光解離生成物の 時間分解赤外ダイオードレーザー分光

47
光光光光光光光 光光光光光光光光光光光光光光光光光 光光 光光 Time-resolved infrared diode laser spectros copy of transient molecules produced by UV laser ph otolysis 光光光光光光光 光光光 光光光光光光 光光光光光光光

description

光解離生成物の 時間分解赤外ダイオードレーザー分光. Time-resolved infrared diode laser spectroscopy of transient molecules produced by UV laser photolysis. 池田 誠規. 九州大学大学院 理学府 分子科学専攻 量子化学研究室. フリーラジカル. ・反応中間体 ・触媒反応 ・星間分子. 電子状態や分子構造などの 解明が重要. 遷移金属ラジカル. ・満たされない d 電子殻があり、電子状態が複雑。 ・ ab initio 計算による予測が困難. - PowerPoint PPT Presentation

Transcript of 光解離生成物の 時間分解赤外ダイオードレーザー分光

  • Time-resolved infrared diode laser spectroscopy of transient molecules produced by UV laser photolysis

  • dab initio

  • M-COCOM(CO)nFeCOX3S-IR, MMWNiCOX1S+ MMWPtCO MMWCoCO

  • ab initio

    Ne Matrix n1 = 1973.9 cm-1DFT n1 = 1982.0 cm-1M.Zhou and L.Andrews, J.Phys.Chem.A, (1999), 103, 7773CoCOX2DiCoCO1.786 153.5

  • Co 4F9/23d4sCoCO 2Di8s9s10s3p11s1d12s5pp-anti-bondingnon-bonding1dbonding(Co-C)4p

  • MCO(M = Sc-Cu)CO(n1): gas-phase: Ar matrix)G. L. Gutsev, L. Andrews, C. W. Bauschlicher, Chemical Physics 290(1), 47 (2003)(M =)218 cm-1

  • (G.S., n1 and n3 state)|2A| 1000 cm-1nnn1 + nnW3/25/23/25/2W = L + SJRLSLSWcase(a)LS

  • S.D Pump.ComputerAmp.DetectorP.DTrigger : 50 HzCo(CO)3NO15 mTorr600 mTorr

  • (1)n1 band Q-branch (W = 5/2) n1 + n2 n2 R(18.5)Gate5~20 msecQ-branchJ=2.52Di

  • Ground Staten22n2n3n1n1 + n2n1 + 2n2n1 + n3n1 + n2 n2n1 + n3 n3n1 + 2n2 2n220001000n~(cm-1)2n1n12n nn1hot bandW = 5/2W = 3/2n1|2A| = 1000 cm-1n1 CO str.1974n2 bend 358n3 CoC str. 599(cm-1)

  • (2)P =3/27/21961.801962.40cm-1Gate5~20 msec20~6060~100Ver.1.1

  • W = 5/2W = 3/2Unitn1 band

  • MCO(M = Sc-Cu)CO(n1): gas-phase)G. L. Gutsev, L. Andrews, C. W. Bauschlicher, Chemical Physics 290(1), 47 (2003)(M =)218 cm-1189 cm-1: Ar matrix

  • Ground StateUnitBeAD*4435.588(45)0.878(45)MHza1a2a324.870 7(36)-12.568(27)17.174(59)B v1 v2 v3 = Be - a(v1 + 1/2) - a(v2 + 1) - a(v3 + 1/2)

    BeW = Be AD*

    CoCO1.688 1.158 (Fix)

  • M-CONiCO(1), , ,2003 4Dp03 (2) M.Zhou et al, J. Am.Chem. Soc, 120, 11499, (1998)FeCOK.Tanaka et al, J. Chem. Phys, 106, 2118, (1997)(1)M-CpM-C232 N/m305 N/m(308 N/m)

  • CoCO(n1, n2, 2n2, n3)n1CoCOX2Din11974 cm-1CO-189 cm-1

  • CoC1.561M-L513 N/m305 N/mM-CCoO1.629539 N/mp back donation

  • 1950196019701980n1(1974 cm-1) (W = 5/2)n1 + n3 n3 hotband(1972 cm-1)n1 + n2 n2 hotband(1968 cm-1)n1 + 2n2 2n2 hotband(1962 cm-1)2n1 n1 hotband(1950 cm-1)n11hot bandTn2 398 KTn3 390 KT2n2 400 KTn1 1490 K

