核 医 学

65
昆昆昆昆昆昆昆 昆昆昆昆 昆昆昆昆昆昆 昆昆昆 2014 02 28

description

核 医 学. 昆明医科大学第一临床学院. 核医学教研室 朱高红. 2014 / 02 / 28. Personal resume. Gaohong Zhu, Associate Professor , Master of Medicine. Director of the department of Nuclear Medicine Visiting scholar in US (last year). Nuclear medicine. diagnosis. treatment. Diagnosis in vivo. Diagnosis in vitro. - PowerPoint PPT Presentation

Transcript of 核 医 学

Page 1: 核  医  学

昆明医科大学第一临床学院

核医学教研室 朱高红

核 医 学

2014/ 02/ 28

Page 2: 核  医  学

Personal resumePersonal resume

• Gaohong Zhu, Associate Professor ,

Master of Medicine.

• Director of the department of Nuclear

Medicine

• Visiting scholar in US (last year)

Page 3: 核  医  学

Nuclear medicine

diagnosis treatment

Diagnosis in vivo Diagnosis in vitro

SPECT/CT, PET/CT imaging

Non-imaging (function)

Category of NM是应用放射性核素诊断、治疗患者疾病并进行基础医学科学研究的一门医学学科;广义则是核素和核射线在医学上的应用及其理论研究的总称。

Page 4: 核  医  学
Page 5: 核  医  学

DiscoveryTM PET/CT Elite Scaner

Page 6: 核  医  学

第一章 核物理基础知识

第一节 核物理基本概念第二节 核衰变及衰变规律第三节 射线和物质的相互作用第四节 常用的辐射剂量及其单位

Page 7: 核  医  学

第一节 核物理基本概念

核 爆 炸

Page 8: 核  医  学

一、原子结构

原子原子核 位于原子的中央,内含电中性的 中子及带正电荷的质子;    

电 子 带负电荷,质量为中子 1/1837, 围绕原子核沿轨道运行,情况就 好像行星环绕太阳运行一样。

质子数( Z )=原子序数 = 核外电子数质量数( A ) = 质子数( Z ) + 中子数( N )表示: A

ZХN , AХ

Page 9: 核  医  学

把原子核外分成七个运动区域,又叫电子层,分别用 n=1、 2 、 3 、 4 、 5 、 6 、 7… 表示,分别称为K 、 L 、 M 、 N 、 O 、 P 、 Q… , n 值越大,说明电子离核越远,能量也就越高。

电子能量

原子核由于不断运动而具有一定的能量。一般情况下,原子核都处于能量最低的状态,称为基态 (ground state) ;在一定条件下,如在某些核反应、核裂变及放射性衰变后,原子核可以暂时处于较高的能量状态称为激发态 (excited

state) 。

原子核的能级

EnergyH L

Page 10: 核  医  学

激发态的原子核可表示为 Amx ,如 99mTc。处于激发态的核素都很不稳定,要释放过剩的能量而回到基态。

在工厂的核反应堆中 , 中子流( n )轰击靶核钼( 98Mo), 98Mo释放 γ 射线后转变成 99Mo,再把 99Mo装在发生器(层析柱)内运到使用部门。99Mo的半衰期 67小时,释放β-射线后衰变成激发态的 99mTc,放射性药房或核医学科工作人员用生理盐水淋洗发生器就可得到 99mTc,见下图

Page 11: 核  医  学

生理盐水负压抽吸瓶

将带有 99mTcO4-吸入负压瓶内。

Page 12: 核  医  学

99Mo/99m Tc generator

Page 13: 核  医  学

二、几个基本概念

1 、元素( element )

2 、同位素( isotope )

3 、同质异能素( isomer )

4 、核素( nuclide )

5 、稳定性核素( stable nuclide )

6 、不稳定性核素( unstable nuclide )

Page 14: 核  医  学

  1 、元素( element ): Z 相等的一类原(核外电

  子数和最外层电子数相等,化学性质相同)

  如 C 、 H 、 O 为不同元素;  2 、同位素( isotope ):某一元素含有不同的  中子数目,则称为该元素的同位素( Z 相等,   N 不等)如: 123I 、 125I 、 131I ;

  3 、同质异能素( isomer ): Z 、 N 相等,能量 ( E )状态不等,如: 99mTc/99Tc , 113mIn/113In ;

氕(piě) 氘(daò)氚

(chuan)

