

[u(E)+u(E f)]d

t/mm

thick, dilute samples

)()(

)(4/

1)()(

0

EE

EII

dEE

tft

xf

tft

Page 30: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

30

蛍光法が適用できる濃度条件

黒点線:透過法で測定した 5wt% CuO/BN

Page 31: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

31

蛍光法が適用できる濃度条件 CuSO4 水溶液

容量モル濃度 0.2 mM 2 mM 20 mM 200 mM

重量パーセント 0.0013 wt% 0.013 wt% 0.13 wt% 1.3 wt%

原子パーセント 0.00036 at% 0.0036 at% 0.036 at% 0.36 at%

注意: Cu(II) イオン水溶液についての値

Page 32: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

32

蛍光法が吸収係数を反映する条件• “thick & dilute”, “thin & concentrated”は組成、エネルギーに依って変わる。

• 2%の歪みで考えると、許容される光路長はCu 薄膜は t<70nm、Mo 薄膜は t<400nmCu 水溶液は t>2.5mm、Mo 水溶液は t>20mmCu/SiO2は t>0.7mm、Mo/SiO2は t>7mm

• 45° 配置では 2/t

Page 33: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

33

透過法か蛍光法か

[ 基本 ]  透過法で測定できる試料は透過法で。

境界の目安/8 > A/T

~ 0.5 (Ga) 、 /4 ~ 0.15

0.3wt% の Cu/SiO2

0.02 mol dm -3 の Cu aq.

0

0.5

1

1.5

2

2.5

8500 9000 9500 1 104

CU7104.D

t

E/eV

0.01 mol dm -3Cu aq.

透過法

0

0.1

0.2

0.3

0.4

8500 9000 9500 1 104

CU7108

t

E/eV

蛍光法

Page 34: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

34

蛍光法に対してよく耳にする誤解a. 蛍光法は透過法の supersetだ

b. 蛍光法は表面敏感だ

c. 高輝度放射光が必要だ

蛍光法が正確に XAFSを反映するのは thick & dilute、 thin & concentrateの場合。

薄膜や表面吸着系の場合は正しいが、蛍光 X線の脱出深度は m~ cm オーダー表面感度を求めるなら全反射蛍光法や電子収量法 (nm~10nm オーダー)

通常は大強度 X線が必要

Page 35: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

35

X線の照射によって引き起こされる様々な現象

(Thomson, Compton)

Page 36: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

36

X線吸収スペクトル

10 100 1000E/keV

金の X線吸収断面積

McMaster tableより

incoherent scat.

Au

coherent scat.

M吸収

端K吸収端

L吸収

Page 37: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

37

散乱断面積のエネルギー依存 (1)

10-6

10-4

10-2

100

102

104

106

0 10 20 30 40 50

McMaster2

H(photo)H(coh)H(incoh)

Cross section/barn

E/keV

H

10-6

10-4

10-2

100

102

104

106

0 10 20 30 40 50

McMaster2

O(photo)O(coh)O(incoh)

Cross section/barn

E/keV

O

photoelectriccoherent scatteringincoherent scattering

Page 38: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

38

散乱断面積のエネルギー依存 (2)

photoelectriccoherent scatteringincoherent scattering

10-6

10-4

10-2

100

102

104

106

0 10 20 30 40 50

McMaster2

Cu(photo)Cu(coh)Cu(incoh)

Cross section/barn

E/keV

10-6

10-4

10-2

100

102

104

106

0 10 20 30 40 50

McMaster2Ag(photo)Ag(coh)Ag(incoh)

Cross section/barn

E/keV

Cu Ag

Page 39: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

39

散乱断面積のエネルギー依存 (3)

10-4

10-3

10-2

10-1

100

101

102

103

104

0 10 20 30 40 50

McMaster2

H(coh)O(coh)Cu(coh)Ag(coh)Ce(coh)

cross secion (coherenet scat.)/barn

E/keV

10-4

10-3

10-2

10-1

100

101

102

103

104

0 10 20 30 40 50

McMaster2

H(incoh)O(incoh)Cu(incoh)Ag(incoh)Ce(incoh)

cross section (incoherent)/barn

E/keV

coherent scat. incoherent scat.