  • Co 4F9/23d4sCoCO 2Di8s9s10s3p2p11s1d12s5pp-anti-bondingnon-bonding1dbonding4p

  • S/NTn2398 KTn3390 KT2n2400 KTn11490 KTW=3/2694 K

  • Co 4F9/23d4sCoCO 2Di8s9s10s3p2p11s1d12s5pp-anti-bondingnon-bonding1dbonding4p

  • Co 4F9/23d4sCoCO 2Di8s9s10s3p2p11s1d12s5pp-anti-bondingnon-bonding1dbonding4p

  • ab initioconstants experimentab initio(MR-SDCI) ref)UnitBe4435.588(45)4443.7MHzD1.129 241.167 6kHza124.870 7(36)25.76MHza2-12.568(27)-12.37MHza317.174(59)17.17MHzx1112.050 87(17)11.62cm-1x125.533 83(15)5.97cm-1x132.042 68(23)0.51cm-1ref)

  • (n1 + n2 n2 hot band)n2 Staten1 + n2 - n2UnitBD4440.306(38)n0 1.389 8(30)-24.539(35)MHz 0.0kHz1968.646 77(12) cm-1P = 3/2n1 + n2 - n2UnitBD4440.854(37)n0 1.095 3(27)-24.539(35)MHz 0.0kHz1968.641 11(12) cm-1P = 7/2n2 State

  • ()Co 4F9/23d4sCoCO 2D1s2s3s1p2p4s1d5s3panti-bondingnon-bonding1dbonding2p

  • n2 state (W = 5/2)q2 : (2 , 2) interaction constantw2 : 424.9 cm-1 (Ar matrix)D7/2 D3/2 = q224(E3/2 - E7/2)(Dk, Dl) = (2,2) interactionD(E/2-E/2) = 0.006 cm-1P=7/2P=3/2(E/2-E/2) = 0.7 cm-1P=7/2P=3/2n2 staten1 + n2 state

  • CoCO(n1, n2, 2n2, n3)n1CoCO(n1, n2, 2n2, n3)(x11, x12, x13)CoCONCSNCSn1(W=3/2)n1 = 1943.90 cm-1a1 = 22.87 MHz

  • NCSn1(W=1/2)n1 + n2 n2 700800 cm-1n32n2Renner-TellerFermi

  • m2P3/2m2P1/2k2P1/2k2P3/22P3/22P1/22D3/2m2S2D5/2k2S2F7/22F5/22P3/22P1/2(010)(001)(020)(100)2P3/2200010000cm-1NCSRenner-TellerFermi

  • NCS

    X2Pin1 CO1943.89 cm-1(DL)n2 370(LIF)n3 CoC 760(LIF)

    LIFF. J. Northrup et al, Mol. Phys., 71, 45, (1990)

  • LIF (F. J. Northrup et al, Mol. Phys., 71, 45, (1990))A2P-X2PB2S-X2PLIF, DF, SEPn1 1945 cm-1n2 360, 3702n2 720, 750n3 760

    MMW (T.Amano et al, J. Chem. Phys.., 95, 2275, (1991))ab initio (M. Ouazbir et al, Phys. Chem. Chem. Phys., 1, 2649, (1999))MRCI+PESsab initio

  • m2P3/2m2P1/2k2P1/2k2P3/22P3/22P1/22D3/2m2S2D5/2k2S2F7/22F5/22P3/22P1/2(010)(001)(020)(100)2P3/2200010000cm-1NCSRenner-TellerFermi

  • S.D Pump.ComputerAmp.DetectorP.DTrigger : 50 HzMeNCS 100 mTorrAr 800 mTorrMeNCSNCShnKrF 248 nm

  • (1)EtNCSMeNCS

  • (2)P-branch

  • (3)Q-branch

  • (2n2 state)n2 CoCO bending2n2n1 + 2n2P = W + lRJLSGLSlWPP9/21/2P = 1/2 n0 = 1963.13 cm-1P = 5/2 n0 = 1963.81 cm-1n1 + 2n2 2n2 hot bandP = W + l5/27/2-1/23/29/21/25/27/2-1/23/2P = 9/2 n0 = 1963.12 cm-19/25/225/25/201/25/2-27/23/223/23/20-1/23/2-2case(a)

  • (n1 fundamental band)

