-Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph...

28
M.C. White, Chem 153 π π -allyl chemistry -375- Week of December 9, 2002 π-Trimethylenemethane cyclization O O Ph SiMe 3 AcO (Ph 3 P) 4 Pd O O Ph H H Provide a mechanism for the following transformation. mixture of stereoisomers + toluene, L n Pd (0) Ph AcO SiMe 3 Ph SiMe 3 OAc Ph L n Pd (II) L n Pd (II) O O Ph Pd (II) L n O O Ph Pd (II) L n O O Ph H H Pd (0) L n O O Ph H H Pd (0) H Trost JACS 1980 (102) 6359, JACS 1983 (105) 2326.

Transcript of -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph...

Page 1: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 ππππ-allyl chemistry -375- Week of December 9, 2002

π-Trimethylenemethane cyclization

O O

Ph

SiMe3AcO

(Ph3P)4Pd

O O

Ph

H

H

Provide a mechanism for the following transformation.

mixture of stereoisomers

+toluene, ∆∆∆∆

LnPd(0)Ph

AcO

SiMe3 Ph SiMe3OAc Ph

LnPd(II)

LnPd(II)

O O

Ph

Pd(II)Ln

O O

Ph

Pd(II)Ln

O O

Ph

H

H

Pd(0)Ln

O O

Ph

H

H

Pd(0)

H

Trost JACS 1980 (102) 6359, JACS 1983 (105) 2326.

Page 2: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -376- Week of December 9, 2002

Metal Carbenes

singletcarbene

M CX

sp2

pz

R'

R

O C LnM=CR2

δ+δ-

Fischer Carbenes (formally derived from a singlet carbene)

(CO)5Cr0OMe

Ph OR

(CO)5CrII

PhOMe

OR

(CO)5CrII

Ph OMe

OR

COPh

OMeRO

Cr0(CO)6

Fischer Chem. Ber. 1972 (105) 3966.

· Low oxidation state, late metals· π-acceptor ligands on the metal· π-donar substituents on the carbene C

δ+δ-

+

· electrophilic carbenes· σ-donation is stronger than π-backbonding resulting in a partial positive charge on thecarbene carbon

note: that the formal charge for the carbene unit is zero, the #of electrons donated is 2.

π-donation from the carbene substituents competes w/π-donation from the metal

The presence of strongπ-acceptor ligands on themetal renders π-backbonding into the empty carbene porbital weak.

R'

X = heteroatoms

likened to a carbonyl:O

OMe

Me

δ+δ-

18 e-

triplet carbene

Schrock Carbenes (formally derived from a triplet carbene)

M CR

sp2

pz

R

· The metal-carbon bonds are morecovalent in nature and highly polarizedtowards C resulting in a partial negative charge on the carbene C.

alkyl (or H)

XR'

R'

LnM=CR2

δ-δ+

· High oxidation state, early metals· Non-π acceptor ligands on the metal (often π-donor ligands such as Cp or Cl)· alkyl (or H) substituents on the carbene.

· nucleophilic carbenes

The first characterized Schrock carbene:

TaV

t-Bu

t-Bu

t-Bu

t-Bu

δ-δ+

+

likened to a phosphorus ylide:Ph3P

t-Bu

δ-δ+

O

pentane/N2

O2 and moisture sensitive

-2 charge/4 electron donor

10 e-

(t-BuCH2)3TaV

t-Bu

O

(t-BuCH2)3TaV

O

t-Bu

highly oxophilic,early metal

(t-BuCH2)3TaV O

t-Bu

+

85%

Schrock JACS 1974 (96) 6796, 1976 (98) 5399.

M CR

sp2

pz

R

alkyl (or H)

XR'

R'

extreme π-backbonding: where the 2e- in theM(dπ) orbital aretransfered to the C(pz)orbital.

Page 3: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -377- Week of December 9, 2002

The first isolated and characterizedSchrock carbenes

The first isolated Schrock carbene:

TaV

Me

MeMe

18 e-

C(Ph)3 BF4

MeC(Ph)3

TaV

Me

CH2

16 e-

BF4H

base TaV

Me

CH2

18 e-

Schrock JACS 1975 (97) 6577, 6579.

2.026 Å

2.246Å

~ 10 % shorter Ta-C bondis suggestive of a significant amount of db character

The first characterized Schrock carbene:

(t-BuCH2)2(Cl)TaV t-BuCl

H

10 e- complex

α-agostic interactionprovides the metalw/extra electron density

2 eq t-BuCH2Li (t-BuCH2)2(Cl)TaV t-Bu

H

t-Bu

steric conjestion induces direct α-proton abstraction by one of the neopentane ligands resulting in the metal alkylidene.

(t-BuCH2)2TaV

t-Bu

ClCMe4

(t-BuCH2)3TaV

t-Bu

LiCl LiCl

Schrock JACS 1974 (96) 6796, Acc. Chem. Res. 1979 (12) 98.

Page 4: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -378- Week of December 9, 2002

Carbonyl methylenation: Tebbe’s reagent

TiIV

Cl

Cl

16 e-

+ 2 AlMe3

toluene

rt

TiIV

Cl

16 e-

AlMe2

CH4, AlMe2Cl

Tebbe's reagent: Tebbe JACS 1978 (100) 3611.

