格子 QCD による核子のシグマ項の研究 大野木 哲也 ( 京大基研 ) for JLQCD...

24
1 格格 QCD 格格格格格格格格格格格格格 格格格 格格 ( 格格格格 ) for JLQCD collaboration JPS meeting, March,24 2008, Kinki University Outline Why sigma term? Basic Methods Lattice calculation Results Comparisons with other results Discussion and summary

description

格子 QCD による核子のシグマ項の研究 大野木 哲也 ( 京大基研 ) for JLQCD collaboration JPS meeting, March,24 2008, Kinki University. Outline Why sigma term? Basic Methods Lattice calculation Results Comparisons with other results Discussion and summary. JLQCD Collaboration. - PowerPoint PPT Presentation

Transcript of 格子 QCD による核子のシグマ項の研究 大野木 哲也 ( 京大基研 ) for JLQCD...

Page 1: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

1

格子 QCD による核子のシグマ項の研究大野木 哲也 ( 京大基研 ) for JLQCD collaboration

JPS meeting, March,24 2008, Kinki University

Outline

Why sigma term? Basic Methods Lattice calculation Results Comparisons with other results Discussion and summary

Page 2: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

2

JLQCD Collaboration

KEK         S. Hashimoto, H. Ikeda, T. Kaneko, H. Matsufuru,

J. Noaki, E. Shintani, N. YamadaRIKEN/Niels Bohr H. FukayaTsukuba     S. Aoki, T. Kanaya, N. Ishizuka, K.Takeda Y. Taniguchi,   A. Ukawa, T. YoshieHiroshima   K.-I. Ishikawa, M. OkawaYITP H. Ohki, T. Onogi

KEK BlueGene (10 racks, 57.3 TFlops)

Page 3: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

3

• A crucial parameter for the WIMP dark matter detection rate.

   The interaction with nucleon is mediated by the higgs boson exchange in the t-channel.

Sigma term is the parameter to convert

the quark yukawa coupling to nucleon yukawa coupling.

Note: strange quark contribution is dominant.

Nucleon sigma term for strange quark is most important.

heavy quark loop strange quark

1.Why sigma term is important?

K. Griest, Phys.Rev.Lett.62,666(1988)

Phys,Rev,D38, 2375(1988)Baltz, Battaglia, Peskin, WizanksyPhys. Rev. D74, 103521 (2006).

Page 4: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

4

• scalar form factor of the nucleon at zero recoil

• related quantities

What is sigma term ?

We will denote as for simplicity.

Page 5: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

5

How well is sigma term known?

The strange quark content has 100% uncertainty.

Page 6: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

6

Our goal Determine the nucleon sigma term in unquenced QCD using the dynamical quark (overlap fermion), which has an exact chiral symmetry on the lattice.

• The advantage of the exact chiral symmetry– No power divergence subtraction of the vacuum condensate is numerical much more stable– No unwanted operator mixing

• In this study, we work in nf=2 unquenched QCDnf=2+1 QCD will be studied very soon

• We exploit mass spectrum method ( explained later )

Page 7: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

7

2. Basic Methods

Feynman - Hellman theorem

Moreover, partial derivatives with respect to the valence and sea quark masses give contributions from ‘connected’ and ‘disconnected’ diagrams.

Page 8: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

8

• Ginsparg-Wilson relation Ginsparg and Wilson, Phys.Rev.D 25(1982) 2649.

Exact chiral symmetry on the lattice   (index theorem)           Hasenfratz, Laliena and Niedermayer, Phys.Lett. B427(1998) 125

     Luscher, Phys.Lett.B428(1998)342.

• Overlap fermion ( explicit construction by Neuberger)

3. Lattice calculation

Page 9: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

9

Numerical simulationDynamical simulation with Nf=2 overlap fermion

• 16^3 x 32, a=0.12 fm, L=1.9 fm

• 6 values of sea quark mass

• fixed topology

• At Q=0 accumulated 10,000 trajectories

A good test for real calculation with Nf=2+1.

Nf=2+1(u,d,s) simulation will finish within 1-2 months.

Measurement of the nucleon 2pt function.

