Διαφορική Γεωμετρία Καμπυλών Και Επιφανειών

212
Ε. ΒΑΣΙΛΕΙΟΥ Μ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΔΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΑΘΗΝΑ 2009 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

description

1

Transcript of Διαφορική Γεωμετρία Καμπυλών Και Επιφανειών

  • . .

    2009

  • :

    http://www.math.uoa.gr/evassilhttp://www.math.uoa.gr/mpapatr

    .

    COPYRIGHT 2009by E. Vassiliou M. Papatriantafillou

    [email protected], [email protected] rights reserved

  • ,

    , -

    .

    D. Hilbert 2o -

    , 1900 (.

    C. Reid [16, . 170])

    -

    -

    ,

    .

    -

    ()

    , , , -

    . ,

    . , -

    , -

    .

    ,

    . .

    .

    v

  • vi

    .

    , -

    .

    ,

    . , ,

    .

    () ,

    , .

    -

    , , -

    ,

    . [2],

    [16], [17] .

    , , .

    ,

    .

    .. .. , 2009.

  • v

    1 1

    1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 . . . . . . . . . . . . . . . . . . . . . 2

    1.2 . . . . . . . . . . . . . . . . . . . 7

    1.3 . . . . . . . . . . . . . . . . . . . . 9

    1.4 . . . . 20

    1.5 Frenet . . . . . . . . . . . 22

    1.6 . . . . . . . . . . . . . . . . . . . . . . . . . 24

    1.7 . . . . . . . . . . . . . . . . . . . 27

    1.8 . . . . . . . . . . . . . . . . . . . . . . . 31

    1.9 . . . . . . . . . . . . 34

    1.10 . . . . . . . . . . . . . . . . . . . . . . . 40

    1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    2 81

    2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 82

    2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 97

    2.4 . . . . . . . . . . . . . . . . . . . 102

    2.5 . . . . . . . . . . 106

    2.6 . . . . . . . . . . . . . . . . . . . . . . 113

    2.7 . . . . . . . . . . . . 116

    2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

    3 Gauss 141

    3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    3.1 . . . . . . . . . . . . . . . . . . . . . . . . 142

    3.2 . . . . . . . . . . . . . . . . . . . 145

    3.3 Gauss . . . . . . . . . . . . . . . . . . . . . . . 150

    vii

  • viii

    3.4 . . . . . . . . . . . . . . . . . . 154

    3.5 . . . . . . . . . 157

    3.6 . . . . . . . . . . . . 159

    3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    189

    199

    201

  • 1

    1.0

    , , -

    .

    , , , , ..

    ( )

    ,

    .

    ,

    . -

    () .

    . -

    .

    R. Descartes, P. Fermat C. Huygens,

    3.

    -

    , -

    .

    , . -

    1

  • 2 1.

    I. Newton, G. W. Leibniz, L. Euler, G. Monge, J. Bernoulli, A. C. Clairaut,

    F. Frenet, J. A. Serret, J. Bertrand, Ch. Dupin, .

    .

    ,

    , , , -

    , ..

    -

    "" .

    1.1

    X - ( ) . -

    ,

    (, , .),

    f : R R, , ... X, . ,

    :

    (parametrized curve),

    (space curve) : I R3, I R .

    "" ( )

    (-

    ) t I., t I, (t) R3,

    (1.1.1) = (1, 2, 3).

    ( )

    i : = ui ; i = 1, 2, 3, ui : R

    3 R i-, .

    i.

    (I) R3, (plane curve). , (I) R2.

    ( ), , X = (I). (I).

  • 1.1. 3

    : R R2 : t 7 (2

    2t,

    2

    2t),

    : R R2 : t 7 (t, t) : R R2 : t 7 (t3, t3)

    : R R2 : t 7{(t, t) : t 0(t2, t2) : t > 0,

    (R) = (R) = (R) = (R) = R, R2 (. ).

    x

    D

    y

    1.1

    ,

    , (t) = 1, t R, , (t) 6= 0, t R, , 0, (0) = (0, 0),

    .

    : (1) R ()

    (2) ( )

    R. ,

    ,

    .

  • 4 1.