氢元素的同位素

γ 射线

+

+

+

++

++

+

99mTc

+++

+

+

99Tc

+

Page 15: 核  医  学

4 、核素( nuclide ):凡具有一定原子序数( Z )  、原子质量( A )和处于特定能量( E )状态 (特定核特征)的原子称为核素;

  5 、稳定性核素( stable nuclide ):是指原  子核不会自发地发生核变化的核素,已发现  的仅有 274种,它们的质子和中子处于平衡  状态。

  6 、不稳定性核素( unstable nuclide )又称放  射性核素,能按照自身的规律、自发地核衰  变 ; 衰变时放出核射线并变为新核素;有特定  半衰期的核素。 *

Page 16: 核  医  学

第二节 核衰变及衰变规律

一、核衰变 (nuclear decay)

 原子核只有在中子和质子的数目之间保持一定的比例时,才能稳定,当原子核(母核, parent nuclide )中质子数过多或过少,或者中子数过少或过多,原子核便不稳定。这时的原子核就会自发地放出射线,转变成另一种核素(子核, daughter nuclide ),同时释放出一种或一种以上的射线。这个过程又称为放射性衰变( radiation decay )或蜕变。核衰变是由原子核内部的矛盾运动决定的。

Page 17: 核  医  学

二、核衰变的类型

放射性核素主要衰变方式有

1、 α 衰变2、 β-衰变3、 β+衰变4、 γ 衰变5、核外电子俘获衰变

ν

α

βγ

χ

Page 18: 核  医  学

1 、 α 衰变( alpha decay )

 不稳定原子核自发地放射出 α粒子( alpha

particle )而变成另一个核素的过程称为 α衰变。质量数减少 4 ,质子数减少 2 ,在元素周期表中前移 2 位。

机制 : 核子总数过多,而致斥力>引力而发生。大多见于 A > 200 、 Z > 83的天然、长T1/2 的放射性核素。

Page 19: 核  医  学

α 衰变图示和衰变方程

α衰变(从母核中射出的 4He原子核)

+

+

+

+

+

++

parent nuclide

+

+

+

+

+

daughter nuclide

+ +

+

helium-4 nucleus

AZΧ → A-4

Z-2 Y+ α( 42He)

+Q ( energy)

Page 20: 核  医  学

2 、 -衰变( -minus decay )

 衰变主要发生在质量较轻、中子相对过剩的核素。核中一个中子转化为质子,总核子数不变,同时释出一个负电子(来自核的负电子negation 称粒子即 - )及一个反中微子故子核的原子序数比母核增加 1 ,原子质量数不变。反中微子是一种质量极小的不带电基本粒子,穿透性极强,一般探测器不能测知。

Page 21: 核  医  学

- 衰变图示和衰变方程

++

+

proton

neutron

proton

Antineutrino

electron

AZΧ → A

Z+1Y+ β-( 0-1e) + + Q⊽

9038Sr → 90

39Y + β- + + 2.28Mev⊽

Page 22: 核  医  学

3、 + 衰变( -plus decay )

衰变主要发生在中子相对不足的核素,可以看作是 - 衰变相反的过程,即核中一个质子转化为中子,同时释出一个正电子( positron ,称粒子)及一个中微子( neutrino , υ ),故核子总数也不变,原子序数减少 1 而原子质量数不变。 υ也是质量极小的不带电基本粒子,穿透性极强而很难测知。

Page 23: 核  医  学

+ 衰变图示衰变方程

AZΧ → A

Z-1Y+ β+( 01e) + V + Q

189F → 18

8O + β+ + v + 0.663MeV

++

γ=0.51Mev

γ=0.51Mev

positron

neutrino

Page 24: 核  医  学

4、电子俘获衰变 ( electron capture, EC )

EC 发生在中子相对不足的核素。原子核先从核外较内层的电子轨道俘获一个电子,使之与一个质子结合转化为中子,同时发射出一个中微子。故原子质量数不变而原子序数减少 1 。

Page 25: 核  医  学

电子俘获衰变方程

12553I( 碘 )+ 0

-1e → 12552Te( 碲 ) + v + 0.036Mev

AZΧ + 0

-1e → AZ-1Y + V + Q

机制:见于某些贫中子放射性核素。在 EC 基础上,按 Bohr理论,外层电子将跃迁填补内层轨道,多于能量以标识(特征) X-ray发射或传给更外层电子使之脱出为自由电子,即俄歇电子( Auger electron )。

