ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX...

27
ЛАБОРАТОРНЫЕ РАБОТЫ «РАСЧЕТ ТЕПЛОВЫХ ПОЛЕЙ В ПРОВОДНИКЕ С ПОМОЩЬЮ МОДУЛЯ PDE-TOOLBOX ПАКЕТА MATLAB» Удовенко В.А. Государственное автономное образовательное учреждение высшего профессионального образования «Южно-Российский государственный политехнический университет (Новочеркасский политехнический институт) имени М.И. Платова» Новочеркасск, Россия Растеряев Н.В. Филиал Федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Новошахтинске Ростовской области (филиал ЮФУ в г. Новошахтинске) Новошахтинск, Россия CALCULATION OF THERMAL FIELDS IN THE CONDUCTOR WITH MATLAB IN PDE-TOOLBOX MODULE Udovenko V.A. Federal State Budget Educational Institution of Higher Professional University «Platov South-Russian State Polytechnic University (NPI)» Rasteryaev N.V. Filial of Federal public autonomous educational institution of higher learning "Southern federal university" in Novoshakhtinsk the Rostov region (YuFU filial in Novoshakhtinsk) Характерной особенностью современной науки и высокотехнологического производства является широкое использование математического моделирова- ния, средств вычислительной техники и специализированного программного обеспечения для решения сложных научных и производственных задач. Поэтому базовый учебный план подготовки бакалавров и магистров по направлению

Transcript of ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX...

Page 1: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

ЛАБОРАТОРНЫЕ РАБОТЫ «РАСЧЕТ ТЕПЛОВЫХ ПОЛЕЙ В

ПРОВОДНИКЕ С ПОМОЩЬЮ МОДУЛЯ PDE-TOOLBOX ПАКЕТА

MATLAB»

Удовенко В.А.

Государственное автономное образовательное учреждение высшего

профессионального образования «Южно-Российский государственный

политехнический университет (Новочеркасский политехнический институт)

имени М.И. Платова»

Новочеркасск, Россия

Растеряев Н.В.

Филиал Федерального государственного автономного образовательного

учреждения высшего профессионального образования «Южный федеральный

университет» в г. Новошахтинске Ростовской области

(филиал ЮФУ в г. Новошахтинске)

Новошахтинск, Россия

CALCULATION OF THERMAL FIELDS IN THE CONDUCTOR WITH

MATLAB IN PDE-TOOLBOX MODULE

Udovenko V.A.

Federal State Budget Educational Institution of Higher Professional University

«Platov South-Russian State Polytechnic University (NPI)»

Rasteryaev N.V.

Filial of Federal public autonomous educational institution of higher learning

"Southern federal university" in Novoshakhtinsk the Rostov region

(YuFU filial in Novoshakhtinsk)

Характерной особенностью современной науки и высокотехнологического

производства является широкое использование математического моделирова-

ния, средств вычислительной техники и специализированного программного

обеспечения для решения сложных научных и производственных задач. Поэтому

базовый учебный план подготовки бакалавров и магистров по направлению

Page 2: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

220700 Автоматизация технологических процессов и производств включает в

себя изучение таких дисциплин как «Программно-математический инструмента-

рий», «Математическое моделирование», «Основы компьютерного моделирова-

ния технологических процессов», «Моделирование систем и процессов».

Большой круг задач моделирования технологических процессов и аппара-

тов химической и пищевой промышленности связан с необходимостью расчета

тепловых, концентрационных и электрических полей. Математическая поста-

новка таких задач приводит к необходимости решения дифференциальных урав-

нений и систем дифференциальных уравнений в частных производных. В каче-

стве основного метода при этом используется метод конечных элементов, реали-

зованный во многих пакетах прикладных программ, например, пакет MATLAB.

В предложенных лабораторных работах излагается методика расчета теп-

ловых полей в проводнике с помощью модуля PDE-Toolbox пакета MATLAB.

1. МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ

СВЕДЕНИЯ

Метод конечных элементов – численный метод решения дифференциаль-

ных уравнений в частных производных, возникающих при решении различных

прикладных задач. Данный метод является наиболее универсальным и может

быть использован для задач теплообмена, механики твердого тела, гидродина-

мики и электродинамики, где применение аналитических методов решения

крайне затруднено или невозможно. В качестве основы метода используется воз-

можность аппроксимации линейной функции линейной комбинацией кусочно-

линейных базисных функций (1), определенных на конечном числе подобластей

���� = ��������.�

�� �1�

Область, в которой нужно найти решение дифференциальных уравнений,

разбивается на конечное число элементов (подобластей). В каждом из этих эле-

ментов выбирается вид аппроксимирующей функции (чаще всего это полином

Page 3: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

первой или большей степени). Коэффициенты аппроксимирующих функций

обычно ищутся из условия равенства значения соседних функций на границах

между элементами (в узлах), а вне своего элемента аппроксимирующая функция

равна нулю. Затем эти коэффициенты выражаются через значения функций в уз-

лах элементов. Составляется система алгебраических уравнений, количество ко-

торых будет равно числу неизвестных в узлах. Для применения метода конечных

элементов необходимо:

1) дискретизировать область;

2) выбрать базисные функции;

3) перейти к дискретной постановке задачи;

4) вычислить коэффициенты в системе линейных алгебраических

уравнений;

5) решить систему уравнений;

6) проверить решение на адекватность.

Рассмотрим подробнее каждый этап применения МКЭ. В процессе дискре-

тизации область решения разбивается на множество элементов. Это могут быть

как треугольники, так и тетраэдры (для трехмерного случая). На узлах сетки бу-

дет определяться искомое решение, а форма обрабатываемой области может

быть любой. Здесь, также, проявляется одно из основных достоинств метода ко-

нечных элементов – можно увеличить частоту сетки там, где нужно более точное

решение (рис. 1б), или наоборот, уменьшить число элементов там, где столь вы-

сокая точность не нужна (рис. 1а).

а) – стандартный вариант разбиения; б) – вариант с увеличенной точностью. Рис 1. Дискретизация области решения

а) б)

Page 4: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Далее используется метод Галёркина. Для его применения нужно подо-

брать базисные функции, которые будут удовлетворять краевым условиям и в

пределах бесконечного количества элементов базиса образуют полную систему.

То есть, если � = ���, ��, … , ��� – значения функции, то должно выполняться

следующее условие (2)

����� = � 1, � = ��0, � ∈ �����

. (2)

Это значит, что подставляя какое-либо значение функции в узел сетки, мы

получим значение температуры ��, при условии, что ����� в этом узле равно еди-

нице. Во всех остальных узлах сетки базисная функция должна равняться нулю.

Подбор самих базисных функций и их конкретный вид зависит от специ-

фики задачи и удобства работы. Чаще всего применяются ортогональные поли-

номы (полином Лежандра, Чебышева и т.д.), либо же тригонометрические функ-

ции.

В общем случае можно найти решение краевой задачи для уравнения вида

������� = 0. Здесь оператор ��� может содержать частные или полные произ-

водные искомой функции. Решение представляется в виде разложения по базису

(1), затем необходимо подставить приближенное решение в исходное дифферен-

циальное уравнение и вычислить погрешность измерений

� ���������

�� ! = "���.

Для неоднородного уравнения��#� = $��� погрешность (невязка) будет

определяться из выражения "��� = ��#� − $���. После этого выдвигается условие ортогональности невязки к базисным

функциям, то есть

&"��������'� = 0(

).

(3)

(4)

(2)

Page 5: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

После этого умножаем на каждую из базисных функций наше уравнение

* ��∑ ���������� � ∗ �-���'� = * $��� ∗ �-���'�,.. / = 1,�

и получаем систему, которая решается в два этапа – сначала вычисляем методами

численного интегрирования каждый интеграл поэлементно, затем полученные

матрицы ансамблируются в глобальную систему, которая также легко поддается

расчетам с использованием ЭВМ.

