项目一 电路的基本概念及基本定律

79
项项 项项项项项项项项项项项项 项项 项项项项项项项项项项项项 项项项 (: 项项项 (: 4 4 项项项项8 8 项项项项

description

项目一 电路的基本概念及基本定律. (时间: 4 次课, 8 学时). 本章首先阐述了电路的基本知识,包括电路的 组成、功能 ,电路的 基本物理量 —— 电压、电流、功率和电路的 工作状态 。在此基础上,重点介绍了两方面内容: 一是 基本电路元件及其伏安特性 ,即电路元件中电压与电流的关系,包括电阻、电感、电容元件的伏安特性和独立源、受控源的伏安特性; 二是介绍了电路中电压与电流相互之间应遵循的规律 —— 基尔霍夫定律 。此外,在本章中还运用上述基本理论,对电路中的电位进行分析和计算。. 项目一 电路的基本概念及其基本定律. 任务一 电路及其组成 - PowerPoint PPT Presentation

Transcript of 项目一 电路的基本概念及基本定律

Page 1: 项目一   电路的基本概念及基本定律

项目一 电路的基本概念及基本定律项目一 电路的基本概念及基本定律

(时间:(时间: 44 次课,次课, 88 学时)学时)

Page 2: 项目一   电路的基本概念及基本定律

本章首先阐述了电路的基本知识,包括电路的本章首先阐述了电路的基本知识,包括电路的组成、功组成、功能能,电路的,电路的基本物理量基本物理量——电压、电流、功率和电路的——电压、电流、功率和电路的工作工作状态状态。在此基础上,重点介绍了两方面内容:。在此基础上,重点介绍了两方面内容:

一是一是基本电路元件及其伏安特性基本电路元件及其伏安特性,即电路元件中电压与,即电路元件中电压与电流的关系,包括电阻、电感、电容元件的伏安特性和独立电流的关系,包括电阻、电感、电容元件的伏安特性和独立源、受控源的伏安特性;源、受控源的伏安特性;

二是介绍了电路中电压与电流相互之间应遵循的规律—二是介绍了电路中电压与电流相互之间应遵循的规律———基尔霍夫定律基尔霍夫定律。此外,在本章中还运用上述基本理论,对。此外,在本章中还运用上述基本理论,对电路中的电位进行分析和计算。电路中的电位进行分析和计算。

Page 3: 项目一   电路的基本概念及基本定律

项目一 电路的基本概念及其基本定律项目一 电路的基本概念及其基本定律

任务一 电路及其组成任务一 电路及其组成 任务二 电路的基本物理量和参考方向任务二 电路的基本物理量和参考方向 任务三 电气设备的额定值及电路的工作状态任务三 电气设备的额定值及电路的工作状态 任务四 电路的基本定律任务四 电路的基本定律 任务五 电路中电位的计算任务五 电路中电位的计算 任务六 电源任务六 电源

Page 4: 项目一   电路的基本概念及基本定律

任务一任务一 电路及其组成电路及其组成

电路是电工技术中的主要研究对象,电电路是电工技术中的主要研究对象,电路理论是电路基础的主要部分路理论是电路基础的主要部分。为了研究。为了研究电路理论,首先要了解什么是电路,即给电路理论,首先要了解什么是电路,即给电路下一个定义。 电路下一个定义。

Page 5: 项目一   电路的基本概念及基本定律

任务一任务一 电路及其组成电路及其组成

1.1.1 1.1.1 电路及其组成电路及其组成 1.1.2 1.1.2 电路的功能电路的功能

Page 6: 项目一   电路的基本概念及基本定律

1.1.11.1.1 电路及其组成电路及其组成 基本概念:基本概念:

电路:电路:有电流通过的路径。有电流通过的路径。

图图 1.11.1 电路的组电路的组成成

Page 7: 项目一   电路的基本概念及基本定律

电路一般由三部分组成:电路一般由三部分组成: 电源电源::供给电路电能的设备。它把其他形式的能量转供给电路电能的设备。它把其他形式的能量转

换成电能,如发电机把机械能转换为电能。换成电能,如发电机把机械能转换为电能。 负载负载::各种用电设备。它是将电能转换成其他形式能各种用电设备。它是将电能转换成其他形式能

量的装置,如电灯把电能转换为光能和热能。量的装置,如电灯把电能转换为光能和热能。 中间环节中间环节::连接电源和负载的部分。最简单的中间环连接电源和负载的部分。最简单的中间环

节就是导线和开关,起到传输和分配电能或对电信号节就是导线和开关,起到传输和分配电能或对电信号进行传递和处理的作用。进行传递和处理的作用。

Page 8: 项目一   电路的基本概念及基本定律

1.1.21.1.2 电路的功能电路的功能

按工作任务划分,电路功能有两类。按工作任务划分,电路功能有两类。 能量的转换、传输和分配.能量的转换、传输和分配.如供电电路用发电机将其他如供电电路用发电机将其他

形式的能量转换成电能,再通过变压器和输电线送到负形式的能量转换成电能,再通过变压器和输电线送到负载,将电能转换成其他形式的能量 .载,将电能转换成其他形式的能量 .

信号的处理.信号的处理.如电话机、电视机、收音机等。将声音或如电话机、电视机、收音机等。将声音或图像信号转换成电信号经各种处理后,送到负载,负载图像信号转换成电信号经各种处理后,送到负载,负载再将电信号转换成声音或图像信号。再将电信号转换成声音或图像信号。

Page 9: 项目一   电路的基本概念及基本定律

图图 1.2 1.2 电路的功能电路的功能

Page 10: 项目一   电路的基本概念及基本定律

实际电路由各种作用不同的电路元件或器件所组成且实际电路由各种作用不同的电路元件或器件所组成且电路元件种类繁多,电磁性质复杂。如图电路元件种类繁多,电磁性质复杂。如图 1.11.1 中所示的白中所示的白炽灯,除了具有消耗电能的性质外,当电流通过时,还具炽灯,除了具有消耗电能的性质外,当电流通过时,还具有电感性。为了便于对实际复杂问题进行研究,常常采用有电感性。为了便于对实际复杂问题进行研究,常常采用一种“一种“理想化理想化”的科学抽象方法,即”的科学抽象方法,即把实际元件看作是电把实际元件看作是电阻、电感、电容与电源等几种理想的电路元件阻、电感、电容与电源等几种理想的电路元件。。理想的电理想的电路元件是具有某种确定的电或磁性质的假想元件路元件是具有某种确定的电或磁性质的假想元件。常见理。常见理想元件的符号如图想元件的符号如图 1.31.3 所示。所示。

图图 1.3 1.3 理想电路元件的符理想电路元件的符号号

Page 11: 项目一   电路的基本概念及基本定律

图图 1.4 1.4 电路图电路图

用理想电路元件构成的电路用理想电路元件构成的电路叫叫电路模型电路模型,用特定的符号代,用特定的符号代表元件连接成的图形叫表元件连接成的图形叫电路图电路图,如图,如图 1.41.4 所示就是图所示就是图 1.11.1 所示所示照明电路的电路图。照明电路的电路图。

