( Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 1 Joint Institute of Solid State and...

25
Infrared Spectroscopy IR ( (FTIR) Leonid Murin 1,2 1 Joint Institute of Solid State and Joint Institute of Solid State and Semiconductor Physics, Minsk, Belarus Semiconductor Physics, Minsk, Belarus 2 Oslo University, Centre for Materials Science Oslo University, Centre for Materials Science and Nanotechnology, Oslo, Norway and Nanotechnology, Oslo, Norway
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    228
  • download

    0

Transcript of ( Infrared Spectroscopy IR (FTIR) Leonid Murin 1,2 1 Joint Institute of Solid State and...

Infrared Spectroscopy IR ((FTIR)

Leonid Murin 1,2

11 Joint Institute of Solid State and Joint Institute of Solid State and Semiconductor Physics, Minsk, BelarusSemiconductor Physics, Minsk, Belarus

22 Oslo University, Centre for Materials Science Oslo University, Centre for Materials Science

and Nanotechnology, Oslo, Norwayand Nanotechnology, Oslo, Norway

OUTLINE

• Some general notes

• Electronic transitions

• Local Vibrational Mode spectroscopy

BACKGROUND - WHAT IS MEASURED

The light transmitted through a sample of thickness d with

polished parallel surfaces is described as

where:

I0 is the light intensity incident on the sample

α is the frequency dependent absorption coefficient

R is reflectivity (R ≈ [(n-1)/(n+1)]2 ≈ 0.3 in the mid infrared)

d

d

eR

eRII

22

2

0 1

)1(

400 600 800 1000 1200 1400 1600 1800 2000

-0.2

-0.1

0.0

0.1

0.2(Bruker IFS 113v)T = 300 K

FZ-Si, d = 3 mm

S

igna

l

Wavenumber, cm-1

800 1000 1200 1400 1600-0.010

-0.005

0.000

0.005

0.010(Bruker IFS 113v)T = 300 K

FZ-Si, d = 3 mm

S

igna

l

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000.0

0.1

0.2

0.3

0.4

0.5

Raw spectrumCz-3-J4, 24 GeV p-irr 1E16, d = 3 mm

Raw spectrum, FZ-Si, d = 3 mm

(Bruker IFS 113v)T = 300 KBackground (without sample)

S

igna

l

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000.0

0.1

0.2

0.3

0.4

0.5

0.6

T = Raw spectrum of a sample / background

FZ-Si, d = 5 mm

(Bruker IFS 113v)T = 300 K

FZ-Si, d = 3 mm

T

rans

mis

sion

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000.0

0.1

0.2

0.3

0.4

0.5

0.6

T = Raw spectrum of a sample / background

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

FZ-Si, d = 3 mm

T

rans

mis

sion

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000

1

2

3

4

A = -ln(I/I0)

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

FZ-Si, d = 3 mm

A

bsor

ptio

n

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000.0

0.2

0.4

0.6

0.8

1.0

1.2

S = -ln(I/I0) - K x (-ln(I

ref/I

0))

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

A

bsor

ptio

n

Wavenumber, cm-1

800 850 900 950 1000 10500.06

0.07

0.08

0.09

0.10

0.11

0.12

S = -ln(I/I0) - K x (-ln(I

ref/I

0))

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

A

bsor

ptio

n

Wavenumber, cm-1

400 600 800 1000 1200 1400 1600 1800 20000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

NO = 1.06x1018

cm-3

AC = S/d

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

800 850 900 950 1000 10500.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

I2O

NVO = 8.5x1015

cm-3

AC = S/d

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

(Bruker IFS 113v)T = 300 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

800 850 900 950 1000 1050 1100 11500.20

0.25

0.30

0.35

0.40

0.45

Oi

O2i

O2i

IO2, I2O2

IO2, I2O2

VO

I2O

DAC = S(irrad - as-grown)/d

CZ-Si, 24 GeV p-irr 1x1016

cm-2, d = 3 mm

T = 300 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

800 850 900 950 1000 1050 1100

-0.2

0.0

0.2

0.4

0.6

0.8

Low temperarure measurements

3 - Cz3-J3 ([CS < 1x1015

cm-3) DAC: RT irr 1x10

16 cm

-2 p

+ 26 GeV - hot irr

2 - Cz3-J4 ([CS < 1x1015

cm-3) RT irr 1x10

16 cm

-2 p

+ 26 GeV

3

VO-

ICi

ICiOi

CiOi

IO2I2O2

I2O

I2O2

IO2

V2O2

VO

18O

i

O2i

O2i

VO2

1 - Cz1-I4 ([CS = 5x1016

cm-3) RT irr 1x10

16 cm

-2 p

+ 26 GeV

2

1

T = 20 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

2700 2720 2740 2760 2780 2800 2820 2840

0.0

0.2

0.4

0.6

0.8

1.0

1.5x1015

cm-3

2x1015

cm-3

3.3x1015

cm-3

4.7x1015

cm-3

4 - Cz1-I4 (C-reach, as-grown)