    : I R3 to (to) 6= 0. (tangent line) (to),

    (1.1.2) (s) = (to) + s(to) , s R.

    x

    y

    ( )ota

    ( )ota

    1.2

    (to) to - .

    , -

    .

    (regular), , ( ).

    -

    ( 3), . ,

    , 11. ,

    , " "

    , Cr-, r 3.

    ,

    (1.1.3) (t) = (1(t), 2(t),

    3(t))

  • 1.1. 5

    (tangent vector)

    (velocity) (t),

    v(t) := (t) = (1(t)2 + 2(t)2 + 3(t)2)1/2 (speed) t.

    ,

    (1.1.4) (t) = (1(t), 2(t),

    3(t))

    (acceleration) t.

    : I R3, (length)

    (1.1.5) L() :=

    I(t)dt.

    , : I R3, < , > -

    (1.1.6) < , > : I R : t 7< (t), (t) > (1.1.7) : I R3 : t 7 (t) (t). -

    < , > (t) =< (t), (t) > + < (t), (t) >,(1.1.8)

    ( )(t) = ((t) (t)) + ((t) (t)).(1.1.9) :

    [. (1.1.1)]

    ,

    < (t), (t) >= 1(t)1(t) + 2(t)2(t) + 3(t)3(t),

    (t) (t) =(2(t)3(t) 3(t)2(t), 3(t)1(t) 1(t)3(t), 1(t)2(t) 2(t)1(t)

    ),

    .

    (I),

  • 6 1.

    1.1.1 . (1) : I R3 . (t) = 0, t I, .

    ,

    (t) = 0 (t) = (t) = t+ . .

    (2) 0. (to) 0 (to) 6= 0, (to) (to).

    , t I (t) 0,

    : I R : t 7 (t)2 = 1(t)2 + 2(t)2 + 3(t)2 =< (t), (t) > . to,

    (to) = 0, , (1.1.8),

    0 = (to) =< (to), (to) > + <

    (to), (to) >= 2 < (to), (to) >,

    (to) (to).(3) : I R3 , (t) 6= 0,

    t I. (I) 0, (t) (t), t I.

    , (t) 0

    : I R : t 7< (t), (t) > . , = 0.

    (t) =< , > (t) =< (t), (t) > + < (t), (t) >= 2 < (t), (t) > .

    = 0 (t) (t), t I, .

    (4) P Q P , Q.

    p q P Q , P , Q

    : [0, 1] R3 : t 7 (t) := p+ t(q p) [. (1.1.5)]

    L() =

    10(t)dt =

    10q pdt = q p.

  • 1.2. 7

    : [x, y] R3 (x) = p (y) = q. u R3 u = 1,

    < a, u > (t) = < (t), u > + < (t), u > = < (t), u >

    (t)u = (t),

    L() =

    yx(t)dt

    yx< (t), u > dt = < (t), u > |y

    x

    = < q, u > < p, u > = < q p, u >,

    u R3 u = 1. u = (q p)/q p, -

    L() / q p = q p = L().

    1.2

    : I R3 , : J R3 (reparametrization) , h : J I, = h (. ).

    I - X R3

    J

    h

    6

    -

    1.1

    " h " h 1 1 .

    , h 1 1 h(s) 6= 0, s J .

    . , .

    X := (I) = (J) X.

  • 8 1.

    1.2.1 . , L() = L().

    . : [a, b] R3 : [a, b] R3 = h, h : [a, b] [a, b] .

    L() =

    ba(s)ds =

    ba( h)(s)ds

    =

    ba(h(s)) |h(s)|ds.

    h > 0, h ,

    L() =

    ba(h(s))h(s)ds =

    h(b)h(a)

    (h(s))dh(s)

    =

    ba(t)dt = L().

    h < 0, h ,

    L() = ba(h(s))h(s)ds =

    h(b)h(a)

    (h(s))dh(s)

    = ab(t)dt = L(),

    .

    . , . ,

    , X = (I)., ,

    , 1.

    1.2.2 . : I R3 - : J R3 (s) = 1, s J .

    . I := [a, b].

    s : [a, b] [0, L()] : t 7 ta(u)du.