Page 12: 项目一   电路的基本概念及基本定律

任务二任务二 电路的基本物理量和参考方向电路的基本物理量和参考方向

在电路中需要分析研究的物理量很多,在电路中需要分析研究的物理量很多,主要主要是电流、电压和电功率是电流、电压和电功率这这 33个,其中个,其中电流、电流、电压是电路中的基本物理量电压是电路中的基本物理量。。

Page 13: 项目一   电路的基本概念及基本定律

任务二任务二 电路的基本物理量和参考方向电路的基本物理量和参考方向

1.2.1 1.2.1 电路的基本物理量和参考方向电路的基本物理量和参考方向 1.2.2 1.2.2 元件的伏安关系元件的伏安关系

Page 14: 项目一   电路的基本概念及基本定律

1.2.1 1.2.1 电路的基本物理量和参考方向电路的基本物理量和参考方向1. 1. 电流和电流的参考方向电流和电流的参考方向 电荷的定向移动形成电流。习惯上电荷的定向移动形成电流。习惯上规定正电荷的运动方规定正电荷的运动方向为电流的方向向为电流的方向 (( 事实上,金属导体内部的电流是由带负事实上,金属导体内部的电流是由带负电的自由电子定向运动形成的电的自由电子定向运动形成的 )),如图,如图 1.51.5所示。 所示。

ddqit

图图 1.5 1.5 导体中的电子与电流导体中的电子与电流

表征电流强弱的物理量叫表征电流强弱的物理量叫电流电流强度,简称电流。强度,简称电流。电流在数值电流在数值上等于单位时间内通过导体横上等于单位时间内通过导体横截面的电荷量,一般用符号表截面的电荷量,一般用符号表示,即示,即

Page 15: 项目一   电路的基本概念及基本定律

如果电流的大小和方向均不随时间变化而变化,这种电如果电流的大小和方向均不随时间变化而变化,这种电流称为流称为恒定电流,简称直流电流恒定电流,简称直流电流。直流电流通常用大写字母。直流电流通常用大写字母II 表示,即表示,即

随时间变化的电流一般用小写字母随时间变化的电流一般用小写字母 ii 表示。表示。 完整地表示电路中的电流应该既有电流的大小又要有其方完整地表示电路中的电流应该既有电流的大小又要有其方向向。在简单电路中,电流的实际方向较易判别,但在复杂电。在简单电路中,电流的实际方向较易判别,但在复杂电路中,电路中各电流的实际方向往往很难事先确定。此外,路中,电路中各电流的实际方向往往很难事先确定。此外,有些电路中电流的实际方向是随着时间在改变的,很难标明有些电路中电流的实际方向是随着时间在改变的,很难标明其实际方向。因此,在分析和计算电路时引入了一个重要的其实际方向。因此,在分析和计算电路时引入了一个重要的概念——概念——电流的参考方向电流的参考方向。。

qI

t

Page 16: 项目一   电路的基本概念及基本定律

电流的参考方向是任意设定的,在电路图中一般用箭头电流的参考方向是任意设定的,在电路图中一般用箭头表示表示。分析计算电路时,首先应设定电路中各个电流的参。分析计算电路时,首先应设定电路中各个电流的参考方向,并在电路图上标出。考方向,并在电路图上标出。若计算结果为正值,则表示若计算结果为正值,则表示电流的实际方向与参考方向一致;若电流为负值,则表示电流的实际方向与参考方向一致;若电流为负值,则表示实际方向与参考方向相反。实际方向与参考方向相反。图图 1.61.6 表示了电流的实际方向表示了电流的实际方向与参考方向的联系。与参考方向的联系。

图图 1.6 1.6 电流的实际方向和参考方向的联系电流的实际方向和参考方向的联系

Page 17: 项目一   电路的基本概念及基本定律

2. 2. 电压和电压的参考方向电压和电压的参考方向1) 1) 电压电压 在图在图 1.71.7中,极板中,极板 aa 带正电,极板带正电,极板 bb 带负电,在带负电,在 aa、、 bb间存在电场,其方向是由间存在电场,其方向是由 aa 指向指向 bb。在电场力的作用下,正。在电场力的作用下,正电荷由电荷由 aa经外电路流向经外电路流向 bb。电场力对电荷做了功。用物理量。电场力对电荷做了功。用物理量来衡量电场力做功大小,引入了电压。其定义为:来衡量电场力做功大小,引入了电压。其定义为:把单位正把单位正电荷从电荷从 aa点移动到点移动到 bb点电场力所做的功定义为点电场力所做的功定义为 aa、、 bb两点间两点间的电压的电压,即,即 ab

ddwuq

式中,式中, UabUab 电压的单位为电压的单位为 VV

(( 伏伏 [[ 特特 ])]) 。通常直流电压。通常直流电压用大写字母用大写字母 UU来表示。来表示。

图图 1.7 1.7 电源电压电源电压

Page 18: 项目一   电路的基本概念及基本定律

2) 2) 电位电位 电场力将单位正电荷从电场内的电场力将单位正电荷从电场内的 aa 点移动至无限远处所点移动至无限远处所做的功,被称为做的功,被称为 aa 点的电位 点的电位 。由于。由于无限远处的电场为零无限远处的电场为零,所以电位也为零。因此,电场内两点间的电位差,也就,所以电位也为零。因此,电场内两点间的电位差,也就是是 aa 、、 bb 两点间的电压。即两点间的电压。即

为分析电路方便起见,一般在电路中任选一点为参考点为分析电路方便起见,一般在电路中任选一点为参考点,,令参考点电位为零,则电路中某点相对于参考点的电压令参考点电位为零,则电路中某点相对于参考点的电压就是该点的电位就是该点的电位。。

ab a bu u u

au

Page 19: 项目一   电路的基本概念及基本定律

电压方向规定为由高电位指向低电位,即电位降方向电压方向规定为由高电位指向低电位,即电位降方向。。在电路分析中也可选取电压的参考方向。电压的参考方向在电路分析中也可选取电压的参考方向。电压的参考方向可用箭头表示,即设定沿箭头方向电位是降低的;也可用箭头表示,即设定沿箭头方向电位是降低的;也可以可以用“用“ +”+” 、“-”表示;还可用双下标表示、“-”表示;还可用双下标表示,如图,如图 1.81.8 所所示。若计算所得电压为正值,实际方向与参考方向一致;示。若计算所得电压为正值,实际方向与参考方向一致;反之,则相反。反之,则相反。 在分析电路时电压和电流参考方向的选择是独立无关的在分析电路时电压和电流参考方向的选择是独立无关的,但为了方便分析问题,常常把两者的参考方向选择为一,但为了方便分析问题,常常把两者的参考方向选择为一致,即致,即选取成关联参考方向选取成关联参考方向。。