Уравнения, определяющие элементы в задачах могут быть получены не

только с помощью метода Галёркина, но и многих других вариантов метода взве-

шенных невязок, например метод наименьших квадратов. Данное свойство поз-

волило использовать МКЭ при решении множества разных типов дифференци-

альных уравнений.

Долгое время широкому распространению МКЭ мешало отсутствие алго-

ритмов автоматического разбиения области на «почти равносторонние» тре-

угольники (погрешность, в зависимости от вариации метода, обратно пропорци-

ональна синусу или самого острого, или самого тупого угла в разбиении). Впро-

чем, эту задачу удалось успешно решить (алгоритмы основаны на триангуляции

Делоне), что дало возможность создавать полностью автоматические САПР, ос-

нованные на методе конечных элементов.

Лабораторная работа №1

ИЗУЧЕНИЕ ВОЗМОЖНОСТЕЙ ПАКЕТА MATLAB ДЛЯ РЕШЕНИЯ

ЗАДАЧ ТЕПЛОПРОВОДНОСТИ

Цель работы: Изучить возможности встроенного в MATLAB модуля

PDE-Toolbox. Решить простейшую стационарную задачу теплопроводности

(распределение тепла на теплоизолированной пластине с точечным источником

тепла).

(5)

Page 6: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

1. Пояснения к работе

В программном пакете MATLAB предлагается встроенный инструмент

PDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени-

ями эллиптического/гиперболического типа и определяющий их решение с по-

мощью метода конечных элементов. Геометрия описываемой области в данном

случае может быть только двухмерной.

Запустим MATLAB и введем в рабочее поле команду pdeinit, затем Enter.

Откроется рабочее окно инструмента PDE Toolbox (рис. 1).

Рис. 1.− Рабочее окно инструмента PDE Toolbox

Решение задачи теплопроводности начинается с описания геометрии ис-

следуемой области. Для этого предусмотрен специальный инструментарий.

Сперва зададим границы рабочего поля axes limits. Для этого перейдем в меню

Options, далее Axes Limits… (рис.2).

Page 7: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 2. – Меню Axes Limits

Зададим нужные нам значения � ∈ �−5; 5�, 2 ∈ �−1; 1�. Затем нужно опи-

сать геометрию исследуемой области.

Для этого выберем в меню Draw, Ellipse/circle (centered) и левой кнопкой

мыши построим эллипс произвольного размера и центром в начале координат

(рис. 3).

Рис. 3.−Построение исследуемой области

Теперь построим на данном эллипсе окружность, с меньшим радиусом.

Она будет играть роль точечного источника тепла. Программа автоматически

присваивает ей обозначение С1 (рис. 4).

Page 8: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 4.− Исследуемая область с точечным источником тепла

На этом описание геометрии исследуемой области завершается. Следую-

щий этап – задание краевых условий. Перейдем в пункт меню Boundary, далее

Boundary Mode. Так как пластина теплоизолированная, то на ее краях будет вы-

полняться условие Неймана. Для выделения всей границы эллипса E1 необхо-

димо зажать клавишу Shift и поочередно зажать на каждую часть границы (крас-

ная линия) левой кнопкой мыши (рис.5). Затем двойным щелчком открыть окно

настройки краевых условий.

Page 9: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 5.− Выделение границы, для задания краевых условий

В случае термоизоляции пластины положим значения Heat flux (тепловой

поток) и Heat transfer coefficient (коэффициент конвективной теплопередачи)

равными нулю (рис.6).

Рис. 6.− Окно настройки краевых условий

Перейдем к следующему этапу решения задачи − спецификации коэффи-

циентов дифференциального уравнения. Для этого перейдем в пункт меню PDE,

Page 10: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

далее PDE Mode. Отметим также галочкой Show subdomain labels (показать

метки подобластей) (рис. 7).

Рис. 7.− Спецификация коэффициентов дифференциального уравнения

Зададим коэффициенты дифференциального уравнения для зоны 1. Из-

вестны коэффициенты теплопроводности каждого из материалов, мощность

внутренних источников тепла, а также внешняя температура (рис.8а). Анало-

гично − для зоны 2. (рис.8б).