Page 26: 核  医  学

+

++

核外电子

+

中微子

特征 X射线

γ 射线

++

+

核外电子轨道空位

7 铍( Be )  7 锂( Li ) + υ + Q4 3

电子俘获衰变图

俄歇电子

Page 27: 核  医  学

5 、 γ 衰变( gamma decay 或 γ transition )

•上述四种衰变的子核可能先处于激发态,在不到 1 微秒的时间内回到基态并以 γ光子的形式释出多余的能量。此过程称 γ 衰变或 γ跃迁。

Page 28: 核  医  学

•如果 γ 跃迁释出的能量传给一个核外电子( K 层电子几率最高),使之脱离轨道而发射出去这过程就是内转换。发射的电子称内转换电子( internal conversion electro

n )

•发生内转换后 K 层轨道的空缺和 EC 的空缺相似,随后可由外层电子补缺,从而又发射X 线和俄歇电子( Auger electron )

Page 29: 核  医  学

常用核射线及其性质

射线名称 α β γ

电性 (+) (-) ( ± )本质 粒子流 电子流 光子流

电离能力 强 中 弱穿透能力 弱 中 强传播速度(空气)

2~2.5 万㎞ /sec

20 万㎞ /sec

30 万㎞ /sec

Page 30: 核  医  学

射线的穿透力

Page 31: 核  医  学

三、核衰变规律

1 .放射性衰变规律 (radiation decay rule)

2 .物理半衰期 * ( physical half life ; T1/2)

3 .生物半衰期 * ( biological half life;

  有效半衰期 * ( effective half life ; Teff )4 、放射性活度 * ( radioactivity; A )

Page 32: 核  医  学

任何放射性核素其放射性活度随时间减弱的速度虽然各不相同,但都服从指数规律,亦即其原子数随时间 t 按指数函数的规律而减少:放射性活度的自然对数值对 t是直线关系。只是直线的斜率( λ,衰变常数)值各不一样,衰减愈快,则 λ值也愈大。 λ值表示了在单位时间内衰变的原子数占当时存在的原子总数的百分比。

1 、放射性核素衰变规律

Page 33: 核  医  学

放射性核素衰变规律(接)

遵循衰变定律:即单位时间内衰变的原子数与当时存在的原子总数成正比

dN∝Ndt 积分后得 N=N0e-λt

各种放射性核素的总放射性活度都随时间按

指数函数规律而减少: It = I0e-λt

Page 34: 核  医  学

 原子数随时间 t 按指数函数的规律而减少:放射性活度的自然对数值对 t 是直线关系。只是直线的斜率( λ,衰变常数)值各不一样,衰减愈快,则 λ值也愈大。 λ值表示了在单位时间内衰变的原子数占当时存在的原子总数的百分比。

小时6 12 18 24

放射性活度

1

0.5

0

ΙlnΙ

时间 t

Page 35: 核  医  学

2 .物理半衰期 * ( physical half life; T1/2)

在实际工作中我们常以物理半衰期来表示各种放射性核素的衰减速度。物理半衰期就是放射性活度(强度)减弱一半所需经过的时间,用( T1/2 或 Tp )表示 。

T½ 和 λ 值之间可以互相换算

T½ = 0.693

λλ = 0.693

Page 36: 核  医  学

计算实例 *198Au 放射性核素, 5 月 20日从北京发货时间测得活度为 100mCi。如果运到昆明到 5 月 27日才实际使用,试计算此时还有多少毫居里 198Au? 198Au半衰期 2.7天。

∵ N=N0e-λt N=N0e-0.693×t/T½

N=100×e-0.693×7/2.7∴ N=100×0.165=16.5

也可以 7/2.7=2.59≈2.6通过查通用衰变计算表得0.165×100=16.5

Page 37: 核  医  学

3 、 生物半衰期 ( Tb ) * 有效半衰期 ( Teff )

• 放射性核素通过生物代谢从体内排出原来一半所需的时间,称为生物半衰期。

• 物理衰变与生物的代谢共同作用而使体内放射性核素减少一半所需要的时间,称有效半衰期。

• Te、 Tb、 T1/2 三者的关系为:T1/2·Tb

Te=T1/2+ Tb

Page 38: 核  医  学

4 、放射性活度( radioactivity, A )