图图 1.8 1.8 电压参考方向的表示法电压参考方向的表示法

Page 20: 项目一   电路的基本概念及基本定律

3) 3) 电动势电动势

为维持恒定电流不断在电路中通过,必须保持恒定,为维持恒定电流不断在电路中通过,必须保持恒定,因此需要电源力不断克服电场力,使正电荷由负极因此需要电源力不断克服电场力,使正电荷由负极 bb 移向移向正极正极 aa。。

电源力对电荷做功的能力用物理量电动势来衡量电源力对电荷做功的能力用物理量电动势来衡量。。

电源电动势在数值上等于电源力把单位正电荷从负极电源电动势在数值上等于电源力把单位正电荷从负极bb经电源内部移到正极经电源内部移到正极 aa所做的功,用所做的功,用 EE 表示表示。。

电动势的方向规定为由低电位指向高电位,即电位升电动势的方向规定为由低电位指向高电位,即电位升方向方向,其单位也为,其单位也为 V(V( 伏伏 [[特特 ])])。 。

Page 21: 项目一   电路的基本概念及基本定律

3、电功率①电路中,单位时间内电路元件的能量变化用功率表示。

即:元件吸收或发出的功率等于元件上的电压与电流之积。直流电路的这一公式写为

②元件类型判别:当 、 参考方向一致时,       该元件是负载;当 、 参考方向相反时,       该元件是电源。

③电能    ,单位为J(焦耳).也可以用W·s或 kW·h 作单位 .

d

d

wp

t

ddd d

qwpq t

p ui

W Pt

sWhkW 36000001

U IU I

P UIP UI

0P

0P

P UI

Page 22: 项目一   电路的基本概念及基本定律

解解:电路应遵守能量守恒定律,即:电路应遵守能量守恒定律,即

由题意可知,元件由题意可知,元件 11 发出功率发出功率 205W205W,元件,元件 22 、、 44 、、 55共吸收功率共吸收功率 135W135W,则元件,则元件 33 吸收功率吸收功率 70W70W。。

例例 1-11-1 图图 1.91.9示电路是示电路是 55个元件组成的电路,关联方向个元件组成的电路,关联方向下,如果 下,如果 , , , , ,计算元件, , ,计算元件 33是吸收是吸收或发出的功率。 或发出的功率。

图图 1.9 1.9 例例 1-11-1 图图

1 205WP 2 60WP 4 45WP 5 30WP

0P

Page 23: 项目一   电路的基本概念及基本定律

1.2.2 1.2.2 元件的伏安关系元件的伏安关系11 、电阻元件、电阻元件11 )金属导体的电阻)金属导体的电阻 导体对电流呈现的阻碍作用称为电阻,用字母R来表示。 导体的电阻值 R与导体的长度 l成正比,与导体的横截面积 s成反比,并与导体材料的性质有关,用公式表示为

电阻率 是单位长度单位截面积时导体的电阻值。 越大,物质的导电能力就越差。另外,金属导体的电阻率还受温度的影响,一般的金属导体,温度越高,电阻率越大。

lR

s

Page 24: 项目一   电路的基本概念及基本定律

不同的材料,有不同的电阻率,表不同的材料,有不同的电阻率,表 1.11.1列出了常用的电工列出了常用的电工材料在材料在 20℃20℃时的电阻率及其温度系数。时的电阻率及其温度系数。

从表中可知,银的电阻率最小,是最好的导电材料,其次从表中可知,银的电阻率最小,是最好的导电材料,其次是铜和铝,但银的价格昂贵,除了必要的地方外,是铜和铝,但银的价格昂贵,除了必要的地方外,普遍采用普遍采用铜和铝。铜和铝。

材料名称 电阻率( Ω m ) (20℃) 电阻率温度系数α (20℃)

锰铜

康铜

镍铬

1.59× 10-8

1.69× 10-8

2.65× 10-8

5.48× 10-8

9.78× 10-8

1.05× 10-7

1.14× 10-7

2.19× 10-7

(4.2~4.8)× 10-7

(4.8~5.2)× 10-7

(1.0~1.2) × 10-6

0.00380

0.00393

0.00410

0.00450

0.00500

0.00300

0.00420

0.00390

0.00013

表表 1.1 1.1 常用导电材料的电阻率与温度系数常用导电材料的电阻率与温度系数

Page 25: 项目一   电路的基本概念及基本定律

例例 1-21-2 一台电动机的线圈由直径为一台电动机的线圈由直径为 1.13mm1.13mm的漆包铜线绕的漆包铜线绕成,测得在成,测得在 20℃20℃时电阻为时电阻为 1.64 1.64 ,求共用了多长的导线?,求共用了多长的导线?

解:

2 3 2 6 2(1.13 10 ) 1.003 10 m4 4

s d

6 81.64 1.003 10 / (1.69 10 ) 97msl R

Page 26: 项目一   电路的基本概念及基本定律

22 )电阻元件的伏安关系)电阻元件的伏安关系::

UI

R U

IR

图图 1.10 1.10 电阻元件的伏安关系电阻元件的伏安关系

关联参考方向

非关联参考方向

Page 27: 项目一   电路的基本概念及基本定律

     18261826 年,德国科学家欧姆通过科学实验总结出电阻元年,德国科学家欧姆通过科学实验总结出电阻元件中电流与两端电压之间的伏安关系,即件中电流与两端电压之间的伏安关系,即欧姆定律欧姆定律。表述如。表述如下:电阻中电流的大小与加在电阻两端的电压成正比,与电下:电阻中电流的大小与加在电阻两端的电压成正比,与电阻值成反比。阻值成反比。  若电压与电流取关联参考方向时,如图  若电压与电流取关联参考方向时,如图 1.10(a)1.10(a) 所示,所示,欧姆定律可表示为欧姆定律可表示为             或             或 (1-12)(1-12)  若电压与电流参考方向相反,如图  若电压与电流参考方向相反,如图 1.10(b)1.10(b) 所示,欧姆所示,欧姆定律可表示为定律可表示为             或                    或         (1-13)(1-13)

UI

R U RI

UI

R U RI

Page 28: 项目一   电路的基本概念及基本定律

  以电阻元件上的电压和电流为直角坐标系中的横坐标和  以电阻元件上的电压和电流为直角坐标系中的横坐标和纵坐标,画出的纵坐标,画出的 UU--II 函数特性曲线称为元件的伏安特性。当函数特性曲线称为元件的伏安特性。当电阻元件的伏安特性是通过原点的直线电阻元件的伏安特性是通过原点的直线 ((如图如图 1.11(a)1.11(a) 所示所示 ))时,称为时,称为线性电阻元件线性电阻元件;反之,当电阻元件的伏安特性不是;反之,当电阻元件的伏安特性不是通过原点的直线而是一条曲线通过原点的直线而是一条曲线 ((如图如图 1.11(b)1.11(b) 所示所示 ))时,称时,称为为非线性电阻元件非线性电阻元件。 。