Рис. 8а – Спецификация коэффициентов для зоны 1

Page 11: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 8б – Спецификация коэффициентов для зоны 2

После спецификации коэффициентов диф. уравнения строим вычисли-

тельную сетку (см. Триангуляция Делоне). Количество узлов и ее частоту можно

регулировать. Переходим в меню Mesh, далее Mesh Mode (рис. 9).

Рис. 9.− Меню Mesh Mode

Для решения данной демонстрационной задачи высокая точность не тре-

буется, поэтому оставим частоту сетки по умолчанию.

После этого можно искать решение дифференциального уравнения. Пере-

ходим в меню Solve, далее Solve PDE. Решение будет представлено в следующем

виде: (рис. 10).

Page 12: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 10.− Искомое распределение теплового поля

Теперь можно настроить визуализацию решения. Перейдем в меню Plot,

далее Parameters… Поставим галочки на против Contour (контур) и Arrows (тем-

пературный градиент) (рис. 11).

Рис. 11.− Окно настройки визуализации решения

Page 13: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Тогда вид решения изменится следующим образом: (рис. 12).

Рис. 12.− Распределение теплового поля

Из рисунка можно сделать выводы о распределении тепла по поверхности

пластины.

2. Содержание отчета

1. Наименование работы, ее цель и краткие теоретические сведения.

2. Пошаговое решение поставленной задачи, с необходимыми пояснениями (гео-

метрия области и мощность тепловых источников задается преподавателем).

3. Выводы по работе.

3.Контрольные вопросы

1. Дифференциальные уравнения в частных производных. Общие сведения.

2. Метод конечных элементов, применение его в различных областях науки и

техники.

3. Метод Галёркина и подбор базисной функции.

Page 14: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

4. Триангуляция Делоне.

Лабораторная работа №2

СТАЦИОНАРНАЯ ЗАДАЧА РАСПРЕДЕЛЕНИЯ ТЕПЛА В

ПРОВОДНИКЕ

Цель работы :Углубить знания о работе встроенного в MATLAB модуля

PDE-Toolbox и методе конечных элементов. Решить задачу распределения

тепла в проводнике.

1. Пояснения к работе

Рассмотрим поэтапно стационарную задачу распределения тепла в медном

кабеле. Пользовательский интерфейс представлен на рис.1

Рис. 1.− Пользовательский интерфейс

Сначала зададим геометрию исследуемой области. Для этого можно вос-

пользоваться пунктом меню Draw (Рисовать) или выбрать требуемый объект на

Page 15: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

панели инструментов. Рисуем провод в разрезе, который состоит из трех частей

– медный проводник, воздушный зазор и изолятор.

Зайдем в пункт меню Options (настройки) и далее Axes Limits. Зададим там

нужные границы рабочего поля (рис. 2). Выберем Draw, Ellipse/circle (centered) и

правой кнопкой мыши построим круг радиусом 8 мм с центром в начале коорди-

нат. (рис. 3)

Рис. 2.− Задание границ рабочего поля

Рис. 3.−Построение исследуемой области

Мы начертили внешнюю оболочку кабеля. Теперь нужно начертить контур

проводника и воздушного зазора. Аналогично чертим центрированные окружно-

сти радиусом 4,5 и 5 мм соответственно. (рис. 4)

Page 16: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 4.−Построение контура проводника и воздушного зазора

Программа дает каждой области наименование, в данном случае их здесь

три C1, C2 и C3. В окне Set Formula можно исключить какое-либо множество из

расчета. В данном случае все остается по умолчанию: C1+C2+C3.

Мы обозначили геометрию области расчета. Теперь необходимо задать

краевые условия. Переходим к следующему этапу решения данной задачи. Вы-

бираем панель Boundary, далее активируем Boundary Mode (рис. 5).