Tebbe's reagent 0.5M soln 100 mL/$363

(Aldrich 2001) TiIV

ClAlMe2 TiIV

O

TiIV

OR

R

CH2

16 e-

TiIV

ClAlMe2

stoichiometric

toluene, -15 oC

65%

Synthetic applications:

EtO2C

O

OTBS

OTBS

OBn

OBn

OTBS

OTBSCp2TiCH2ClAlMe2

tol-THF-Py,

-78oC to -15oC

82%

EtO2C

OTBS

OTBS

OBn

OBn

OTBS

OTBS

key intermediate in the total synthesisof Hikizimycin

Schreiber JACS 1990 (112) 9657.

OR

O

O

O Cp2TiCH2ClAlMe2

THF, rt, 1h85%

ORO

O

Nicolaou ACIEE 1994 (33), 2184, 2187, 2190

key intermediate in the total synthesisof Zaragozic acid

In situ prep: Grubbs JOC 1985 (50) 2386.

Page 5: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -379- Week of December 9, 2002

Tebbe’s reagent

TiIV

ClAlMe2 TiIV

16 e-

+

AlClMe2

TiIV

TiIV

Tebbe's reagent reacts with olefins to give metallocyclobutanes:

Titanium metallocyclobutane 1 reacts with acid chlorides to form Ti enolates.

1

Grubbs OM 1982 (1) 1658.

O

ClPh

tol, -20oC to 0oC

OTiClCp2

PhPhCHO

O

Ph

OH

Ph69%

TiIVTiIV O

ClPh

OCl

Ph

Grubbs JACS 1983 (105) 1665.

Page 6: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -380- Week of December 9, 2002

Olefin metathesis: Tebbe’s reagent

TiIV

ClAlMe2 TiIV

16 e-

+

t-Bu

AlClMe2

TiIV

t-Bu

Tebbe's reagent reacts with olefins to give titanacyclobutanes:

1

D

D D

t-Bu t-Bu

TiIV

t-Bu

D

t-Bu t-BuD

D

TiIV

D

D D

t-But-Bu

TiIV

D

DD

t-Bu

TiIV

t-Bu

D

DD

TiIV

t-Bu

DD

TiIV

t-Bu

DD

t-Bu

t-Bu

D

t-Bu

t-Bu

t-BuD

D

+1, cat

+

Titanacyclobutanes are effective catalysts for α-olefin metathesis .

Grubbs JACS 1982 (104) 7491.

O

t-BuO

O

t-BuO

TiCp2

O

t-BuO

TiCp2

t-BuO

HO OH

O

O

H H

H

Cp2TiCH2ClAlMe2

DMAP, benzene

25oC

90oC

p-TsOH

81% overallyield

Cp2Ti(O)

(±)-Capnellene

First application of olefin metathesis to synthesis:

Grubbs JACS 1986 (108) 855.

Page 7: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -381- Week of December 9, 2002

Carbonyl methylenation: Petasis reagent

OO

H

H3C

Me

O O

H3C O

OH3C OH3C

OTiCp2CD3

H3C CD3

H

H3C

Me

O

D3C

OH3C

H3C

OH3C

D

D

O

OCH3

O

OCH3

O

8 8 62 %

83 %

aldehydes ketones

esters chemoselectivity for ketones in the presence of esters

80 % 60 %

Cp2TiMe 2

3 eq.

toluene

60-65 oC

Cp2TiMe 2

3 eq.

toluene

60-65 oC

Cp2TiMe 2

3 eq.

toluene

60-65 oC

Cp2TiMe 2

1 eq.

toluene

60-65 oC

Based on deuterium labelling studies, Petasis originally proposed a mechanism involving initial carbonyl complexation to Cp2TiMe2 followed by methyl transfer and subsequent loss of methane and titanocene oxide.

Petasis JACS 1990 112 6392.

Difficulties with the Tebbe and Grubbs' Ti-mediated olefinations include the high cost of Ti reagent, long preparation times, short shelf life, and the need for specialtechniques due to sensitivity to air and water. Many of these difficulties are overcome with Petasis' procedure which uses dimethyltitanocene. Petasis JACS 1990 112 6392.

11

Cp2Ti(CD3)2

11 ?11

11

~50%

"significant amount of deuterium detected at C-3."

H313C O

OH3CO

TiCp2

H313C

EtO

H313C

OH3C

<1% incorporation of 13C

label into methylene position

Hughes finds that in the reaction with C-13 labelled ethyl acetate shown below, scrambling of the label only occurs if trifluoroacetic acid is present and proposes that this scrambling is due to an acid-catalyzed, degenerate [1,3]-hydrogen shift. He proposes that the scrambling observed by Petasis was likely due to adventitious acid present on all acid-washed glassware. To support this argument, Hughes repeated the deuterium labelling experiments reported by Petasis using glassware that was not acid washed and, contrary to Petasis, observed no scrambling of the label.

O Me

TiCp2

Me

O

Cp2Ti

CH2

H

CH3

CH2

O TiCp2

Petasis JACS 1990 112 6392.

Me

TiCp2

MeO

TiCp2

O

TiCp2

CH2

O TiCp2

Hughes uses these experiments in conjunction with detailed kinetic studies to provide strong support for a mechanism involving a titanium carbene.

Hughes OM 1996 15 663.

12

3

12

3

Page 8: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -382- Week of December 9, 2002

Olefin metathesisThe first reports of olefin cross metathesis (heterogeneous cat) by Banks:

2 Mo(CO)6 supported on Al

150oC, 30 atm.+

Banks Ind. and Eng. Chem. (Product Res. and Development) 1964 (3) 170.Haines Chem. Soc. Rev. 1975 (4) 155.