  • 1.3. 9

    ,

    s(t) = (t) = v(t) > 0, (. ),

    h : [0, L()] [a, b]

    (1.2.1) h(s) = 1/s(h(s)), s [0, L()]. := h,

    (s) = (h(s)) |h(s)| = (h(s))/|s(h(s))| = 1, .

    : J R3 (s) = 1, s J , . -, , ()

    .

    .

    1.3

    X = (I), . , X . , - ,

    .

    (s), s J , .

    (1.3.1) T (s) := (s) s J.

    , T (s) (s). T (s) = 1, s J , T (s) R3.

    s J

    (1.3.1) T : J s 7 T (s) = (s) R3.

  • 10 1.

    1.3.1 . (s), s J , ,

    T T,

    T (s) T (s), s J.. T (s) , - T (s)2 =< T (s), T (s) > ,

    < T, T > (s) = 2 < T (s), T (s) >= 0, s J,

    .

    T (s) = (s) () 1, T (s) = (s) () - T (s).

    T (s)

    (1.3.2) k(s) := T (s)

    (s). k(s) . k(s) = 0, s 1. ()

    (1.3.2) k : J s 7 k(s) [0, ).

    1.3.4,

    .

    1, . k(s) 6= 0, ,

    (1.3.3) (s) :=1

    k(s)

    . , s J ,

    (1.3.4) N(s) :=1

    k(s)T (s)

    (normal ve-

    ctor) (s). (

  • 1.3. 11

    1.3.1) .

    (1.3.4) N : J s 7 N(s) R3., s J ,

    (1.3.5) B(s) := T (s)N(s)

    (1.3.5) B : J s 7 B(s) R3. B(s) (binormal vector) (s). T (s), N(s) .

    , s J , {T (s), N(s), B(s)}

    R3,

    (moving frame) Frenet (Frenet frame) (s) .

    x

    y

    z

    ( )T s

    ( )B s

    ( )N s

    ( )T s

    ( )B s

    ( )N s

    ( )sb

    1.3

    ,

    {T,N,B}

  • 12 1.

    Frenet . , -

    ,

    (s), (s) . , . -

    . 1.3.

    ,

    , . ,

    s J , T (s) N(s) E. () (s) E ( T (s), N(s)) (osculating plane) (s). , (s) N(s) B(s) (normal plane) (s), (s) T (s) B(s) (rectifying plane) (s).

    ( )T s

    ( )B s

    ( )N s

    1.4

    , ( (s)) B(s), T (s) - N(s). ,

    .

  • 1.3. 13

    1.3 1.4 . -

    {T (s), N(s), B(s)} (s), T (s),N(s)) ...

    , -

    , . < N(s), B(s) >= 0, s J , - < N,B >= 0 [. (1.1.6), (1.1.8)]

    < N (s), B(s) > + < N(s), B(s) >= 0.

    (1.3.6) (s) := < N(s), B(s) >=< N (s), B(s) >

    (torsion) (s).

    (1.3.6) : J s 7 (s) R.

    (1.3.6) ,

    B(s), -, .

    ,

    ,

    . ( -

    ) 1.3.5.

    Frenet

    , -

    .

    1.3.2 . u, v R3 u = 1 u v,

    (u v) u = v.

    . u = (a, b, c) v = (x, y, z).

    u v =e1 e2 e3a b cx y z

    = (bz cy)e1 (az cx)e2 + (ay bx)e3= (bz cy, cx az, ay bx).

  • 14 1.

    ,

    (u v) u =e1 e2 e3bz cy cx az ay bxa b c

    = [c(cx az) b(ay bx)]e1 [c(bz cy) a(ay bx)]e2+

    + [b(bz cy) a(cx az)]= (c2x acz aby + b2x)e1 (cbz c2y a2y + abx)e2+

    + (b2z bcy acx+ a2z)e3 =

    = ((1 a2)x acz aby, (1 b2)y abx cbz,(1 c2)z bcy acx)

    = (x a(ax+ by + cz), y b(ax+ by + cz),z c(ax+ by + cz))

    = (x a < u, v >, y b < u, v >, z c < u, v >)= (x, y, z) = v,

    .