Page 17: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 5.− Выделение границы, для задания краевых условий

В открывшемся диалоговом окне (рис. 6) выбирают тип граничного усло-

вия (в рассматриваемой задаче – обобщенное условие Нейманна (Neumann)) и

задают коэффициенты g (Heat flux, плотность теплового потока) и q (Heat transfer

coefficient), коэффициент теплоотдачи. При указанных числовых значениях мы

специфицировали граничное условие 3-го рода, приняв, что температура объекта

T отсчитывается от температуры окружающей среды. Коэффициент теплопро-

водности тела (обозначение k в уравнении Boundary condition equation) будет

определен далее при спецификации коэффициентов дифференциального уравне-

ния.

Рис. 6.−Задание граничного условия

Page 18: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Граничные условия определены, и мы можем переходить к следующему

этапу решения задачи – спецификации коэффициентов дифференциального

уравнения. Для этого активируем панель PDE, и далее PDE Mode. Для удобства

также отметим галочкой параметр Show Subdomain Labels (Показать метки по-

добластей) (рис. 7).

Рис. 7.− Спецификации коэффициентов дифференциального уравнения

1 – изоляционный материал;

2 – воздушный зазор;

3 – медный проводник.

Теперь нужно задать коэффициенты дифференциального уравнения для

каждой области. Известны коэффициенты теплопроводности каждого из матери-

алов, мощность внутренних источников тепла, а также внешняя температура.

Начнем с медного проводника (область 3). Спецификация коэффициентов

представлена на рис. 8:

Page 19: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис.8.−Задание коэффициентов дифференциального уравнения

Из рисунка видны наши заданные величины – коэффициент теплопровод-

ности k = 385(Вт/(м·K)), мощность источника тепла Q = 0,1кДж, а также внешняя

температура Text = 20OC.

Аналогичным образом поступим и с остальными областями 2 и 1 соответ-

ственно: (рис. 9, рис. 10)

Рис.9.−Задание коэффициентов для области 1

Page 20: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 10.−Задание коэффициентов для области 2

Всё, мы задали все необходимые параметры и можно искать решение за-

дачи. Перейдем в меню Mesh (сетка) и построим её (рис. 11) Можно увеличивать

её частоту, если необходима высокая точность решения.

Рис. 11.−Построение сетки на исследуемой области

Page 21: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Теперь активируем меню Solve (решение) и нажмем на Solve PDE. Решение

задачи будет представлено графическом виде (рис. 12).

Рис. 12.− Решение задачи в графическом виде

Визуализация решения весьма гибко настраивается с помощью меню Plots

и Parameters (Plot Selection) (рис. 13). Сделаем визуализацию решения трехмер-

ной.

Рис. 13.−Трехмерное представление решения

Page 22: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

2. Содержание отчета

1. Наименование работы, ее цель и краткие теоретические сведения.

2. Пошаговое решение поставленной задачи, с необходимыми пояснениями и в

соответствии с вариантом.

3. Выводы по работе.

3.Контрольные вопросы

1. Коэффициенты теплопроводности различных веществ

2. Стационарная задача распределения тепла

3. Зависимость температуры проводника от параметров протекающего в нем

тока

4. Теплопроводность воздуха

Варианты заданий:

Вариант 1 2 3 4 5 d1, мм 8 9 6 5 11 d2, мм 4,5 5 4,3 3,2 6 d3, мм 5 5,5 4,8 3,8 6,5

Материал проводника

медь алюминий алюминий медь алюминий

Материал изоляции

резина ПВХ полиэтилен полипропилен ПВХ

Лабораторная работа №3

СТАЦИОНАРНАЯ НЕЛИНЕЙНАЯ ЗАДАЧА РАСПРЕДЕЛЕНИЯ ТЕПЛА

В ПРОВОДНИКЕ

Цель работы :Углубить знания о работе встроенного в MATLAB модуля

PDE-Toolbox и методе конечных элементов. Решить нелинейную задачу распре-

деления тепла в проводнике.

1. Пояснения к работе

В качестве второго примера рассмотрим распределение тепла в

четырехпроводном кабеле. Геометрия исследуемой области показана на рис.1.