We have 6 and 9 quark masses

for the sea and valence quarks, respectively.

Low mode averaging is employed.

Page 10: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

10

4. Results• Nucleon masses from 2-pt functions

Effective mass plot for amq=0.035

Solid lines are the mass from the fit

Nice plateau for t >4

We fit the 2-pt function with a single expoential function

with fitting range t=5-10

Page 11: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

11

Fit of the quark mass dependence1. Fit of unitary points with Chiral Perturbation Theory (ChPT)

Page 12: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

12

Fit of the quark mass dependence

ChPT fit with fixed gA or free gA give consistent results.

Fit with 5 unitary points

Page 13: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

13

• Finite size correction

Box size of L=1.9 fm is rather small for baryon with light quarks.

We can estimate the Finite Size Effect(FSE) using ChPT.

  After correcting the lattice data including FSE, we can redo the ChPT fit.

Page 14: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

14

• Result of sigma term from ChPT fit

Preliminary

1. Although there are finite size effects (FSE), sigma term gets only about 5% change.

2. ChPT fit (gA fixed) without considering FSE gives reasonable result.3. We take ChPT fit (gA fixed, FSE uncorrected) as our best fit, assum

ing possible 12% finite size error.

Page 15: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

15

2. Fit with partially quenched chiral perturbation (PQChPT)

• Fit (a): 6 parameters

• Fit (b): 7 parameters

• Fit (c): 8 parameters

Page 16: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

16

PQChPT fit works very well.It also gives consistent resultswith results with ChPT.

Results from PQChPT fit

Page 17: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

17

Connected and disconnected contributions for

Connected Disconnected Ratio=Disc./Conn.

The disconnected contribution (sea quark content) is always smaller then the connectedcontribution (valence quark content).

Page 18: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

18

Connected and disconnected contributions for

It is not possible to extract strange quark content from 2-flavor QCD. For final result, we should wait for 2+1-flavor QCD result (coming soon).

In the present study,We take the result with and Fit (b) as our best estimate and use Fit (a),(c) to estimate the chiral extrapolation error.

Preliminary

Page 19: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

19

5.Comparison with other results

– ChPT results and previous results are consistent.– Our results with ChPT is consistent– Previous lattice calculation sea/valence. Is larger than 1– Our lattice calculation sea/valence n is about 0.1

– ChPT predicts– Previous lattice results due to large sea quark contribution– Our results gives

Page 20: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

20

Why is y so different ?

• ChPT

Large uncertainty from Low Energy Constants.

• Previous lattice caculation

Why disconnected contribution is so large?

mixing with wrong chirality?

Page 21: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

21

Operator mixing due to Wilson fermion artifact

If there is an additive mass shift there can be operator mixing which should be subtracted (but not subtracted except for UKQCD) for disconnected diagram.

  Subtracting this mixing effect by using the sea quark mass dependence of the quark mass shift, the disconnected contribution becomes tiny ( consistent with zero).

Page 22: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

22

Additive mass shift and sigma term

There is a sea quark mass dependent additive mass shift for the valence quark through 2-loop ( or higher loop ) diagram due to the lack of chiral symmetry with Wilson fermion.

This gives the mixing of the sea quark mass operator with the valence quark mass operator.

valence quark

sea quark

Page 23: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

23

Additive mass shift and sigma term

Same phenomena can be understood in the mass spectrum approach

Fixing the bare valence quark mass and changing the sea quark mass

effectively induces the change of the ‘physical’ valence quark mass

due to the additive mass shift.

Page 24: 格子 QCD による核子のシグマ項の研究 大野木 哲也  ( 京大基研 ) for JLQCD collaboration

24

6.Discussion and summary

• We studied the nucleon mass spectrum for nf=2 unquenched QCD using exactly chirally symmetric dynamical fermion.

• It is expected that our calculation is free from dangerous lattice artifacts ( power divergence, operator mixing )

• Our result is consistent with ChPT prediction.

• We found disconnected (strange quark content ) part is tiny.

• We pointed out that the descrepancies from previous lattice calculation can come from artifact in Wilson fermion.