    1.3.3 . :

    T (s)N(s) = B(s),N(s)B(s) = T (s),B(s) T (s) = N(s).

    . (1.3.5), B(s).

    B(s) T (S) = (T (s)N(s)) T (s) = N(s).

    , :

    N(s)B(s) = N(s) (T (S)N(s)) == (T (S)N(s))N(s) = (N(S) T (s))N(s) = T (s).

    () Frenet-Serret,

    T (s), N (s), B(s) - -

    . () F. Frenet J. Serret.

  • 1.3. 15

    1.3.4 . : J R3 , k > 0 {T,N,B} Frenet . ( Frenet-Serret):

    (F . 1) T = kN

    (F . 2) N = kT + B(F . 3) B = N .. (F. 1) N(s) [. (1.3.4)].

    (F. 2) : , s J , T (s), N(s) B(s) , a, b, c : J R,

    (1.3.7) N (s) = a(s)T (s) + b(s)N(s) + c(s)B(s), s J.

    a, b, c (1.3.7) T (s), N(s), B(s). -

    < N (s), T (s) > = a(s)< T (s), T (s) > + b(s)< N(s), T (s) >

    + c(s)< B(s), T (s) >

    = a(s)1 + b(s)0 + c(s)0 = a(s).

    , < T,N >= 0

    < T,N >=< T , N > + < T,N >= 0,

    , (F. 1),

    < T,N >= < T , N >= < kN,N >= k 1 = k.

    a(s) = k(s),

    (1.3.7)

    (1.3.8) N (s) = k(s)T (s) + b(s)N(s) + c(s)B(s), s J.

    "" N(s)

    < N (s), N(s) > = k(s)< T (s), N(s) > + b(s)< N(s), N(s) >+ c(s)< B(s), N(s) >

    = k(s)0 + b(s)1 + c(s)0 = b(s).

  • 16 1.

    < N,N >= 1

    < N,N >= 2 < N,N >= 0,

    b(s) = 0,

    (1.3.8)

    (1.3.9) N (s) = k(s)T (s) + 0N(s) + c(s)B(s), s J.

    ,

    < N (s), B(s) > = k(s)< T (s), B(s) > + 0< N(s), B(s) >+ c(s)< B(s), B(s) >

    = k(s)0 + 0 + c(s)1 = c(s).

    < B,N >= 0

    < B,N >=< B, N > + < B,N >= 0,

    , (1.3.6),

    < B(s), N (s) >= < B(s), N(s) >= (s),

    c(s) = (s),

    (1.3.9)

    N (s) = k(s)T (s) + (s)B(s); s J,

    (F. 2).

    (F. 3) B = T N , (F. 1), (F. 2) 1.3.3. ,

    B = T N + T N = kN N + T (kT + B)= k 0 + (kT T + T B)= k 0 + T B= N.

  • 1.3. 17

    Frenet-Serret :

    (1.3.10)

    T N B

    =

    0 k 0k 0

    0 0

    .

    TNB

    .

    ,

    (F. 1)(F. 3): -

    ( ), 2 2 ,

    .

    .

    1.3.5 . : J R3 . :

    (i) k = 0 .

    (ii) k > 0, = 0 .

    . (i) k = 0 T = = 0 (s) = (s) = s + [. 1.1.1(1)]. ,

    , = 1.(ii) B = N = < N,B >

    = 0 B = 0, B = T N , so J ,

    B(s) = B(so), s J.

    = 0 B(s) = B(so) s J T (s) B(so), s J < T (s), B(so) >=< (s), B(so) >= 0, s J < (s), B(so) >= 0, s J < (s), B(so) >= , s J < (s), B(so) >=< (so), B(so) >, s J < (s) (so), B(so) >= 0, s J (s) (so) B(so), s J.

    (s)(so) Eo T (so) N(so), (s) Eo + (so), s J .

  • 18 1.

    , (s) E, E, Eo ( R2, 2) E 0. ,

    E = (s) + Eo, s J. so J ,

    (s) (so) + Eo, s J.