Page 23: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 1.− Геометрия исследуемой области

В данном случае следует учесть зависимость коэффициента теплопровод-

ности от температуры вещества. Например, для зоны 2 (воздушный зазор): пусть

коэффициент теплопроводности воздуха будет увеличиваться на 0,01 при повы-

шении температуры на один градус (рис. 2).

Рис. 2.− Зависимость коэффициента теплопроводности от температуры

В поле k (Coeff. of heat conduction) – коэффициент теплопроводности. Здесь

зададим зависимость, с которой этот коэффициент будет меняться с изменением

температуры. Уравнение задается согласно синтаксису Matlab, значение внеш-

Page 24: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

ней температуры записывается теперь не в ячейку External temperature, а в урав-

нение K1.(u+20). С этого момента будет начинаться отсчет. Мы можем аналогич-

ным образом задать зависимость для изменения мощности источника тепла и т.п.

Зададим также изменение коэффициента теплопроводности для остальных

зон. Например, для медных проводников уравнение будет иметь вид, представ-

ленное в следующем окне (рис.3).

Рис. 3.− Задание коэффициента теплопроводности для медных проводников

Для изоляционного материала (рис. 4):

Рис. 4.− Задание коэффициента теплопроводности для изоляционного материала

Далее строим вычислительную сетку на заданной области (аналогично

предыдущей работе). После этого нужно решить данную задачу. Т.к. она стала

нелинейной, то необходимо использовать нелинейный решатель. Для этого ак-

тивируем меню Solve, далее Parameters…(рис.5).

Page 25: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

Рис. 5.−Задание параметров решения

По умолчанию здесь выставлено значение нелинейной погрешности рав-

ное 1e − 4. В данном случае система способна решить задачу с такой степенью

точности. Если задать более сложные условия, то значение нелинейной погреш-

ности можно уменьшить. Зададим теперь нужные значения мощности источни-

ков тепла в проводниках и можем запускать решение задачи (рис. 6).

Рис. 6

Page 26: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

2. Содержание отчета

1. Наименование работы, ее цель и краткие теоретические сведения.

2. Пошаговое решение поставленной задачи, с необходимыми пояснениями, в

соответствии с вариантом

3. Визуализация решения задачи в двумерном и трехмерном виде

4. Выводы по работе.

3. Контрольные вопросы

1. Нелинейные дифференциальные уравнения в частных производных

2. Зависимость теплопроводности различных веществ от их температуры

Варианты заданий: d1 – диаметр кабеля, d2 – диаметр внутренней части кабеля

(без изоляции), d3 – диаметр проводника

Вариант 1 2 3 4 5 d1, мм 8 9 15 13 11 d2, мм 6 7 10 9 8 d3, мм 5 5,5 4,8 3,8 6,5

Материал проводника

медь алюминий алюминий медь алюминий

Материал изоляции

резина ПВХ полиэтилен полипропилен ПВХ

Переменные коэффици-енты (зона)

проводник воздушный зазор

проводник изоляция воздушный зазор

K1 0,07 0,026 0,05 0,04 0,023 Внешняя

температура 20 18 15 32 24

Page 27: ЛАБОРАТОРНЫЕ РАБОТЫ РАСЧЕТ ТЕПЛОВЫХ · PDF filePDE TOOLBOX (Partial Differential Equation Toolbox), работающий с уравнени - ... поток

ЛИТЕРАТУРА

1. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидроме-

ханика и теплообмен: В 2–х томах. М.: Мир, 1990. 728 с.

2. Базаров И.П. Термодинамика. М.:Высшая школа. 1991. 376 с.

3. Вукалович М.П., Новиков И.И. Техническая термодинамика. М.:

Энергия, 1968. 496 с.

4. Галлагер Р. Метод конечных элементов. Основы: Пер. с англ. − М.:

Мир, 1984

5. Зенкевич О., Морган К. Конечные элементы и аппроксимация: Пер.

с англ. − М.: Мир, 1986.