放射性核素在单位时间内发生衰变的原子核的次数称为放射性活度(即衰变率)。放射性活度的国际制单位的专用名称为贝可勒尔( Becquerel),简称贝可,符号为 Bq,即每秒钟发生 1 次衰变。常用单位是居里( C

i )等于每秒钟发生 3.7×1010 次衰变。

1Bq= 2.703×10-11 Ci1Bq= 2.703×10-8m Ci1Bq= 2.703×10-5 µ Ci

Page 39: 核  医  学

放射性比活度:单位质量或单位摩尔物质中 含有的放射性活度,单位是 Bq/g,MBq/g、MBq/mol 。

放射性浓度 * :单位体积溶液中所含的放射性 活度,单位是 Bq/ml、mCi/ml 等。

Page 40: 核  医  学

第三节 射线和物质的相互作用

一、带电粒子与物质的相互作用

二、光子与物质的相互作用

三、

Page 41: 核  医  学

什么是放射线?

•放射线是指波长较短的电磁波和微小粒子的流动现象。

•放射线通常简称为射线;•在放射防护领域,不包括可见光(红、橙、黄、绿、青、蓝、紫)、通信用无线电波等非电离辐射 。

Page 42: 核  医  学

一、带电粒子与物质的相互作用

1 .电离与激发 ( ionization and excitation)

2 .散射 (scattering)

3 .韧致辐射 (bremsstrahlung radiation)

4 .湮没辐射 (annihilation radiation)

5 .吸收 (absorption)

Page 43: 核  医  学

1 、电离与激发

   带电粒子( charged particles )通过物质时和物质原子的核外电子发生静电作用,使壳层电子获得能量脱离原子轨道形成自由电子而产生正负离子对的过程称电离。

如果原子的电子所获得的能量还不足以使其脱离原子,而只能从内层轨道跳到外层轨道。这时,原子从稳定状态变成激发状态,这种作用称为激发。激发的原子不稳定,退激时可释放出光子或能量。

Page 44: 核  医  学

电离图示

Incident electron

Change the motion direction of the

incident electron

Ionization electron

Page 45: 核  医  学

如果原子的电子所获得的能量还不足以使其脱离原子,而只能从内层轨道跳到外层轨道。这时,原子从稳定状态变成激发状态,这种作用称为激发。激发的原子不稳定,退激时可释放出光子或能量。

激发图示Incident

electron

Excited electron

Change the motion direction of the

incident electron

Page 46: 核  医  学

电离和激发是一些探测器测量射线的物质基础,是射线引起物理、化学变化和生物效应的机制之一。

Page 47: 核  医  学

2 、散射 (scattering)

• β射线由于质量小,行进途中易受介质原子核电场力的作用而改变原来的运动方向,这种现象称为散射, 其中运动方向改变而能量不变者称弹性散射。而 α粒子由于质量较大,散射一般不明显。

Page 48: 核  医  学

散射图示Incident electron

Scattered electrons

Page 49: 核  医  学

3 、韧致辐射   (bremsstrahlung radiation)

快速电子通过物质时,在原子核电场作用下,急剧减低速度,电子的一部分或全部动能转化为连续能量的 X 射线发射出来,这种现象称韧致辐射。

Page 50: 核  医  学

3 .韧致辐射 (bremsstrahlung )

韧致辐射释放的能量与所通过介质的原子序数的平方成正比,韧致辐射的强度随屏蔽物质的原子序数增大而增大。因此,β射线的屏蔽要用原子序数低的材料制成,如铝、塑料、有机玻璃等。

X-ray

Page 51: 核  医  学

4 、湮没辐射(annihilation radiation)

•正电子衰变产生的正电子,在介质中运行一定距离( 10-9S) ,当其能量耗尽时可与物质中的自由电子结合(两个电子的静止质量相当于 1.022MeV的能量),而转化为两个方向相反、能量各为 0.511MeV 的 γ 光子而自身消失,称湮没辐射。

Page 52: 核  医  学

湮没辐射图示

质子 正电子

γ 光子0.511MeV

γ 光子0.511Me

V

湮没辐射

中子

Page 53: 核  医  学

5 、吸收 (absorption)

射线在电离和激发的过程中,射线的能量全部耗尽,射线不再存在,称作吸收。吸收前所经的路程称为射程。吸收的最终结果是使物质的温度升高。

Page 54: 核  医  学

二、光子与物质的相互作用

• γ 射线和 X 射线属于电磁辐射,都是中性光子流,与物质相互作用方式相同。主要产生三个效应。

1 、光电效应 ( Photoelectric effect)

2 、康普顿效应 (Compton effect)

3 、电子对效应 (Electron pair production)

Page 55: 核  医  学

1 、光电效应 ( Photoelectric effect)