    Eo {u, v},

    (1.3.11) (s) = (so) + (s)u+ (s)v; s J,

    , : J R . , - : (1.3.11)

    (s) (so) = (s)u+ (s)v; s J,

    ,

    u

    < (s) (so), u > = < (s)u, u > + < (s)v, u >= (s)1 + (s)0 = (s),

    =< (so), u >, . .

    (1.3.11)

    T (s) = (s) = (s)u+ (s)v Eo; s J,

    N(s) =1

    k(s)T (s) =

    1

    k(s)((s)u+ (s)v) Eo, s J.

    , T (s) N(s) Eo B(s)

    Eo. , B(s) (1.3.6), = 0.

    1.3.6 . : J R3 -. k > 0.

  • 1.3. 19

    . (xo, yo) r,

    (s) = r(cos

    s

    r, sin

    s

    r

    )+ (xo, yo); s J [0, 2],

    T (s) = (s) =( sin s

    r, cos

    s

    r

    ),

    T (s) = (s) =1

    r

    ( cos sr, sin s

    r

    )

    k(s) = T (s) = 1r.

    , k > 0 .

    (s) := (s) +1

    kN(s).

    (s) = (s) +1

    kN (s)

    = T (s) +1

    k(kT (s) + B(s))

    = T (s) T (s) + 0 = 0,

    . a := (s) R3 ,

    (s) a = 1kN(s) = 1

    k= r,

    . (s) a r. , .

    1.3.7 . 1) -

    [. (1.3.3)], (s) + 1kN(s).

    2) 1.3.5 1.3.6

    ,

    .

  • 20 1.

    1.4 -

    Frenet - .

    : I R3. , - X = (I) () . , .

    1.4.1 . (. 1.2.2). T , N , B, k, - Frenet, , T,N,B, k,

    T (t) := T (s(t)),( i )

    N(t) := N(s(t)),( ii )

    B(t) := B(s(t)),( iii )

    k(t) := k(s(t)),( iv )

    (t) := (s(t)).( v )

    1.4.2 . : I R3 () ,

    k = 3 .

    . = h , h = s1 s . = s, , t I,

    (t) = ( s)(t) = s(t)(s(t)) = s(t)T (s(t)),(1.4.1)(t) = s(t)T (s(t)) + s(t)2(T (s(t))

    = s(t)T (s(t)) + s(t)2k(s(t))N (s(t))(1.4.2)

    (t) (t) = s(t)T (s(t)) [s(t)T (s(t))++ s(t)2k(s(t))N (s(t))],

  • 1.4. 21

    (1.4.3)

    (t) (t) = s(t)s(t)[T (s(t)) T (s(t))]++ s(t)3k(s(t))[T (s(t)) N(s(t))]

    = 0 + s(t)3k(s(t))B(s(t))

    = (t)3k(s(t))B(s(t)).

    (t) (t) = (t)3k(s(t)),

    k(t) := k(s(t)) =(t) (t)

    (t)3 ,

    .

    1.4.3 . k > 0,

    =< , > 2 =

    []

    2.

    . , - . (1.4.2)

    (t) = s(t)T (s(t)) + s(t)s(t)T (s(t)) +

    +[s(t)2k(s(t))]N(s(t)) + s(t)3k(s(t))N (s(t))

    = s(t)T (s(t)) + s(t)s(t)k(s(t))N (s(t)) +

    +[s(t)2k(s(t))]N(s(t)) s(t)3k(s(t))2T (s(t)) ++s(t)3k(s(t)) (s(t))B(s(t))

    = X(t)T (s(t)) + Y (t)N(s(t)) + Z(t)B(s(t)),

    X(t) = s(t) s(t)3k(s(t))2,Y (t) = s(t)s(t)k(s(t)) + [s(t)2k(s(t))],

    Z(t) = s(t)3k(s(t)) (s(t)).

  • 22 1.

    (1.4.3) B(s(t)) T (s(t)) N(s(t)), :

    < (t) (t) , (t) > = s(t)3k(s(t)) < B(s(t)), (t) >= s(t)3k(s(t))X(t) < B(s(t)), T (s(t)) > +

    + s(t)3k(s(t))Y (t) < B(s(t)), N (s(t)) > +

    + s(t)3k(s(t))Z(t) < B(s(t)), B(s(t)) >

    = 0 + 0 + s(t)6k(s(t))2(s(t))

    = (t) (t)2(s(t)),

    (t) := (s(t)) =< (t) (t), (t) >

    (t) (t)2 ,

    .