The first report of ROMP (ring opening metathesis polymerzation):

MXn + Al(Et)3

nMXn = TiCl4,ZrCl4, MoCl5, WCl6

Natta Makromol. Chem. 1963 (69) 163.Natta ACIEE 1964 (3) 723.

Well-defined WVI and MoVI olefin cross metathesis and ROMP catalysts:

WVI

N

t-BuO

O

F3C

H3C

F3C

F3CF3C

CH3

i-Pr i-Pr

MoVI

N

t-BuO

O

F3CH3C

F3C

F3CF3C

CH3

i-Pr i-Pr

· Wittig-type chemistry with aldehydes>ketones>> and esters(slow rates).

· Wittig-type chemistrywith aldehydes>>ketones (slow rates).

Schrock JACS 1986 (108) 2771.Schrock JACS 1990 (112) 3875, 8378;1991 (113) 6899.

Olefin cross metathesis:

Mn

t-Bu

12 e- 12 e-

Mn

t-Bu

Mn

Mn

Mn

Mn

ROMP (Ring opening metathesis polymerization)

Mn

R M

R

MnR

MnR

MnR

m

propagation

PhCHO

PhR

m

termination

+ Mn=O

initiation

Often called a "living polymerization" because termination only occurs uponaddition of a capping unit (oftenaldehyde).

Grubbs Science 1989 (243) 907.

Page 9: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -383- Week of December 9, 2002

Mo-mediated ring closing metathesis (RCM) of acyclic diene ethers

O PhO Ph

Me

benzene, rt15 min

92 % yield

O Ph

Me

O

Me

Ph

92 % yield

benzene, rt

15 min

O

O

Me

O

BnO OBn

Me

O

O

O

BnO

OBn

O

O

O

HO

OH

Me

O

Me

Ph

Me

O Ph

MeMebenzene, rt

3 h

93 % yieldMe

OPh

Et

Me

O Ph

benzene, rt4 h

75 % yield

1, 5 mol% 1, 5 mol%

1, 5 mol% 1, 5 mol%

MoV I

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

1

Grubbs JACS 1992 (114) 5426.

1, 12 mol%

85 % 95 %

Sophora compound IGrubbs JOC 1994 (59) 4029.

H2, Pd-C

Grubbs recognized the potential for applying olefin metathesis towards a productive synthetic pathway: RCM (Ring Closing Metathesis)

General mechanism:

X

LnMoVIR

LnMoVI

X

VIMoLn

X

RR

X

LnMoVI

X

LnMoVI

X

5-membered ring formation: dihydrofurans Tri-and tetrasubstituted olefins:

6-membered ring formation: dihydropyrans 7-membered heterocycles

R

Evaporative loss of the low molecularweight acyclic olefin generated and theentropic gain of generating 2 molecules from 1 are thought to be two factorsfavoring the RCM pathway.

An early synthetic application of RCM:

Page 10: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -384- Week of December 9, 2002

Mo-mediated RCM of acyclic diene amines and amides

N

Me

Bn

N

Me

Bn

N

O

R

N

Me

Bn

N

O

R Mo

N

Bn

Me

MoVI

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

N

O

R

N

OF3C

N

Bn

O

N

OF3C

N

Bn

O

benzene, rt3 h

93 % yield

86 % yield

benzene, rt

1 h

benzene, rt15 min

83 % yield

benzene, rt1.5 h

90 % yield

1, 4 mol% 1, 4 mol%

1, 4 mol% 1, 4 mol%1

Grubbs JACS 1992 114 5426.

Formation of 5- and 6-membered lactams via RCM of acyclic diene-amides is hindered by formation of stable chelate intermediates. This may be due to the Lewis acidic properties of the formally 12 e- Mo alkylidene.

1 N

O

R1

N

O

R

Mo

N

O

R

N

O

Bn

Me

N

O

Bn

Mo

Me

N

O

Bn

stablechelate

stablechelate

N

O

BnN

O

Bn

MoEt

N

O

Bn1, 10 mol%benzene

50 oC

1.5 h

74 % yieldEt 80 % yield

1, 10 mol%benzene

50 oC

1.5 h

This problem can be averted by directing the catalytic cycle with appropriate olefin substitution patterns. Because metathesis of monosubstituted olefins by 1 is faster thanthat of disubstituted olefins, the initial Mo alkylidene preferentially forms at the less substituted olefin where intramolecular chelate formation with the amide carbonyl is not favored.

Grubbs JACS 1992 (114) 7324, see also Schrock OM 1989 (8) 2260.

5-membered rings

6-membered rings 7-membered ring - lactam formation

12e-

Page 11: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -385- Week of December 9, 2002

Application of RCM-mediated macrolactam formation in TOS

MoVI

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

HN

Me

O

MeMe O

O

HO Me

OHH2N

Fluvirucin B1(Sch 38516)

HN

Me

OTBS

MeMe O

HN

OTBS

MeMe O

Me

25 mol %

THF (0.01M)

60 oC;

silica column

Hoveyda JACS 1995 117 2943-2944.

60 % yield>98% Z

N

O

Bn

CO2Me

H

N O

MoVI

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

5 mol %

benzene, 50 oC 4 h

63 % yield

N

O

Bn

CO2Me

H

NO

N

H

N

NNH

OH

Manzamine A

Martin TL 1994 35:5 691-694.

The high levels of stereoselectivity in these examples is an exception.Attaining reliable E/Z selectivity isstill an unsolved problem with thischemistry.