图图 1.11 1.11 电阻元件的伏安特性电阻元件的伏安特性

Page 29: 项目一   电路的基本概念及基本定律

22 、电感元件、电感元件    电感线圈或电感器电感线圈或电感器:变压器线圈、日光灯镇流器线圈等。:变压器线圈、日光灯镇流器线圈等。  电感是反映磁场能性质的电路参数。  电感是反映磁场能性质的电路参数。电感元件电感元件是实际线圈是实际线圈的理想化模型,假想是由无阻导线绕制而成的,用的理想化模型,假想是由无阻导线绕制而成的,用 LL 表示,其表示,其电路符号如图电路符号如图 1.121.12 所示。 所示。

    

  

图图 1.12 1.12 线性电感元件线性电感元件

Page 30: 项目一   电路的基本概念及基本定律

  电感系数:  电感系数:按照右手螺旋法则,线性电感元件的磁链按照右手螺旋法则,线性电感元件的磁链与电流与电流 i i 成正比,比例系数称为电感系数成正比,比例系数称为电感系数 LL。即 。即

式中,电感系数式中,电感系数 LL的单位为的单位为 H(H( 亨亨 [[ 利利 ])]);磁链和磁通的;磁链和磁通的单位均为单位均为 Wb(Wb( 韦韦 [[ 伯伯 ])])。。  空心线圈  空心线圈的电感系数的电感系数 LL是一个常数,与通过的电流大是一个常数,与通过的电流大小无关。这种电感称为线性电感。线性电感的大小只与线小无关。这种电感称为线性电感。线性电感的大小只与线圈的形状、尺寸、匝数,以及周围物质的导磁性能有关。圈的形状、尺寸、匝数,以及周围物质的导磁性能有关。线圈的截面面积越大,匝数越密,电感系数越大。线圈的截面面积越大,匝数越密,电感系数越大。

Li

Page 31: 项目一   电路的基本概念及基本定律

2)电感元件的伏安关系2)电感元件的伏安关系 ::  根据电磁感应定律,当电流随时间变化时,磁链、磁通  根据电磁感应定律,当电流随时间变化时,磁链、磁通也会发生变化。同时在电感线圈两端便会产生感应电动势 也会发生变化。同时在电感线圈两端便会产生感应电动势                                          (1-16)(1-16)                                         

那么在电感元件两端便有感应电压,若电压与电流参考方向那么在电感元件两端便有感应电压,若电压与电流参考方向一致一致 ((如图如图 1.121.12 所示所示 )),其伏安关系为,其伏安关系为                          (1-17)(1-17)  即即电感两端电压与通过电流的变化率成正比。电感两端电压与通过电流的变化率成正比。

L

d

d

iu L

t

L

d d d

d d d

ie N L

t t t

Page 32: 项目一   电路的基本概念及基本定律

3. 3. 电容元件电容元件1) 1) 电容电容 电容元件电容元件 ((用用 CC 表示表示 ))通常由用绝缘介质隔开的两块金属通常由用绝缘介质隔开的两块金属板组成。这种结构的电容称为板组成。这种结构的电容称为平板电容平板电容,中间的绝缘材料称,中间的绝缘材料称为为电介质电介质,如图,如图 1.13(a)1.13(a) 所示。实际的电容元件忽略介质及所示。实际的电容元件忽略介质及漏电损耗就是漏电损耗就是理想电容元件理想电容元件。。 当在电容元件两端加上电源时,两块极板上便聚集起等量当在电容元件两端加上电源时,两块极板上便聚集起等量的正、负电荷,如图的正、负电荷,如图 1.13(b)1.13(b) 所示。其电荷量所示。其电荷量 qq与外加电压与外加电压之间有确定的函数关系。对于线性电容元件,之间有确定的函数关系。对于线性电容元件, qq、、 uu之间的之间的关系为关系为

式中,式中, CC为电容元件的电容量,单位为为电容元件的电容量,单位为 F(F(法法 [[ 拉拉 ])])。。

qC

u

Page 33: 项目一   电路的基本概念及基本定律

电容量的大小与两端电压无关,仅与电容器元件的形状、电容量的大小与两端电压无关,仅与电容器元件的形状、尺寸及电介质有关尺寸及电介质有关。如平板电容器的电容量为。如平板电容器的电容量为

AC

d

式中,A

d为两极板正对面积,

为两平行极板间距离,为电介质的介电常数。

图图 1.13 1.13 平板电容器平板电容器

Page 34: 项目一   电路的基本概念及基本定律

2) 2) 电容元件的伏安关系:电容元件的伏安关系: 如图如图 1.141.14 所示电容元件,若所加电压随时间变化,则电所示电容元件,若所加电压随时间变化,则电容极板上的电荷量也随时间变化,根据电流定义,这时电容容极板上的电荷量也随时间变化,根据电流定义,这时电容上便有电流通过。若电流与电压取关联参考方向,则上便有电流通过。若电流与电压取关联参考方向,则

即通过即通过电容的电流与电容两端电压的变化率成正比电容的电流与电容两端电压的变化率成正比。。

d d

d d

q ui C

t t

图图 1.14 1.14 线性电容元件线性电容元件

Page 35: 项目一   电路的基本概念及基本定律

任务三任务三 电气设备的额定值及电气设备的额定值及电路的工作状态电路的工作状态

1.3.1 1.3.1 电气设备的额定值电气设备的额定值 1.3.2 1.3.2 电路的电路的 33种工作状态种工作状态

Page 36: 项目一   电路的基本概念及基本定律

1.3.1 1.3.1 电气设备的额定值电气设备的额定值

为了保证电气设备在使用年限内为了保证电气设备在使用年限内安全、可靠运行安全、可靠运行,对,对其电压、电流、功率设定了一个其电压、电流、功率设定了一个限额值限额值,这个限额值就称,这个限额值就称为电气设备的为电气设备的额定值额定值。例如,“。例如,“ 220V220V、、 60W”60W” 的白炽的白炽灯,“灯,“ 380V380V、、 4kW”4kW” 的电动机等。大多数电气设备的的电动机等。大多数电气设备的使用寿命与绝缘材料的耐热性能及绝缘强度有关,因此电使用寿命与绝缘材料的耐热性能及绝缘强度有关,因此电气设备的气设备的额定值主要有额定电流、额定电压、额定功率额定值主要有额定电流、额定电压、额定功率。 。

Page 37: 项目一   电路的基本概念及基本定律

1. 1. 额定电流额定电流

当电气设备中通过工作电流时,由于电气设备本身当电气设备中通过工作电流时,由于电气设备本身有电阻,会产生热量,使电气设备温度升高。如果通有电阻,会产生热量,使电气设备温度升高。如果通过的电流过大,会导致温度过高,使绝缘材料因过热过的电流过大,会导致温度过高,使绝缘材料因过热而损坏。而损坏。

为使电气设备工作温度不超过其最高允许温度,对为使电气设备工作温度不超过其最高允许温度,对电气设备长期运行时的最大容许电流设定了一个限制电气设备长期运行时的最大容许电流设定了一个限制值,该限制值便是电气设备的额定电流。值,该限制值便是电气设备的额定电流。