    1.5 Frenet

    T (t),N(t) B(t) (. 1.4.1), , .

    1.5.1 . : I R3 , , , {T (t), N(t), B(t)} Frenet.

    T (t) =(t)

    (t),(1.5.1)

    N(t) =

    ((t) (t)) (t)

    (t) (t) (t),(1.5.2)

    B(t) =(t) (t)(t) (t) .(1.5.3)

    . = h (. 1.2.2), h = s1 s .

    T (t) = T (s(t)) = (s(t)) = ( h)(s(t))= (h(s(t)))h(s(t)) = (t) 1

    s(t)

    =(t)

    (t) .

  • 1.5. FRENET 23

    , T = T s, T = T h,

    N(t) = N(s(t)) =T (s(t))

    k(s(t))=

    (T h)(s(t))k(t)

    =T (h(s(t)))h(s(t))

    k(t)=

    T (t)

    k(t)s(t)

    =T (t)

    s(t)

    (t)3(t) (t)

    = T (t)(t)2

    (t) (t) .

    , T (t) N(t) . T (t) N(t), T (t) T (t). T (t) = 1., 1.3.2 u = T (t) v = T (t),

    T (t) = (T (t) T (t)) T (t).

    T (t) =(t)

    s(t)[. (1.5.1)]

    T (t) =(t)s(t) (t)s(t)

    s(t)2,

    T (t) =

    ((t)

    s(t)

    (t)s(t) (t)s(t)s(t)2

    )

    (t)

    s(t)

    =1

    s(t)4[((t) (t)s(t) (t) (t)s(t)] (t)

    =1

    s(t)3[((t) (t)) (t)],

    N(t) =

    ((t) (t)) (t)

    (t) (t) (t) .

    ,

    B(t) = B(s(t)) = T (s(t)) N(s(t)) = T (t)N(t)

    =(t)

    (t) ((t) (t)) (t)(t) (t) (t)

    =(t)

    (t) (

    (t) (t)(t) (t)

    (t)

    (t))

    =(t) (t)(t) (t) ,

  • 24 1.

    , 1.3.2,

    u =(t)

    (t) v =(t) (t)(t) (t) .

    1.5.2 . : I R3 , , , {T,N,B} - Frenet ( ). () Frenet-Serret:

    (F . 1) T = kvN ,

    (F . 2) N = kvT + vB,(F . 3) B = vN , v(t) := (t) t I.. : J R3 - Frenet {T , N , B} . t I,

    T (t) = (T s)(t) = T (s(t))s(t) = k(s(t))N (s(t))s(t)= k(t)v(t)N(t),

    N (t) = (N s)(t) = N (s(t))s(t)= k(s(t))s(t)T (s(t)) + (s(t))s(t)B(s(t))= k(t)v(t)T (t) + (t)v(t)B(t),

    B(t) = (B s)(t) = B(s(t))s(t) = (s(t))N (s(t))s(t)= (t)v(t)N(t),

    .

    1.6

    (u1, u2, u3) (v1, v2, v3) R3.

    ,

    .

    -

    R3, .

    ()

    (e1, e2, e3) .

    1.6.1 . a, b R3, (a, b, a b) .

  • 1.6. 25

    . a = (a1, a2, a3) b = (b1, b2, b3).

    a b =e1 e2 e3a1 a2 a3b1 b2 b3

    = (a2b3 a3b2, a3b1 a1b3, a1b2 a2b1),

    a1 b1 a2b3 a3b2a2 b2 a3b1 a1b3a3 b3 a1b2 a2b1

    = (a1b2 a2b1)2 + (a2b3 a3b2)2 + (a3b1 a1b3)2, . , (a, b, ab) , .

    1.6.2 . : I R3 , Frenet t I R3.

    : I R3 - := h : J R3. , h(t) > 0, t J . , h(t) < 0, t J , .