Page 12: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -386- Week of December 9, 2002

Synthesis of cycloalkenes via olefin metathesis/carbonyl olefination

OO Ph

3

MoVI

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

MeF3C CF3

O Ph

3

1 eq.

benzene, 20 oC

30 min[M]

OO Ph

3[M]

[M] OO Ph

3

[M] O

O Ph

3

[M] O

86 % yield

olefin metathesis carbonyl olefination

Effecting this process requires an alkylidene whichmetathesizes olefins more rapidly than it olefinatesketones. It had been demonstrated previously that thisMo-alkylidene efficiently metathesizes acyclic mono- and disubstituted alkenes at rt, but requires elevatedtemperatures to olefinate ketones.

six-membered rings seven-membered rings

O

O

Ph

MeO

Ph

Me

as above

84 % yield

O

OBn

OBn

86 % yield

as above

Grubbs JACS 1993 (115) 3800.

Schrock JACS 1990 (112) 3875.

Page 13: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -387- Week of December 9, 2002

Ru alkylidenesO OMe

OMe[RuII(H2O)6 ]2+(Tos)2

H2O

O OMe

OMeH2OnRuII RuIV

2+(Tos)2

R" "

proposed catalytically active species

O

m

MeO OMenote: RuCl3·H2O is also effective. Since identical olefin resonances are

observed by NMR during the reaction as those for RuII/olefin complex A (RuIII

does not form stable olefin complexes), Grubbs speculates that RuIII becomes

reduced in situ to RuII.

A

Grubbs JACS 1988 (110) 960, 7542.

RuII coordination complexes may form RuIV alkylidenes with strained cyclic olefins:

ClRuII

Cl PPh3

PPh3

PPh3

PPh3

+

Ph Ph

CH2Cl2/C6H6

53oC, 11h ClRuIV

Cl

PPh3

PPh3

Ph

Ph

·Stable to H2O (but insoluble pure H2O), alcohols, and acids·Unstable to O2

m

Grubbs JACS 1992 (114) 3974.

Efficient Ru catalyst for acyclic olefin metathesis.

Cl

RuIVCl

PCy3

PCy3

Ph

Ph

stronger σ-donor ligands

·Stable to O2

· High activity for low-strain cyclic olefins and for acyclic olefins.

ClRuIV

Cl

PCy3

PCy3

ClRuIV

Cl

PCy3

PCy3

propagating species: Ruethylidene and Ru propylidene observed by NMR

+

Grubbs JACS 1993 (115) 9858.

·No Wittig-like activity observed even with aldehydes· Poor activity for low-strain cyclic olefins and no activity for acyclic olefins.

Cl

RuIVCl

PCy3

PCy3

Ph

Generation 2 catalyst:

Cl

RuIICl PPh3

PPh3

PPh3

PPh3

1. N2CHR2. PCy3

Advantages of 2 vs. 1: More facile synthesis due to greater availability of diazoalkanes relative tocyclopropenes. Ru catalyst 2 is significantly morereactive than 1 because of more facile initiation.

1

2 Grubbs ACIEE 1995 (34) 2039.

Page 14: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -388- Week of December 9, 2002

Ru vs. Mo alkylidene catalysis of RCM

ClRuIV

Cl

PCy3

PCy3

Ph

Ph

1 (16e-, d4)

vs. MoVI

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

3 (12e-, d0)

Cl

RuIVCl

PCy3

PCy3

Ph

2 (16e-, d4)

Ru alkylidene complexes 1/2 are effective RCM catalyst in the presence of atmospheric O2, water and trace solvent impurities. Reagent grade solvents may be used directly for thereactions. Alternatively, Mo alkylidene complex 3 is highly sensitive to atmospheric O2,moisture and solvent impurities.

BocN

1 (2 mol%)solvent, air

BocN

88-93%

solvents: reagent-grade (undistilled): benzene, CH2Cl2, THF, t-BuOH

Ru alkylidenes 1/2 are highly functional group tolerant. Unlike Mo complex 3 which isknown to react with acids, alcohols, aldehydes (and ketones intramolecularly), complexes 1/2 are stable to these functionalities.

X

1 (2 mol%)C6H6, rt, 1h

XX = CO2H, 87% CH2OH, 88% CHO, 82%

RCM of acyclic diene-amides in 5- and 6-membered lactam formation is not complicated by the formation of stable chelated species as observed with 3. This may be due in part to theless oxophilic character of Ru vs. Mo. Moreover, the 16 e-, d4 Ru complex is lesselectrophilic than the 12e- d0 Mo complex.

N

O

Rn 1 (3 mol%)

C6H6, rt, 1hN

O

Rn

n= 0, 78% 1, 93%

Grubbs JACS 1993 (115) 9856.

Free amines are not tolerated by Ru catalysts and must be masked as the corresponding HCl salts:

NPh H

Cl 1. 1 (4 mol%)CH2Cl2, rt

36 h2. NaOH

NPh

(note: RCM of this amine with 3 took 40 min and proceeded in 89% yield; JACS 1992 (114) 5426)

79%

RCM of substituted olefins is problematic with 1 and 2. Dienesw/sterically demanding and/or electron withdrawing substituents can be cyclized more effectively w/ Mo catalyst 3.