    低能( E γ < 0.5 Mev) γ光子和原子中内层壳层(如 K 、 L 层)电子相互作用,将全部能量交给电子,使之脱离原子成为自由的光电子的过程称为光电效应( photoelectric effect)。光电效应发生的几率与入射光子的能量及介质原子序数有关 ( 负相关)。

Page 56: 核  医  学

光电效应示意图

photoelectronIncident photon

Page 57: 核  医  学

2 、康普顿效应 (Compton effect)

能量较高的 γ光子与原子中的核外电子作用时,只将部分能量传递给核外电子,使之脱离原子核束缚成为高速运行的自由电子,而γ光子本身能量降低,运行方向发生改变,称康普顿效应,释放出的电子称为康普顿电子。康普顿效应发生的几率与光子的能量和介质的密度有关,当 γ光子的能量为 500~1000keV

时,康普顿效应比较明显,介质的密度越大,康普顿效应越明显。

Page 58: 核  医  学

康普顿效应

Compton electron

Incident photon Photon of

changing direction

Page 59: 核  医  学

3 、电子对效应   (Electron pair production)

   当 γ光子的能量大于 1.022MeV处于高能时,在物质核电场作用下,其中1.022MeV的能量转化为一个正电子和一个负电子的过程叫电子对生成 , 剩余的能量变为电子对的动能,又可发生电离和激发等。

Page 60: 核  医  学

电子对形成

electron

Incident photon

positron

electron

Page 61: 核  医  学

电子对生成的几率与 γ 光子的能量和物质的原子序数的平方成正比,即能量越高、物质的原子序数越大,电子对生成越明显。在核医学诊断中使用的 γ 光子一般能量较低,故不发生电子对生成。

Page 62: 核  医  学

第六节、常用的辐射剂量及其单位

•照射量

•吸收剂量

•剂量当量

各种射线对组织产生的生物效应与射线种类有关,也与吸收剂量有关。由于不同射线在相同吸收剂量下产生的生物效应不同,故剂量当量是用适当的修正因子对吸收剂量进行加权,从而使修正后的吸收剂量更好地反映辐射对机体的危害程度,剂量当量 H 定义为吸收剂量和其它必要修正因子的乘积。H 剂量当量 =D 吸收剂量( Gy ) ·Q 品

质因子 ·N 其它修正系数 (N= 1)剂量当量国际单位制单位为希(沃特),以Sv 表示。旧制专用单位为雷姆,以 ram 表示,1Sv= 100ram 。

吸收剂量是用来量度电离辐射与物质相互作用时,单位质量物质吸收辐射能量多少的一个物理量。在正常情况下,吸收剂量愈大,危 害 亦 愈 大 。 国 际 单 位 为 戈(瑞),以 Gy 表示。定义是单位质量被照物质平均吸收的辐射能量。旧有专用单位为拉德,以rad 表示, 1Gy= 100rad 。

照射量( exposure )是直接度量 χ 或 γ 射线对空气电离能力的量,可间接反映 χ , γ 辐射场的强弱;是用来度量辐射场的一种物理量。指标是在空气体积内所形成的次级电子所产生的离子总电荷量,即 χ 或 γ 射线通过的空气时所放出的能量。 照射量的国际制单位是库仑 / 千克旧有单位为伦琴( R )。1 伦琴= 2.58×10-4 库仑 / 千克

Page 63: 核  医  学

本章目的要求

一、掌握:原子核物理学相关的基础知识

二、熟悉:核医学常用的放射性活度及辐射         剂量单位。

三、了解:原子结构、核结构、原子核反应。

Page 64: 核  医  学

复习思考题、作业题1 .某元素的原子核外有 3 个电子层,最外层有 5 个电子,该原子核内的

质子数为( ) A 、 14 B、 15 C、 16 D、 172 .某元素的原子核外有三个电子层, M 层的电子数是 L 层电子数的 1/2

,则该元素的原子是( )A 、 Li B、 Si C、 Al D、 K3 .两种元素原子的核外电子层数之比与它们的最外层电子数之比相等,

在周期表的前 10 号元素中,满足上述关系的元素共有( )A 、 1 对 B、 2 对 C、 3 对 D 、 4 对4. 放射性核素、放射性活度、元素、核素、同位素、同质异能素、电离、

激发、湮灭辐射、光电效应、康普顿效应、剂量当量、照射量、吸收剂量的定义。

5. 核衰变的方式? 

Page 65: 核  医  学