NI

Page 38: 项目一   电路的基本概念及基本定律

2. 2. 额定电压额定电压 为了限制电气设备的电流及限制绝缘材料承受的电压,为了限制电气设备的电流及限制绝缘材料承受的电压,允许加在各电气设备上的电压也有一个限值,该限值便是电允许加在各电气设备上的电压也有一个限值,该限值便是电气设备的额定电压气设备的额定电压。。 电压等级标准电压等级标准 ::交流用交流用 330kV330kV 、、 220kV220kV 、、 110kV110kV 、、 35kV35kV 、、 10kV10kV 、、 66660V0V、、 380V380V、、 220V220V等等直流用直流用 660V660V 、、 220V220V、、 110V110V等等蓄电池蓄电池为为 6V6V、、 12V12V、、 24V24V等 等 干电池干电池为为 1.5V1.5V、、 3V3V、、 6V6V等 等 因此电气设备的额定电压应与供电电压等级相吻合。 因此电气设备的额定电压应与供电电压等级相吻合。

NU

Page 39: 项目一   电路的基本概念及基本定律

3.3. 额定功率额定功率 额定功率是指电气设备正常运行时的输入功率或输出功率额定功率是指电气设备正常运行时的输入功率或输出功率,对电阻性负载而言 ,对电阻性负载而言

满载满载:电气设备工作电流、电压、功率:电气设备工作电流、电压、功率等于等于额定值额定值 ; ;

轻载轻载 (( 或欠载或欠载 )) :电气设备工作电流、电压、功率:电气设备工作电流、电压、功率低于低于额额定值;定值;轻载不能充分利用电气设备能力。轻载不能充分利用电气设备能力。 超载超载 (( 或过载或过载 )) :电气设备工作电流、电压、功率:电气设备工作电流、电压、功率高于高于额额定值。定值。超载会引起电气设备损坏或降低使用寿命。超载会引起电气设备损坏或降低使用寿命。 注意: 额定值通常标于铭牌上,使用时必须注意,不应使实注意: 额定值通常标于铭牌上,使用时必须注意,不应使实际值超过额定值,并且尽量使电气设备工作在满载状态。际值超过额定值,并且尽量使电气设备工作在满载状态。

NP

22 N

N N N N

UP U I I R

R

Page 40: 项目一   电路的基本概念及基本定律

例例 1-31-3 一个标称值为 一个标称值为 0.25W 0.25W 、、 100Ω100Ω的碳膜电阻,其额的碳膜电阻,其额定电流为多少?使用电压不得超过何值?定电流为多少?使用电压不得超过何值? 解解:: 电阻的额定功率为 电阻的额定功率为 0.25W0.25W,阻值为,阻值为 100Ω100Ω,,则额定电流为则额定电流为

电阻两端电压不得超过电阻两端电压不得超过

NN

0.250.05A

100

PI

R

N N 100 0.05 5VU RI

Page 41: 项目一   电路的基本概念及基本定律

1.3.2 1.3.2 电路的电路的 33 种工作状态种工作状态电路有电路有 33种工作状态:通路、开路、短路。种工作状态:通路、开路、短路。

电路电流: L0

EIR R

电源端电压: 0U E IR

负载消耗功率: 2

LP R I

在 E 和 为常数时,通路状态下电路电流 取决于负载电阻 。负载重,即 小, 就大;负载轻,即 大, 就小。

0R

I LR

LR ILR I

11 、通路、通路

图图 1.15 1.15 (( aa ))

Page 42: 项目一   电路的基本概念及基本定律

电路电流: 0I 电源端电压:U E负载消耗功率: 0P

图图 1.151.15 (( bb ))

2. 2. 开路开路 如图如图 1.15(b)1.15(b) 所示电路,开关所示电路,开关 SS断开,电源和负载断开,电源和负载没有构成没有构成闭合电路闭合电路,,负载电阻为无穷大,电路处于开路负载电阻为无穷大,电路处于开路状态状态。此时,。此时,

Page 43: 项目一   电路的基本概念及基本定律

3 、短路短路电流:

电源端电压:

负载消耗功率:

S0

EIR

0U

0P

短路时,由于电源内阻 R0 很小,故短路电流很大,电源所产生功率全部消耗在内阻上。图图 1.161.16 (( cc ))

电源短路电源短路是一种非常严重的事故,绝缘损坏、误操作都是一种非常严重的事故,绝缘损坏、误操作都可能引起短路事故。应该在电路中可能引起短路事故。应该在电路中设置短路保护装置设置短路保护装置。。

Page 44: 项目一   电路的基本概念及基本定律

例例 1-41-4 在图在图 1.161.16所示电路中, 已知所示电路中, 已知 EE=100V =100V , , 试 分别求出图示试 分别求出图示 (a)(a) 、、 (b)(b) 、、 (c)(c)所示所示 33种电路中的 、种电路中的 、 及负载消耗的功率 及电源发出功率 。 及负载消耗的功率 及电源发出功率 。

0 1r

4R I U

RP EP

图图 1.16 1.16 例例 1-41-4 图图

Page 45: 项目一   电路的基本概念及基本定律

解:解:图 图 (a)(a) 所示电路处于开路状态:所示电路处于开路状态:

图图 1.16(b)1.16(b)所示电路处于通路状态 图所示电路处于通路状态 图 1.16(c)1.16(c)所示电路处于短路状态所示电路处于短路状态

短路时,电源发出功率全部消耗在内阻上,且短路电流比短路时,电源发出功率全部消耗在内阻上,且短路电流比正常工作时大很多,因此必须采取一定的保护措施。正常工作时大很多,因此必须采取一定的保护措施。

L

R

E

0A

100V

0W

0W

I

U E

P

P

0

L 0

2R

E

10020A

1 4

100 20 1 80V

400 4 1600W

100 20 2000W

EIr R

U E Ir

P I R

P EI

0

L

R

E

100100A

1

0V

0W

100 100 10kW

EIr

U

P

P EI

Page 46: 项目一   电路的基本概念及基本定律

任务四任务四 电路的基本定律 电路的基本定律

1.4.1 1.4.1 欧姆定律欧姆定律1.4.2 1.4.2 基尔霍夫定律基尔霍夫定律

Page 47: 项目一   电路的基本概念及基本定律

1.4.1 1.4.1 欧姆定律欧姆定律

一个包含电源、负载在内的电路一个包含电源、负载在内的电路称为称为全电路全电路。。

欧姆定律只能用来分析简单电路欧姆定律只能用来分析简单电路

流过电路的电流流过电路的电流 :