RRO2C CO2R

R

RO2C CO2R

R= Et, 2 93%; 3 >99% t-Bu, 2 NR; 3 96% Ph, 2 25%, 3 97% CO2Me, 2 5%, 3 89%

RO2C CO2R RO2C CO2R

2 NR, 3 93%Grubbs JOC 1997 (62) 7310.

Page 15: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -389- Week of December 9, 2002

Grubbs’ third generation Ru alkylidene catalyst

Cl

RuIVCl

PCy3

PCy3

Ph

1 (16e-, d4)

Cl

RuIVCl

PCy3

Ph

NN MesMes

2 (16e-, d4)

MoV I

NO

O

i-Pr

i-Pr

MeMe

Ph

CF3F3C

Me

Me

F3C CF3

3 (12e-, d0)

t-BuRO2C CO2R

t-Bu

RO2C CO2R

RO2C CO2R

CO2R

CO2R

RO2C CO2R

RO2C CO2R

Improved E/Z ratios for macrocyclization

O

OO

O

LnRuIV

LnRuIV LnRuIV

Grubbs OL 2000 (2) 2145.

OHOH

Increased reactivity of 2 makes it comparable to 3 in many cases:

2 (5 mol%)

45oC, 60 min

recall: 1 gave NP

2 (5 mol%)

45oC, 90 min

>99%

90%

tetrasubstituted olefins

1 gave NP

not entirely general:

2 (5 mol%)

45oC, 24h

31%1 gave NP3 , 93%

Despite increased reactivity 2 has retained it's functional group tolerance (as well as air and H2O stability).

2 (5 mol%)

45oC, 10 min>99%

1, NP; 3, NP

Grubbs OL 1999 (1) 953.

Cross metathesis of terminal olefins with α-carbonyl functionalized olefins:

TBSO

7 CO2CH3

Cl

RuIVCl

PCy3

NN MesMes

4 (16e-, d4)

3 eq.slow addition

0.5 eq.

4 (5 mol%)

40oC, CH2Cl2

62%

TBSO

7

E/Z (>20:1)

CO2CH3

8 22 (1 mol%)

40oC, CH2Cl2, 40 min

>99%

1, E/Z (4.5:1)2, E/Z (11.5:1)

E/Z ratio increases over time with catalyst 2:Most likely due to a secondary "metathetical" isomerization via ring opening metathesis/ ring closing metathesis:

LnRuIV

CO2CH3

The ester-carbene complex isunstable and is not thought to be effective in olefin metathesis.

Grubbs JACS 2000 (122) 3783.

Page 16: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -390- Week of December 9, 2002

Mechanism of Grubbs’ third generation Ru alkylidene catalyst

ClRuIV

Cl

PCy3

PCy3

Ph

1 (16e-, d4)

ClRuIV

Cl

PCy3

Ph

NN MesMes

2 (16e-, d4)

CNR

NR

stable diaminocarbene

Arduengo JACS 1995 (117) 11027.

M

Fisher-type carbene, strong σ-donor

Proposed mechanism:

ClRuIV

Cl

L

PCy3

Ph

L = PCy3

NN MesMes

or Phosphine dissociation

-PCy3

+PCy3 ClRuIV

Cl

LPhk1

k-1

14 e-

Cl

RuIVCl

L

Ph

R

R

k2k-2

R

ClRuIV

Cl

LPh

R

(or R after 1st cycle)

Cl

RuIVCl

LR

Ph

Ph

· The reaction is thought to proceed via adissociative mechanism to form the active 14e- catalytic species. Excess phosphineinhibits the rxn.

· Catalyst 2, whose propagation rates significantly exceed those of 1,exchanges phosphine 2 orders ofmagnitude slower than 1.

· The ratio of k-1/k2 determines if the 14e- intermediatebinds olefin to initiate metathesis or binds phosphine toreturn to its resting state. This ratio is 4 orders ofmagnitude greater for 1 than for 2 (1 = 15 300, 2 = 1.25).While 1 is faster to initiate by loosing phosphine, therebinding of phosphine is competitive with olefin binding. Alternatively, 2 dissociates phosphine more slowly butbinds the olefin with such high affinity that it may cyclethrough many times before binding phosphine andreturning to its resting state.

The strongly σ-donating N-heterocycliccarbene ligand of 2 is thought tosignificantly improve the bindingselectivity of 14 e- intermediate A forrelatively π-acidic olefins vs. σ-donating phosphines.

A

Grubbs JACS 2001 (123) 749.

Page 17: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -391- Week of December 9, 2002

OSiEt3

ClRuIV

Cl

PCy3

PCy3

Ph

PhOSiEt3

OSiEt3

OSiEt3

RuLn

OSiEt3

RuLn

OSiEt3

OSiEt3

RuLn

OSiEt3

RuLn

ClRuIV

Cl

PCy3

PCy3

ROSiEt3

OSiEt3

RuLn

LnRu

OSiEt3

RuLn

OSiEt3

RuLn

OSiEt3

OSiEt3

3 mol%+

1:1unsymmetrical dienyne

Cycle A Cycle B

OSiEt3

Et

RuLn

OSiEt3

EtLnRu

OSiEt3

OSiEt3

LnRu

Me

RuLn

OSiEt3

Me

OSiEt3

83%

Sterically differentiating the two olefins biases the intial site of metallocyclobutane formation and results in selectivity for one cycle vs. the other.

78%

Grubbs JACS 1994 (116) 10801.