2 - Cz3-J4 (C-lean, as-grown)

1 - Fz1-I3 (O,C-lean, as-grown)4

3

V2 generation

RT irr 1x1016

cm-2 p

+ 24 GeV

3 - Cz3-J3 (C-lean, hot irr)

2

1

T = 20 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

Electronic transitions

• Shallow donors and acceptors• Group VI (S, Se, Te) etc• Thermal double donors (as an example: L.I. Murin, V.P. Markevich, J.L. Lindstrom, M. Kleverman

Spectroscopic observation of the TDD0 in silicon,

Physica B 340–342 (2003) 1046–1050).

900 1000 1100 1200 1300

0.00

0.05

0.10

0.15

3 - difference 2-12 - 300 C 2 h1 - 1250 C 40 min H2 gas

3

2

1

p-type Cz-Si ( = 80 Ohmcm)

[Oi] = 1.1x1018

cm-3

T = 15 K

TDD0 observation

TDD0O2i*O2i

O3i

OiH2

TDD1

TDD0(2p±)

TDD1(2p±)

O3i

O2i

TDD0 (2p0)TDD1 (2p0)

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

1160 1180 1200 1220 1240 1260 1280 1300

0.00

0.01

0.02

0.03

0.04

0.05

0.06TDD0 observation

TDD1(6p±)

Fragment of the difference spectrum300 C 2 h (air) - 1250 C 40 min (H2)

TDD0(6p±)?

TDD0(5p±)

TDD0(4f±)

TDD0(4p±)

TDD0(3p±)

TDD1(5p±)

TDD1(4f±)

TDD1(4p±)

TDD1(3p±)

Abs

orpt

ion

coef

ficie

nt, c

m-1

Wavenumber, cm-1

Detection limit

Calibration:

α = 1 cm-1 corresponds approximately

to NTDD = 1013 cm-3

Detection of α = 0.01 cm-1 (NTDD = 1011 cm-3) is

reliable

LVM spectroscopy

“LVM spectroscopy assumes now a very central role among the large number of semiconductor characterization techniques which have been developed over the years and which are continuously refined and improved. When applicable, this technique allows, in many cases, the precise identification of impurity species and their crystal lattice location with excellent sensitivity. Besides, LVM spectroscopy with perturbations such as polarization of the probe light, uniaxial and hydrostatic stress, and isotope substitution can be highly successful in identifying the structure and composition of various kinds of defect complexes.”

E.E Haller, Mat. Res. Soc. Symp. Proc. Vol. 378 (1995) 547-565.

Detection limits

Depend on:

Measurement temperature (LT or RT)

Sharpness of the lines

Wavenumber position

Detection limits normally are in the range

5x1013 – 1x1015 cm-3)

800 900 1000 1100

-0.05

0.00

0.05

0.10

0.15

0.20

?

VO, V2O

16Oi

N2N2

3

2

1

3 - difference between 2 and 1

2 - e- 6MeV 330-340 C 1x10

18 cm

-2, [Oi] = 1.5x10

15 cm

-3

1 - as-grown, [Oi] = 2x1015

cm-3

Fz1-I2

T = 20 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

800 850 900 950 1000 1050 1100 1150 1200-0.04

-0.02

0.00

0.02

0.04

NVO + NV2O = 5x1014

cm-3

N2

V2O

VO

Oi

Difference: RT irr 1x1016

cm-2 p

+ 24 GeV - as-grown

Fz1-I3T = 20 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1

750 800 850 900 950 1000 1050 1100 1150 1200

0.00

0.05

0.10

0.15

0.20

N2

N2

Oi

As-grown, NO of about 2x1015

cm-3

Fz1-I3

T = 20 K

A

bsor

ptio

n co

effic

ient

, cm

-1

Wavenumber, cm-1