电源两端电压电源两端电压 : 0U E IR

图图 1.17 1.17 全电路全电路 欧姆定律欧姆定律

0 L

EI

R R

Page 48: 项目一   电路的基本概念及基本定律

1.4.2 1.4.2 基尔霍夫定律基尔霍夫定律基本术语:基本术语:支路:支路:电路中通过同一电流的每个分电路中通过同一电流的每个分支。图支。图 1.181.18 所示电路中有所示电路中有 33 条支路条支路:: amfamf、、 bnebne、、 cdcd。。节点:节点: 33 条或条或 33 条以上支路的连接点条以上支路的连接点。图。图 1.181.18 所示电路中有两个节点:所示电路中有两个节点: bb点和点和 ee点。点。回路:回路:电路中任一闭合路径。图电路中任一闭合路径。图 1.181.18电路中有电路中有 33 个回路:个回路: abnefmaabnefma 、、 bcbcdenbdenb、、 abcdefmaabcdefma。。网孔:网孔:内部不含有支路的回路,即“内部不含有支路的回路,即“空心回路”。图空心回路”。图 1.181.18 所示电路中有两所示电路中有两个网孔:个网孔: abnefmaabnefma、、 bcdenbbcdenb。。

图图 1.18 1.18 复杂电复杂电路路

Page 49: 项目一   电路的基本概念及基本定律

11 、基尔霍夫电流定律(、基尔霍夫电流定律( KCLKCL))  基尔霍夫电流定律  基尔霍夫电流定律 (( 以下简称以下简称 KCL)KCL) 反映了各支路电反映了各支路电流之间的关系流之间的关系,具体表述为:,具体表述为:任一瞬间流入某个节点的任一瞬间流入某个节点的电流之和等于流出该节点的电流之和电流之和等于流出该节点的电流之和。其表示式为。其表示式为

也可写成也可写成

也可表述成,任一瞬间流入某个节点的电流代数和为也可表述成,任一瞬间流入某个节点的电流代数和为 00。若流入节点的电流为正,那么流出节点的电流就取负。若流入节点的电流为正,那么流出节点的电流就取负。 。

i 0I I

i 0 i 0( ) 0I I I I 0I

Page 50: 项目一   电路的基本概念及基本定律

例如,例如,图示复杂电路各支路电流关系可写成:图示复杂电路各支路电流关系可写成:

由由 KCLKCL 列出的电流方程称为节点电流方程列出的电流方程称为节点电流方程。。

1 2 3I I I

或 1 2 3 0I I I

Page 51: 项目一   电路的基本概念及基本定律

  基尔霍夫定律不仅适用于电路中的任一节点,也可推基尔霍夫定律不仅适用于电路中的任一节点,也可推广至任一封闭面如图广至任一封闭面如图 1.191.19。。

节点 a :

节点 b: 节点 c:

ca a abI I I

ab bc bI I I

ca cbcI I I

3 个方程式相加,得

a b cI I I

  可知图  可知图 1.191.19 虚线所示的为一封闭面,虚线所示的为一封闭面,流入此虚线流入此虚线所示封闭面的电流代数和恒等于零,即流进封闭面的电所示封闭面的电流代数和恒等于零,即流进封闭面的电流等于流出封闭面的电流。流等于流出封闭面的电流。

图图 1.19 KCL1.19 KCL 推广形式推广形式

Page 52: 项目一   电路的基本概念及基本定律

例例 1-51-5 求图求图 1.201.20所示电路中未知电流。已知 , 所示电路中未知电流。已知 ,

,  。,  。

解解:该电路有:该电路有 44 个节点、个节点、 66 条支路。根据基尔霍夫电流定律条支路。根据基尔霍夫电流定律

1 25mAI

3 16mAI 4 12mAI

6 3 4 16 12 4mAI I I

节点 a:

1 3 2I I I

2 1 3 25 16 9mAI I I

节点 c:

3 4 6I I I

节点d :

4 5 1I I I

5 1 4 25 12 13mAI I I

图图 1.20 1.20 例例 1-51-5 图图

Page 53: 项目一   电路的基本概念及基本定律

例例 1-61-6 图图 1.211.21 所示为一晶体管电路。已知 所示为一晶体管电路。已知 , , , , 求 。 求 。

B 40μAI

C 2mAI EI

解:解:晶体管晶体管 VTVT 可假想为一闭合可假想为一闭合节点,则根据节点,则根据 KCLKCL有有

E B C 0.04mA 2mA 2.04mAI I I

图图 1.21 1.21 例例 1-61-6图图

Page 54: 项目一   电路的基本概念及基本定律

22 、基尔霍夫电压定律(、基尔霍夫电压定律( KVLKVL )) 基尔霍夫电压定律基尔霍夫电压定律 (( 以下简称以下简称 KVL)KVL) 反映了电路中反映了电路中任一闭合回路各段电压之间的关系任一闭合回路各段电压之间的关系,具体表述如下,具体表述如下::任一瞬间沿电路中任一闭合回路,沿回路绕行方任一瞬间沿电路中任一闭合回路,沿回路绕行方向,各段电压代数和恒等于零。向,各段电压代数和恒等于零。其表达式为其表达式为

0u

Page 55: 项目一   电路的基本概念及基本定律

例如,图例如,图 1.221.22 中中回路回路 II: : (1-25)(1-25)

回路Ⅱ: 回路Ⅱ: (1-26)(1-26)

把欧姆定律公式及电源电压代入式把欧姆定律公式及电源电压代入式 (1-25)(1-25)

及式及式 (1-26)(1-26)中,可得中,可得

回路回路 II: : (1-27)(1-27)

回路Ⅱ: 回路Ⅱ: (1-28)(1-28)元件上电压方向与绕行方向元件上电压方向与绕行方向一致一致时欧姆定时欧姆定律公式前取律公式前取正号正号,,相反相反取取负号负号。对电阻元。对电阻元件而言,一般电压与电流取件而言,一般电压与电流取关联参考方向关联参考方向,则电流方向与绕行方向一致取正号,相,则电流方向与绕行方向一致取正号,相反取负号。 反取负号。

图图 1.22 1.22 复杂电路中复杂电路中 回路绕行方向回路绕行方向

ne mabn fm 0U U U U

encd nb 0U U U

1 1 2 2 S2 S1 0I R I R U U

2 2 3 3 S2 0I R I R U

Page 56: 项目一   电路的基本概念及基本定律

式式 (1-27)(1-27)和式和式 (1-28)(1-28)由此可以写成:由此可以写成:

回路回路 II: : (1-29)(1-29)

回路Ⅱ: 回路Ⅱ: (1-30)(1-30)

把式把式 (1-29)(1-29)和式和式 (1-30)(1-30)推广至一般由电阻和电压源组推广至一般由电阻和电压源组

成的电路:成的电路:任一瞬间,电路中任一闭合回路内电阻上电压任一瞬间,电路中任一闭合回路内电阻上电压

降的代数和等于电源电压的代数和降的代数和等于电源电压的代数和。即。即

1 1 2 2 S1 S2I R I R U U

2 2 3 3 S2I R I R U

K K SlI R U

Page 57: 项目一   电路的基本概念及基本定律

基尔霍夫电压定律也可推广至任一不闭合回路,但要将基尔霍夫电压定律也可推广至任一不闭合回路,但要将开口处电压列入方程。开口处电压列入方程。如图如图 1.231.23所示电路为某网络中一部所示电路为某网络中一部分,节点分,节点 aa、、 bb未闭合,沿回路绕行方向,可得未闭合,沿回路绕行方向,可得