Dienyne metathesis

Page 18: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, M.S. Taylor Chem 153 Metal alkylidenes -392- Week of December 9, 2002

O O

Me

Me

H

H

Me OO

OH

(–) - Longithorone A

Me

MeO OTBS

TBSOH

OTBS

OTBS

TBSO OMe

Me

Me

Macrocyclization via ene-yne metathesis

Me

TBSO

OMe

Me OTBS

Ru

PCy3

PCy3Ph

HCl

Cl

OTBS

TBSO OMe

Me

Me

[Ru]

Me

OMe

Me

[Ru]

OTBS

TBSO

Ru

PCy3

PCy3Ph

HCl

Cl

OTBS

TBSO OMe

Me

Me

[Ru]

OTBS

TBSO OMe

Me

Me

(0.5 equiv.)

Ethylene (1 atm)CH2Cl2

>20:1 favoring atropisomer shown

Shair JACS 2002 (124) 773.

the protected benzylic hydroxyl was used to gear the atropisomerism of the aromatic rings during ene-yne metathesis

Me

TBSO

OMe

OTBS

TBSO

Ru

PCy3

PCy3Ph

HCl

Cl

Me

[Ru]

MeO OTBS

TBSOH

OTBS

Me

TBSO

OMe

OTBS[Ru]

TBSO

Me

[Ru]

MeO OTBS

TBSOH

OTBS

Me

MeO OTBS

TBSOH

OTBS

(0.5 equiv.)

Ethylene (1 atm)CH2Cl2

Page 19: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidynes -393- Week of December 9, 2002

Schrock Carbynes (formally derived from a triplet carbene)

M C R

M CR trianionic ligand (-3), 6 electron donor

Early example of catalytic alkyne metathesis by WVI-alkylidyne

Ph Et

WVI

ClCl Cl

OPEt3

Tol, rt

5 mol%

Ph Ph

+

Et Et

WLn

R

WLn

RPh

Et

WLn

RPh

Et

Ph Et Ph R

Schrock JACS 1981 (103) 3932.

Ring-closing diyne metathesis: Furstner ACIEE 1998 (37) 1734.

O

OO

O

WVI

(Me)3CO(Me)3CO

OC(Me)3

O

OO

O

4-6 mol%

C6H5Cl, Ar, 80oC73%

Functional group tolerance demonstrated for esters, amides, and sulfones.

note: catalyst isincompatible with terminal alkynes.

Lindlar hydrogenationstereoselectively generates Z-alkenes (still anunsolved problem forRCM of alkenes).

Novel Mo alkyne metathesis catalyst:

MoIV

Cl

N NN

N

O

O

O

O

O

OO

O

N

It is unclear how the halide Mo catalyts initiates the catalytic cycle. Thiscatalyst demonstrates increasedfunctional group tolerance (relative tothe W catalyst) for basic amines,thioethers, and ketones.

Furstner JACS 1999 (121) 9453.

Diyne metathesis

Page 20: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White/Q. Chen Chem 153 Metal alkylidynes -394- Week of December 9, 2002

OO

ROOR

O

OR

ORO

RO O

OR

CH3

CH3

O

H3C

OO

ROOR

O

OR

ORO

RO O

OR

CH3

O

N MoN

N

DDQ

R = PMB (note that this Mo-based catalystrequires protection of the hydroxyl groups.

Sophorolipid lactone

CH2Cl2/toluene, 80 °C

OO

ROOR

O

OR

ORO

RO O

OR

CH3

O

78% yield

H2 (1 atm)Lindlar catalyst

quinoline

CH2Cl2, rt

Corresponding RCM of a related substrate with terminal olefins gave 3:1 olefin ratio favoring the

undesired trans isomer.

OO

HOOH

O

OH

OHO

HO O

OH

CH3

OCH2Cl2/MeOH (18:1)

global deprotection

quantitative conversion

rt, 8 h

93 % yield

10 mol%

known to generate a mixture of LnMo-Cland LnMo CH , both known to initiate

diyne metathesis.

Ring-closing alkyne metathesis in TOS

Fürstner JOC 2000 (65) 8758.

Page 21: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Metal alkylidenes -395- Week of December 9, 2002

Asymmetric ring-closing metathesis with chiral molybdenum alkylidene complexes

R

MeMe

O

[Mo]

[Mo]

R

R

MoVI

N

OO

Me Me

Me

PhMe

R

R

O

Me

HMe

AcO

MoVI

NO

O

i-Pr

i-Pr

Me MePhCF3F3C

F3CCF3

O

O

AcO

O

AcO

O

benzene, 25 oC, 20 min

90 % conversion

+

Kinetic resolution in ring-closing metathesis

10 % recovered from reaction mix84% ee, krel = 2.02

k2(a)

k2(b)

k1

k-1

Grubbs and coworkers reasoned that the second (ring-closing) step would be suitable for asymmetric induction, because this step involves diastereomeric cyclic transition states which differ in energy. Diene substrates were chosen which contained a trisubstituted olefin to slow the cyclization step (and thus presumably increase the selectivity) and to control the site of the first metathesis.

Enantioselective synthesis of dihydrofurans by Mo-catalyzed desymmetrization.

Grubbs JACS 1996 (118) 2499.

Hoveyda/Schrock JACS 1999 (121) 8251.

5 mol %

benzene, rt, 6 h

86% yield, 93% ee

Mo*

toluene

-25 oC, 18h

Mo*

toluene

-25 oC, 18h

84% yield, 73% ee

91% yield, 82% ee

= Mo*

Enantioselective synthesis of quaternary carbon centers

Page 22: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -396- Week of December 9, 2002

Directed epoxidations

VV

OO

OR

O

O

t-Bu

VO

OOR

O

t-Bu

O

Sharpless Aldrichimica Acta 1979 (12), 63.