  • constants experimentBe 6101.13(53) 6102.824 MHzD 1.62(41) 1.769 51(17) kHza1 22.87(76) 18.0 MHz (OCS+)n0 1943.899 78(72) 1945 cm-1 (LIF)(MMW)

  • Energy Level of the CoCO RadicalJRLSLSWn1 Fundamental BandW = 5/2 n0 = 1974.18 cm-1W = 3/2 1973.53 cm-1W = L + S5/23/2221/2-1/2zHunt case(a)

  • Energy Level of the CoCO Radical of n3 state|2A| 1000 cm-1n3 CoC stretchn1 + n3 n3 hot bandW = 5/2 n0 = 1972.14 cm-1n3n1 + n3W3/25/23/25/2W = L + S

  • CO Stretch of the Metal-CO RadicalsnCO(cm-1)CO monomarScTiVCrMnFeCoNiCu18001900200021002163 cm-1218 cm-1189 cm-1p-back donationFe > CoAr matrixGas Phase

  • (1)P(37.5)P(36.5)n1 (W = 5/2)P(35.5)P(34.5)n1 (W = 3/2)P =3/27/2P(21.5)P(20.5)n1 + n2 n2P(31.5)P(30.5)n1 + n3 n31961.801962.40cm-1Gate5~20 msecR(45.5)R(46.5)R(47.5)2n1 n1

  • (1)P(37.5)P(36.5)n1 (W = 5/2)P(35.5)P(34.5)n1 (W = 3/2)P =3/27/2P(21.5)P(20.5)n1 + n2 n2P(31.5)P(30.5)n1 + n3 n31961.801962.40cm-1Gate5~20 msecR(45.5)R(46.5)R(47.5)2n1 n120~6060~100

  • (3. 2n1 n1 hot band Q-Branch)J =2.510.51950.050.2cm-1

  • (3. n1 + n2 n2 hot band Q-Branch)P = 7/2J =3.510.515.5P = 3/210.51968.368.8cm-1

  • Co 4F9/23d4sp-anti-bondingnon-bonding1dbonding2p

  • (n1 + 2n2 2n2 hot band)2n2 Staten1 + 2n2 - 2n2UnitBD4453.35(13)n0 1.686(51)-24.25(11)MHz 0.0kHz1963.133 2(38) cm-1P = 1/22n2 Staten1 + 2n2 - 2n2UnitBD4450.39(30)n0 1.62(23)-24.62(18)MHz 0.0kHz1963.809(12) cm-1P = 5/22n2 State2n1 + 2n2 - 2n2UnitBD4453.09(14)n0 1.754(69)-24.10(10)MHz 0.0kHz1963.119 5(51) cm-1P = 9/2

  • Loomis-Wood Diagramn1 (W = 5/2)n0 = 1974.18 cm-1n1 (W = 3/2)n0 = 1973.53 cm-1n1 + n3 n3(W = 5/2)n0 = 1972.14 cm-1n1 + n2 n2(W = 5/2)n0 = 1968.64 cm-11949 cm-11991 cm-1

  • Energy Level of the CoCO Radical of n2 staten2 CoCO bendingn2n1 + n2P = W + lRJLSGLSlWPP5/21/27/23/27/23/25/21/2P = 3/2 n0 = 1968.65 cm-1P = 7/2 n0 = 1968.64 cm-1n1 + n2 n2 hot bandP = W + l5/21/23/23/21-17/23/25/25/21-1

  • H2C=CHBr H2C=C-HCH3NCS C2H5NCSNCShn193 nm193 nmCo(CO)3NO248 nm248 nm

  • 400 ~ 3000 cm-1 COCN CH

    CoCO(CO)NCS (CN)

  • CoCO

    X2Din1 CO str.1974.12 cm-1(gas)n2 bend 424(matrix)n3 CoC str. 599(matrix)

    gas matrixB. Tremblay et al, J. Phys. Chem. A, 105, 11388, (2001)CO2116 cm-1p-

  • 1972.01972.3(2)n1 + n2 n2n1 (W = 5/2)n1 + 2n2 2n2P =3/27/25/2n1 + n3 n3Q-BranchR(33.5)R(32.5)R(30.5)R(29.5)P(6.5)R(11.5)

  • (n1 + n3 n3 hot band)

  • (2n1 n1 hot band)(BDn1)