… constant forces integrate EOM parabolic trajectories.

11
… constant forces integrate EOM parabolic trajectories … linear restoring force guess EOM solution SHM … nonlinear restoring forces ? linear spring x F nonlinear spring? x F Real Oscillators kx F x m kx x e c F 1 x m e c x 1

description

Real Oscillators. … constant forces  integrate EOM  parabolic trajectories. … linear restoring force  guess EOM solution  SHM. … nonlinear restoring forces  ?. nonlinear spring?. linear spring. F. F. x. x. 0. 0. The spring of air :. use Ideal Gas Law: PV=NRT. - PowerPoint PPT Presentation

Transcript of … constant forces integrate EOM parabolic trajectories.

Page 1: … constant forces      integrate EOM      parabolic trajectories.

… constant forces integrate EOM parabolic trajectories.

… linear restoring force guess EOM solution SHM

… nonlinear restoring forces ?

linear spring

kxF

x

F

xmkx

nonlinear spring?

xecF 1

x

F

xmec x 1

Real Oscillators

Page 2: … constant forces      integrate EOM      parabolic trajectories.

The spring of air : xmAPAPmgF atm

P, V

m

A

Patm

+x

0

use Ideal Gas Law: PV=NRT

xmV

NRTAAPmg atm

xmx

NRTAPmg atm

chamber volume: V=Ax

Stable Equilibrium at

xeq = NRT / (mg + APatm)Force

X

0

0

EOMWTF!

(whoa there, fella)

Page 3: … constant forces      integrate EOM      parabolic trajectories.

Taylor Series Expansions:

xex

xxf

21

cos1

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

0

!n

nn

n

axn

adx

fd

xf

Turns a function into a polynomial near x = a

Example:

Page 4: … constant forces      integrate EOM      parabolic trajectories.

... 3

2

3 3

1

3 1

13 22

2

xdxfd

xdxdf

fxf

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

Expand around x = -3:

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

... 30.0083483 - 3.10320 19801.0 2 xx

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

0th order1st order2nd order

Page 5: … constant forces      integrate EOM      parabolic trajectories.

... 2

2

2 2

1

2 1

12 22

2

xdxfd

xdxdf

fxf

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

Expand around x = 2:

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

... 20.030981 2.031685 11431. 2 x-x

-0.1

0

0.1

0.2

0.3

-6 -4 -2 0 2 4 6

f(x)

x

0th order

1st order

2nd order

Page 6: … constant forces      integrate EOM      parabolic trajectories.

Expand NRT/x around xeq:

xmxxx

NRTxx

x

NRTx

NRTAPmg eq

eq

eq

eqeqatm

...2

32

xmxxx

NRTxx

x

NRTeq

eq

eq

eq

...0 2

32

Is it safe to linearize it? Better check a unitless ratio. How about:

eq

eq

x

xx

(Yes, excellent choice Dr. Hafner!)

Page 7: … constant forces      integrate EOM      parabolic trajectories.

xmx

xx

x

xx

xNRT

eq

eq

eq

eq

eq

...0

2

Displacement 5% of xeq: 0 .05 .0025 ….

xmxxx

NRTeq

eq

2

SHM witheq

o x

mNRT

Perhaps you would prefer….

eqeq

eq

xxxxmx

NRT 2

..

Page 8: … constant forces      integrate EOM      parabolic trajectories.

Simple Pendulum:

Length: LMass: m Q

mg

cosQ

T

mg cosQ sinQ

mg

mg

0 xF

Stable Equilibrium:

0 mgTFy

Displace by :Q

sincosmgFx

Lx

LxL

mg22

mg cosQ

-x

xmLx

LxL

mg 22

EOM:

Expand it!

Page 9: … constant forces      integrate EOM      parabolic trajectories.

xxLxLg

222

25

23

21

23

21

21

22422222

22322

22222

22

363

3

xLxxLxxLf

xLxxLxf

xLxxLf

xLxf

Derivatives:

Page 10: … constant forces      integrate EOM      parabolic trajectories.

xxL

LxLg

...

63

00 32

Now express as a unitless ratio of the dependent variable and some parameter of the system:

xLx

Lx

g

...

21

003

xxLg

SHM withL

go

Displacement 5% of length: 0 .05 0 .0000625 …

Page 11: … constant forces      integrate EOM      parabolic trajectories.

The world is not linear. However, one can use a Taylor expansion to linearize an EOM by assuming only small perturbations around a point of stable equilibrium (which may not be the origin).