VIV

O

OO

OO

VO

OOR

Ot-Bu

O

OH

t-BuOOH (TBHP)

OHO

t-BuOH

O

OM

R

planar orientation: the planedefined by the lone pair of theoxygen of the η2-peroxo isperpendicular to the planedefined by the olefin π-orbital. This orientation avoidsunfavorable lone pair-πinteractions

O

OM

R

spiro orientation favored: theplane defined by the lone pair ofthe oxygen of the η2-peroxo isparallel to the plane defined by the olefin π-orbital. This orientationaligns the lone pair-π* orbitalsthereby facillitating C-O bondformation.

HOMO

O

O LUMO

LUMO

O

O

M

R

M

R

Formation of covalent, intramolecular allyloxide intermediates leads to large rate accelerations in the V catalyzed epoxidation of allylic alcohols. Methyl ethersundergo epoxidation 1000 times slower than the corresponding alcohols.

VO

OOR

O

t-Bu

O

vs. VO

OOR

O

t-Bu

OR

OMe1000 x faster

Sharpless Chem. Br. 1986 (22) 38.

Stereoelectronic factors lead to a highly ordered TS. Perfect for asymmetric induction....

Ph

PhOH

V

O

RO OROR 1 mol%

N

F3C O

O

N OH

PhH

3 mol%

TBHP (2 eq)

2 open coordination sites required foreffective catalysis. Appending a chiral ligand occupies these sites and resultsin ligand-decelerated catalysis.

Ph

PhOH

O

optimal substrate90%, 80% ee

tol, -20oC, 4 days

Bystander oxo ligands arepresent in many early d0 metals capable of oxidation. Theyoccupy potentially usefulbinding sites for appendingchiral ligands.

Page 23: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin oxidation -397- Week of December 9, 2002

OHMn+(OR)n cat.

TBHPOH

O

For all metals capable of effecting catalytic epoxidation of allylic alcohols with TBHP, only Ti displayed ligand accelerated catalysis. All other systems were strongly inhibited or entirely deactivated with addedtartrate ligand.

Sharpless ACIEE 2002 (41) 2024.

The Sharpless epoxidation

"For years, right up until January of 1980, when the asymmetric epoxidation was discovered, every expert in asymmetric synthesis and catalysis advised me that what we sought- a catalyst that was both selective and versatile- was simply impossible." K.B. Sharpless Chem. Br. 1986 (22) 38.

R OH

Oi-Pr

Oi-PrTiIV

i-PrOi-PrO

(+)-DET or (+)-DIPT

TBHP, 3 Å MS,

CH2Cl2, -20oC

R OHO

Uniformly >90% ee, 60-70% yields

HO

HO

O

OR'

O

OR'R' = Et : (+)-DET i-Pr: (+)-DIPT

C2-symmetric ligand

note: no bystander oxo ligand

H15C7

OHAll olefin substitution patterns result in high ee's and good yields, with theexception of cis-disubstituted olefinsthat generally react slowly and givemoderate ee's (80's)

C7H15

OH

95% ee88% yield

Unsymmetrical disubstituted Trisubstituted

Ph

Me

OH

>98% ee79% yield

Tetrasubstituted

94% ee90% yield

86% ee74% yield

cis-disubstituted

OH

Sharpless JACS 1987 (109) 5765.Sharpless In Asymmetric Synthesis, Morrison, Ed.; Academic Press: New York, 1986 (5) 247.

Page 24: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -398- Week of December 9, 2002

Mechanism

R OH

Oi-Pr

Oi-PrTiIV

i-PrOi-PrO

(+)-DET or (+)-DIPT

TBHP, 3 Å MS,

CH2Cl2, -20oC

R OHO

Uniformly >90% ee, 60-70% yields

HO

HO

O

OR'

O

OR'R' = Et : (+)-DET i-Pr: (+)-DIPT

C2-symmetric ligand

note: no bystander oxo ligand

OTiIV

RO

RO

OTiIV

O O

O

R'(O)C

R'OR

OR'

OR

C(O)R'

The catalyst self-assembles under the reaction conditions to give predominantly a dimeric species that epoxidizesallylic alcohols with high levels of ee. The dimericspecies is significantly more active than Ti tetraalkoxidealone or Ti-tartrates of other than 1:1 stoichiometrywhich lead to zero or low ee products (respectively).

Oi-Pr

Oi-PrTiIV

i-PrOi-PrO

OTiIV

RO

RO

OTiIV(OR)3

O

OR' C(O)R'

Major species in solution and kinetically most active. Leads to high ee products.

R OHO

high ee's

rel. rate: 1.0

R OHO

low ee's

rel. rate: 0.28rel. rate: 0.38

R OHO

0 ee

OTiIV

RO

OR

OTiIV

O O

R'(O)C

CO2R

O

OR'

O

O

t-Bu

R

C(O)R'

proposed intermediate

Sharpless JACS 1991 (113) 106, 113.

Page 25: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -399- Week of December 9, 2002

Non-directed epoxidations: transferable metal oxo

N N

N N

CO2HHO2C

FeII

S-Cys

P-450 catalyzed epoxidations

O O

N N

N N

CO2HHO2C

FeIII

S-Cys

OO

N N

N N

CO2HHO2C

FeIII

S-Cys

OO

N N

N N

CO2HHO2C

FeIII

S-Cys

OON N

N N

CO2HHO2C

FeV

S-Cys

O

N N

N N

CO2HHO2C

FeIII

S-Cys

H2O

R

N N

N N

CO2HHO2C

FeIV

S-Cys

O

FeV

O LUMO

RHOMO

Stereoelectronically favored side-on approach:

R

R

N N

N NFeIII

Cl

1 e-

2H+

1 e-

O O

OO

O

O

O O

O

O

O

catalyst

PhIO

85% yield84% ee

Collman JACS 1993 (115) 3834.