58Ce

47Ag

29Cu

8O

1H

Z Z

Page 40: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

40

散乱断面積のエネルギー依存 (4)

photoelectriccoherent scatteringincoherent scattering

Ag/O (n(Ag) : n(O) = 1:1000)

10-1

100

101

102

103

104

105

106

107

0 10 20 30 40 50

McMaster2

Ag(photo)O(coh)O(incoh)Ag(photo/1000)

cross section/barn

E/keV

1/1000

Ag(photo)

O (coh.)

O (incoh.)

Page 41: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

41

散乱の角度分布• Thomson散乱(弾性散乱)

• Compton散乱

22

2

02

2

0 sinPr

r

rI

rII ee

e

2

22

cos112

cos1

k

rd

d eKN

散乱の影響を小さくするため、入射 90°方向の水平面内で蛍光 X線を検出

Page 42: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

42試料からの発光 X線を SSDで測定(フィルターとスリットなし)

蛍光 XAFS

Page 43: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

43

ライトル検出器

Page 44: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

44

蛍光 XAFS用電離箱Lytle detector

弾性散乱

Ni filter

使用

Slitassembly使用

Cu K

0.2mmol dm-3 Cu aq.

Ni K

生データ

E安価、大立体角、手作り可能

波高分布  PHD

-filter様

Page 45: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

45

電気的接続

EXAFS Co.製 Lytle detector用アンプを利用する場合

EXAFS Co.製 Lytle detectorと通常の電流アンプを組み合わせて利用する場合

PF製 Lytle detectorと通常の電流アンプを組み合わせて利用する場合

スリットリットットト スリットリットットト スリットリットットト

試 料 槽料 槽槽 試 料 槽料 槽槽 試 料 槽料 槽槽

電 離 箱離 箱箱 電 離 箱離 箱箱電 離 箱離 箱箱

VFC

VFC

VFC

DC電 源

AC 100V

hv hv hv

Kethley 427 Kethley

427

電池池

電池池

電池池

Page 46: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

46

誤った接続hv

内蔵アンプ

電流アンプ

Page 47: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

47

検出効率

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Lytle_det_eff

abs(Ar 3cm)abs(Ar 10cm)abs(Kr 3cm)abs(Kr 10cm)

absorption

E/keV

EXAFS Co.製  3cm

PF製、応用技研製 10cm

Page 48: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

48

信号の S/N比

I0: 入射 X 線強度

: 蛍光量子収率/4 :検出器の張る立体角x(E): 入射 X 線に対する目的原子の吸収係数

t (E): 入射 X 線に対する全吸収係数

t (Ef): 蛍光 X 線に対する全吸収係数

Ib : バックグラウンド → 散乱、他の蛍光 X 線

2/1

2/1

0

2/1

0

)()(

)(4/

/1

1

)()(

)(4/

bx

x

ftt

x

fbx

x

ftt

xNS

IEE

EI

IIEE

EI

when Ib   >>   If

バックグランウンドを下げることが重要

Page 49: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

49

filterの機能 (1)

• 蛍光 X 線を透過し、弾性散乱を吸収( X 線回折で使うフィルターと同様)

Cu Kα8.04 keV

Cu Kβ8.90 keV

Cu K- edge8.98 keV

Ni K- edge8.33 keV

弾性散乱多くの場合、 Z-1が適当Z=22(Ti)以下では適当な材質がない

Page 50: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

50

filterの機能 (2)

• 低エネルギーの蛍光成分を吸収・減衰

10-5

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

Al 100umtrans

transmission

E/keV

Page 51: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

51

Filterの機能 (3)