回路回路 II::

a a b b ab 0I R I R U

回路Ⅱ:回路Ⅱ: c cb b bc 0I R I R U

图 1.23 KVL推广形式

Page 58: 项目一   电路的基本概念及基本定律

例例 1-71-7 列出图列出图 1.241.24 所示晶体管电路的回路的电压方程。所示晶体管电路的回路的电压方程。各支路电流参考方向及回路绕行方向已标出。各支路电流参考方向及回路绕行方向已标出。

解:根据 KVL 列方程

回路 I :

回路Ⅱ:

回路Ⅲ:

B1 B1 C C CB 0R I R I U

BE E EB2 B2 0R I U R I

E EC C CER I U R I E

图图 1.24 1.24 例例 1-71-7 图图

Page 59: 项目一   电路的基本概念及基本定律

例例 1-81-8 电路如图电路如图 1.251.25所示,应用所示,应用 KVLKVL 计算 、 。计算 、 。abU bcU

解:回路 I、回路Ⅱ绕行方向及电流参考方向如图所示。则根据 KVL,回路Ⅱ有

同理,根据 KVL,在回路Ⅱ中有

把 代入上式,得

(2 2 2 2 1 1) 12 8I

0.4AI

ab(2 2 1) 12I U 0.4AI

ab 10VU

bc 0VU

图图 1.25 1.25 例例 1-81-8 图图

Page 60: 项目一   电路的基本概念及基本定律

应用电位概念经常可以简化电路分析。应用电位概念经常可以简化电路分析。 为确定各点电位,首先必须在电路中选择一个参考点。为确定各点电位,首先必须在电路中选择一个参考点。 参考点也称接地点,用符号“⊥”表示参考点也称接地点,用符号“⊥”表示。。 参考点的电位为零参考点的电位为零,电路中某点的电位值就是该点与 参,电路中某点的电位值就是该点与 参考点之间的电位差。考点之间的电位差。 参考点选择是任意的参考点选择是任意的。。 电位的大小与参考点选择有关;电路中两点间的电压大小电位的大小与参考点选择有关;电路中两点间的电压大小与参考点选择无关。与参考点选择无关。

任务五任务五 电路中电位的计算 电路中电位的计算

Page 61: 项目一   电路的基本概念及基本定律

例例 1-91-9 如图如图 1.261.26 所示,若分别以所示,若分别以 AA 点、点、 BB 点、点、 CC 点、点、DD点为参考点,求各点电位值和点为参考点,求各点电位值和 、 、 。ABU

BCU CDU

解解::若选若选 AA点为参考点,则点为参考点,则 UUABAB==VVAA--VVBB=0-=0-VVBB=9V=9V,即,即 VVBB==-9V-9V。同理可计算电路中其他各点的电位值,见下表:。同理可计算电路中其他各点的电位值,见下表:

电位 / 电压AV BV CV DV ABU BCU CDU

参考点

A 点 0 -9V -3V -6V 9V -6V 3V

B 点 9V 0 -6V -9V 9V -6V 3V

C 点 3V -6V 0 -3V 9V -6V 3V

D 点 6V -3V 3V 0 9V -6V 3V

图图 1.26 1.26 例例 1-91-9 图图

Page 62: 项目一   电路的基本概念及基本定律

例 1-10 如图 1.27 所示 , 已知 , , , , , 。试求电路中各点的电位。

1 2 3 4 10R R R R 1 12VE

2 9VE 3 18VE 4 3VE

解解 :: 该电路电流参考方向及回路绕该电路电流参考方向及回路绕行方向如图行方向如图 1.271.27 所示,则根据所示,则根据 KVLKVL及欧姆定律有及欧姆定律有

1 4 3 240 40 12 3 18 9 0I E E E E I

0.3AI 图图 1.27 1.27 例例 1-101-10 图图

Page 63: 项目一   电路的基本概念及基本定律

该电路选择该电路选择 AA点作为参考点,则点作为参考点,则

A 0VV B 1 12VV E

CB C B 10 0.3 3VU V V C 3 12 15VV

DC D C 3VU V V D 15 3 18VV

DE D E 2 9VU V V E E 18 9 9VV

FE F E 3VU V V F 3 9 12VV

FG F G 18VU V V G 12 18 6VV

HG H G 3VU V V H 3VV

Page 64: 项目一   电路的基本概念及基本定律

任务六任务六 电源 电源

电路中除负载外,还必须有电路中除负载外,还必须有能够提供电能的能够提供电能的元件,即电源元件,即电源。在实际应用中,电源的种类有很。在实际应用中,电源的种类有很多,如多,如干电池、蓄电池、光电池、发电机以及信干电池、蓄电池、光电池、发电机以及信号源等号源等。 。

Page 65: 项目一   电路的基本概念及基本定律

1.6.1 独立源1.6.2 实际电源模型及等效变换1.6.3 受控电压源和电流源

任务六任务六 电源 电源

Page 66: 项目一   电路的基本概念及基本定律

电源的电压或电流不受外电路影响而独立存在的,电源的电压或电流不受外电路影响而独立存在的,这类电源称为独立源这类电源称为独立源。根据独立源在电路中表现的是。根据独立源在电路中表现的是电压还是电流,可分成电压还是电流,可分成电压源电压源和和电流源电流源。。

1.6.1 1.6.1 独立源独立源

Page 67: 项目一   电路的基本概念及基本定律

1.1.电压源电压源 能够提供一个数值恒定或者与时间具有确定函数关系的电能够提供一个数值恒定或者与时间具有确定函数关系的电压的电源压的电源 ((如干电池、发电机如干电池、发电机 )) 称为电压源称为电压源。电压源的图形符。电压源的图形符号如图号如图 1.28(a)1.28(a) 与图与图 1.28(b)1.28(b) 所示。所示。电压源的端电压完全由电压源的端电压完全由决定,与通过电压源的电流无关,决定,与通过电压源的电流无关,即即

图图 1.28 1.28 电压源及其伏安特性电压源及其伏安特性

Su u电压源的电压为恒定电压源的电压为恒定值时,称为值时,称为直流电压直流电压源源,其电压一般用 ,其电压一般用 U U 表示。其伏安特性如表示。其伏安特性如1.28(c)1.28(c)所示。 所示。

Page 68: 项目一   电路的基本概念及基本定律

2.2. 电流源电流源 能够提供一个数值恒定或者与时间具有确定函数关系能够提供一个数值恒定或者与时间具有确定函数关系的电流的电源的电流的电源 ((如光电池,晶体管电路如光电池,晶体管电路 )),称为电流源,称为电流源。。电流源的图形符号如图电流源的图形符号如图 1.29(a)1.29(a) 所示。电流源所在那段电所示。电流源所在那段电路的路的电流完全由电流完全由 IISS决定,与电压无关决定,与电压无关,即 ,即

sii

(a) (b)