Chiral P-450 mimics

Page 26: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -400- Week of December 9, 2002

Jacobsen epoxidation

The Jacobsen epoxidation

Ph Me

N N

O O

MnIII

0.1-4 mol%t-Bu t-Bu

t-But-Bu

NaOCl, CH2Cl2, pyridine N-Oxide (20 mol%)

Cl

cis-disubstituted substratesgive optimal yields and ee's

Ph Me

O

84% yieldcis: trans (11.5:1)

92% ee

O

Jacobsen JACS 1990 (112) 2801.Jacobsen JACS 1991 (113) 6703.Jacobsen JOC 1991 (56) 2296.Jacobsen TL 1996 (37) 3271.

PhO

O

BrO

88% ee90% yield

93% ee69% yield

TrisubstitutedCis-disubstituted

96% ee84% yield

Jacobsen TL 1995 (36) 5123.

Tetrasubstituted Cis-enynes give trans-epoxides :TMS

Cy

TMS

Cy

O

Jacobsen JACS 1991 (113) 7063.

N N

O O

MnIII

PF6

4 mol%OMe MeO

The first report of epoxidation activity:

PhIO (1 eq), CH3CN

2 eq limiting reagent

O

56% based on iodosylbenzene (PhIO)

Kochi JACS 1986 (108) 2309.

Bleach as a terminal oxidant:

N N

O O

NiII

cat

NaOCl (pH 13)/CH2Cl2

Bu3NBz+Br-

O

Radical intermediate envoke toaccount for exclusive formation of the E-epoxide from the Z.

84%

N N

O O

NiIV

ON N

O O

NiIII

O

Ph

NaCl

Burrows JACS 1988 (110) 4087.

N N

O O

MnV

PF6

OMe MeO

O

PhI

Page 27: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -401- Week of December 9, 2002

MechanismProposed mechanism:

Ph Me

N N

O O

MnIII

0.1-4 mol%t-Bu t-Bu

t-But-Bu

NaOCl, CH2Cl2, pyridine N-Oxide (20 mol%)

Cl

cis-disubstituted substratesgive optimal yields and ee's

Ph Me

O

84% yieldcis: trans (11.5:1)

92% ee

N N

O O

MnV

t-Bu t-Bu

RR

t-But-BuL

ON N

O O

MnIV

t-Bu t-Bu

R

t-But-BuL

O

Ph

R

Me

N N

O O

MnIV

t-Bu t-Bu

R

t-But-BuL

O

R

Me

Ph

Me

OPh+

Rationale for enantioselection:

All trajectories to Mn oxoare sterically blocked except the one over the chiraldiimine backbone.

NN

O

OMnV

OH

H

Me

Ph

Jacobsen JOC 1991 (56) 6497.

Page 28: -Trimethylenemethane cyclization - University Of Illinois · -Trimethylenemethane cyclization OO Ph ... CH 2 16 e-BF 4 H base Ta V Me CH 2 18 e-Schrock JACS 1975 (97) 6577, 6579.

M.C. White, Chem 153 Olefin Oxidation -402- Week of December 9, 2002

Sharpless dihydroxylation

OH

OH

OsVI

O

O

HO OHHO OH

2- +K2

0.2 mol%

(DHQD)2-PHAL (1 mol%)K3Fe(CN)6 (3 eq)

K2CO3 (3 eq)t-BuOH: H2O (1:1)

98% ee>90% yield

Commercially available as a mix:AD-mix-α uses the ligand (DHQ)2-PHALAD-mix-β uses the ligand (DHQD)2-PHAL

N

H

N

MeO

O

NN

O

N

H

N

OMe

(DHQD)2-PHAL

N

MeO

N

Et

HO

NN

O

N

Et

N

OMe

H

(DHQ)2-PHAL

pseudo-enantiomericWorks well for all olefin substitution

patterns with the exception ofcis-disubstituted and tetrasubstituted.

OsVI

O

O

HO OHHO OH

+K22-

General mechanism: Sharpless Chem. Rev. 1994 (94) 2483.

OsVIII

O

O

O OHO OH

+K22-

Sharpless JOC 1992 (57) 2768.

2 K3Fe(CN)62 OH-

2 K4Fe(CN)62 H2O

OsVIII

O

O

O

OOsVI

O

O

R

R

L

O

O

OsVIII

L

O

OO

O

2 OH-2 H2O

R

R

HO OH

R R

Evidence favors the [3+2] mechanism vs. [2+2]:Corey TL 1996 (28) 4899.Houk, Sharpless, Singleton JACS 1997 (119) 9907.

The enzyme-like binding cleft is especially well suited for π-stacking with aromatic substrates. Large rate accelarations are observed for aromatic substrates with the phalazine class of ligands.

ligand accelarated catalysis:although OsO4 is capable ofdihydroxylating olefins, the ligand bound complex does so at a muchgreater rate. Corey JACS 1993 (115) 2861, 12579.

Sharpless JACS 1994 (116) 1278.

Os

O

OO

L

O RR

[3+2]