• 低エネルギーの蛍光の除去Cr filter(t0.01) でt(Fe Kα)=0.041t(Cu Kα)=0.166t(Se Kα)=0.477

0.01

0.1

1

2 4 6 8 10 12 14 16

MN_10umtrans

transmission

E/keV

Page 52: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

52

Filterの害悪

• 散乱 X 線を吸収すると、 filter から蛍光が出る。• Z の K と Z-1 の K はほぼ同じエネルギー

E(V K) = 4947eV 、 E(Ti K)=4932eVE(Cu K)= 8034eV 、 E(Ni K)=8264eV

スリットを使い、検出する立体角を可能な限り制限する。

Page 53: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

53

ライトル検出器:フィルターとソーラースリットの意味

フィルターなしソーラースリットなし

2 mM の硫酸銅 (II) 水溶液からの発光 X 線をSSD で測定(入射 X 線は 9.92 keV )

Ni フィルター( μt=6 )有りソーラースリットなし

Ni フィルター( μt=6 )有りソーラースリット有り

+

Page 54: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

54

フィルターの効果

0.1 wt% の CuO/BN の蛍光 XAFS スペクトルを透過係数が異なる Ni フィルターで測定

5 wt% CuO/BN 透過法

Page 55: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

55

フィルターの効果

0.1 wt% の CuO/BN の蛍光 XAFS スペクトルを吸光度が異なる Ni フィルターを用いて測定

Page 56: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

56

EXAFS Co.製 Lytle detector使用上の注意

• 試料の向き• 試料は背面に取り付け(光源点の位置を一定に)

• スリットの取り付け方向

Page 57: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

57

ライトル検出器の高さ

PF製

EXAFS Co.Ltd.製

Page 58: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

58

蛍光 XAFS用電離箱使用上の注意• thin windows:窓に圧力を掛けない。  ガス交換時に流量を上げると、窓に圧がかかるので、流量を余り上げない。

• 使用後はバルブを閉じる:ガス交換には時間がかかる。

• 再結合が無視できる程度の電場を印加。• 衝撃を与えない: 電極とコネクタの間は

接触で導通を採っている。

Page 59: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

59

なぜそのような形状となるのか?2 mM の硫酸銅 (II) 水溶液からの発光 X 線を SSD で測定Ni フィルター( μt=6 )とソーラースリット有り

Niの Kα線: 7.48 keVNiの Kβ線: 8.26 keV

蛍光 XAFS

Cuの Kα線: 8.05 keVCuの Kβ線: 8.90 keV

Niの K吸収端: 8.33 keV exp(6)~ 2.5×103

Page 60: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

60

散乱 X線

ポリエチレン袋に詰めた水での散乱 X線を SSDで測定( BL-12C)Ge によるエスケープピーク( Ge K 吸収端より高エネルギー側で出現)は省略

Page 61: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

61

He 雰囲気下の軟 X線領域での実験

最近では He 雰囲気中で

 転換電子収量法 蛍光法 も可能に

ガソリンエンジン油中の添加剤粘着テープ中のイオウ、塩素

石炭中のイオウ

Li電池電極中のイオウ

空気中のアルゴン

従来は UHV中で電子収量法

Page 62: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

62

蛍光法と CEY法MoS2

0

0.05

0.1

0.15

0.2

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

S1231

IF/I0

IF/I0

E/keV

Scotch tape

Scotch tape

0

0.1

0.2

0.3

0.4

0.5

2.44 2.46 2.48 2.5 2.52

S1a29

IF/I0

IF/I0

E/keV

Illinois No.6 coal 3wt% S

coal

TEY

蛍光法では自己吸収のため歪んでい

Page 63: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

63

半導体検出器 (SSD)

フィルターやスリットではなく電気的に波高分析•S/N = S/(S+B)1/2, S/B~ 1/200

•蛍光 X線と散乱 X線の分離がキー

2

3

4

5

6

7

8

11.5 12 12.5 13

Au5908

t

E/keV

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

11.5 12 12.5 13

Au5a38

ut(raw)ut(cor)

tE/keV

(b)

4×10-4 Au in AgX

 蛍光 XAFS用電離箱

エネルギー分析、調整・保守に手間、高価、数え落とし補正が必要

多素子半導体検出器

19 素子 SSD

Page 64: 蛍光 XAFS 用電離箱を用いた蛍光 XAFS 実験

64

おわりに

• 蛍光 XAFS法の利点と限界を正しく理解して、上手く使って、研究成果を上げて下さい。