图图 1.29 1.29 电压源及其伏安特性电压源及其伏安特性

电流源的电流为恒定值电流源的电流为恒定值时,称为时,称为直流电流源直流电流源,,其电流一般用其电流一般用 IISS来表示来表示。直流电流源的伏安特。直流电流源的伏安特性如图性如图 1.29(b)1.29(b) 所示。所示。

Page 69: 项目一   电路的基本概念及基本定律

例 1-11 计算图 1.30 所示电路中各元件上的功率。

解:解:由图可知,电流源上电压与电由图可知,电流源上电压与电流为关联参考方向:流为关联参考方向:

((电流源吸收或消耗功率电流源吸收或消耗功率 ))电压源上电压与电流为非关联参考电压源上电压与电流为非关联参考方向:方向:

((电压源发出功率电压源发出功率 ))S S S 10 10 100WUP U I

图图 1.30 1.30 例例 1-111-11 图图

S S S 10 10 100WIP U I

Page 70: 项目一   电路的基本概念及基本定律

1.6.2 1.6.2 实际电源模型及等效变换实际电源模型及等效变换

在实际电路中,电源除向外部供给能量外,还有在实际电路中,电源除向外部供给能量外,还有

一部分能量损耗于内电阻上,即一部分能量损耗于内电阻上,即一个实际电源总有内一个实际电源总有内

电阻存在电阻存在。上节介绍的电源忽略了其内电阻,是。上节介绍的电源忽略了其内电阻,是理想理想

电压源和理想电流源电压源和理想电流源,,实际中并不存在实际中并不存在。。

Page 71: 项目一   电路的基本概念及基本定律

1. 1. 实际电源模型实际电源模型1)1)实际电压源模型实际电压源模型 一个实际电压源模型可等效成一个理想电压源和内电阻串一个实际电压源模型可等效成一个理想电压源和内电阻串联的模型,联的模型,如图如图 1.31(a)1.31(a) 虚线框内所示。虚线框内所示。实际电压源的端电压实际电压源的端电压除与除与 UUSS有关外,还受通过其电流的影响有关外,还受通过其电流的影响。在实际电压源后接。在实际电压源后接一阻值为一阻值为 RRLL的负载。电路中端电压与电流的关系为的负载。电路中端电压与电流的关系为

S 0u U R i

图图 1.31(b)1.31(b) 为其伏安特为其伏安特性,所示为性,所示为一条下降的一条下降的直线直线。 < ,且 越。 < ,且 越大, 越低。大, 越低。

图图 1.31 1.31 实际电压源模型实际电压源模型

u SU

i u

Page 72: 项目一   电路的基本概念及基本定律

2)2)实际电流源模型实际电流源模型 实际电流源可等效成理想电流源实际电流源可等效成理想电流源 IISS与内电阻与内电阻 RR00并联的模并联的模型型,如图,如图 1.32(a)1.32(a) 所示。所示。实际电流输出受其两端电压影响实际电流输出受其两端电压影响。。其伏安特性可以写成 其伏安特性可以写成

S

0

ui I

R

按式按式 (1-34)(1-34) 画出伏画出伏安特性曲线如图安特性曲线如图 1.1.32(b)32(b) 所示。随着所示。随着电压 的增加,电电压 的增加,电流 逐渐减小。流 逐渐减小。

u

i图图 1.32 1.32 实际电流源模型实际电流源模型

Page 73: 项目一   电路的基本概念及基本定律

2. 2. 等效变换等效变换

一个实际电源既可以用实际电压源模型来表示,又可以一个实际电源既可以用实际电压源模型来表示,又可以用实际电流源模型来表示。用两种电源模型表示同一实际用实际电流源模型来表示。用两种电源模型表示同一实际电源时,其等效条件是与外电路相接的端口的伏安关系保电源时,其等效条件是与外电路相接的端口的伏安关系保持不变。持不变。

即当 时,两个模型对外电路是等效的。即当 时,两个模型对外电路是等效的。

S

0

ui I

R 实际电流源模型实际电流源模型 :

实际电压源模型实际电压源模型 :S 0 SI R U

0 S 0u R I R i

S 0u U R i 比较得

S 0 SI R U

Page 74: 项目一   电路的基本概念及基本定律

以上结论可以上结论可推广推广到到一个电阻和理想电压源的串联组合一个电阻和理想电压源的串联组合与一个电阻和理想电流源的并联组合的等效变换与一个电阻和理想电流源的并联组合的等效变换。图。图 1.1.3333给出了等效变换时各参数对应的关系,也表明了电压给出了等效变换时各参数对应的关系,也表明了电压源极性和电流源方向之间的关系。源极性和电流源方向之间的关系。

图图 1.33 1.33 两种电源模型的等效变换两种电源模型的等效变换

Page 75: 项目一   电路的基本概念及基本定律

例例 1-121-12 化简图化简图 1.341.34 所示电路,使其成为一个电压源串联所示电路,使其成为一个电压源串联组合电路和电流源并联组合电路。组合电路和电流源并联组合电路。解解:图:图 1.341.34 所示电路可等效为图所示电路可等效为图 1.351.35所示电路。所示电路。

图图 1.341.34 例例 1-121-12图图

图图 1.351.35 等效变换过程等效变换过程

Page 76: 项目一   电路的基本概念及基本定律

1.6.3 1.6.3 受控电压源和电流源受控电压源和电流源 受控电压源的电压和受控电流源的电流受电路中另受控电压源的电压和受控电流源的电流受电路中另

一处的电压或电流控制,为非独立电源。一处的电压或电流控制,为非独立电源。

根据受控源在电路中呈现的是电压还是电流,以及根据受控源在电路中呈现的是电压还是电流,以及

这一电压或电流是受另一处的电压还是电流控制可分为这一电压或电流是受另一处的电压还是电流控制可分为

44 类:类:

电压控制电压源电压控制电压源 (VCVS)(VCVS)

电压控制电流源电压控制电流源 (VCCS)(VCCS)

电流控制电压源电流控制电压源 (CCVS)(CCVS)

电流控制电流源电流控制电流源 (CCCS) (CCCS)

Page 77: 项目一   电路的基本概念及基本定律

图形符号如图图形符号如图 1.361.36 所示,所示,其中,其中, μμ、、 γγ、、 gg、、 ββ为为相关的控制系数。 相关的控制系数。

图图 1.36 1.36 受控源的符号受控源的符号

Page 78: 项目一   电路的基本概念及基本定律

例例 1-131-13 根据图根据图 1.371.37所示电路,求 、 。所示电路,求 、 。

解解:该受控源是电流控制电流源,根据部分电路欧姆定:该受控源是电流控制电流源,根据部分电路欧姆定律得律得

1i abu

1

1

ab ab ab 2 1

100.9

52

2.22A0.9

( ) 4 (2 2.22) 0.88V

uiR

i

i

u R i R i i

图 1.37 例 1-13图

Page 79: 项目一   电路的基本概念及基本定律

Q & A?Q & A?

Thanks!Thanks!