    1.6.3 . : I = [a, b] R3 := h : [0, L()] R3 , .

    , : [0, L()] R3 (s) := (L() s) - , .

    . , (1.2.1),

    h(s(t)) =1

    s(t)=

    1

    (t) > 0,

    t I. ,

    = h ,

    (s) = L() s (s) = 1, s [0, L()]. (h )(s) = h((s)) (s) < 0.

    1.6.4 . Frenet,

    .

  • 26 1.

    = h . (t) = ( h)(t) = (h(t))h(t),(t) = ((h(t))h(t)) = (h(t))h(t)2 + (h(t))h(t),

    (t) = [(h(t))h(t)2 + (h(t))h(t)]

    = h(t)3(h(t)) + 3h(t)h(t)(h(t)) + h(t)(h(t)),

    (t) (t) = h(t)3((h(t)) (h(t))),((t) (t)) (t) = h(t)4(((h(t)) (h(t))) (h(t)))

    < (t) (t),(t) >= h(t)6 < (h(t)) (h(t)), (h(t)) > ++ 3h(t)4h(t) < (h(t)) (h(t)), (h(t)) > ++ h(t)h(t)3 < (h(t)) (h(t)), (h(t)) >= h(t)6 < (h(t)) (h(t)), (h(t)) >.

    , T(t) (t)

    T(t) =(t)

    (t) =( h)(t)( h)(t) =

    (h(t)) h(t)(h(t)) |h(t)| = T(h(t))

    h(t)

    |h(t)| ,

    , , (: - ) , ,

    .

    N(t) :

    N(t) =((t) (t)) (t)(t) (t) (t)

    =h(t)4

    |h(t)|4 ((h(t)) (h(t))) (h(t))(h(t)) (h(t)) (h(t))

    = N(h(t)),

    , .

    -

    :

    B(t) = T(t)N(t) = h(t)

    |h(t)| T(h(t)) N(h(t)) =h(t)

    |h(t)| B(h(t)),

  • 1.7. 27

    , , , ,

    .

    , k

    k(t) =(t) (t)

    (t)3 =|h(t)|3(h(t)) (h(t))

    |h(t)|3(h(t)) = k(h(t)),

    , . ,

    ,

    (t) =< (t) (t), (t) >

    (t) (t)2

    =h(t)6

    |h(t)|6 < (h(t)) (h(t)), (h(t)) >

    (h(t)) (h(t))2= (h(t)),

    .

    N , k , ""

    ( intrinsic) .

    1.7

    : J R3 so J . , (so) , (so) = 0, T (so) e1 N(so) e2. B(so) = e3.

    , s J , (s) = T (s),

    (s) = T (s) = k(s)N(s),

    (s) = (k(s)N(s)) = k(s)N(s) + k(s)N (s)

    = k(s)2T (s) + k(s)N(s) + k(s)(s)B(s)., so,

    (so) = 0,

    (so) = T (so) = e1,

    (so) = k(so)N(so) = k(so)e2,

    (so) = k(so)2e1 + k(so)e2 + k(so)(so)e3.

  • 28 1.

    , Taylor,

    (s) = (so) +(so)

    1!(s so) +

    (so)

    2!(s so)2+

    +(so)

    3!(s so)3 +O(s3).

    , -

    (s) = 0 + (s so)e1 + k(so)2

    (s so)2e2+

    +1

    6[k(so)2e1 + k(so)e2 + k(so)(so)e3](s so)3 +O(s3)

    =[(s so) k(so)

    2

    6(s so)3

    ]e1+

    +[k(so)

    2(s so)2 + k

    (so)

    6(s so)3

    ]e2+

    +[k(so)(so)

    6(s so)3

    ]e3 +O(s

    3).

    (canonical representa-

    tion) (so). (s so) ( 0, s so), (approximation) ( so):

    (1.7.1) (s) = (s so)e1 + k(so)2

    (s so)2e2 + k(so)(so)6

    (s so)3e3.

    ,

    (1.7.1) (s) =(s so, k(so)

    2(s so)2, k(so)(so)

    6(s so)3

    ).

    ()

    so, , -

    . x, y ( e1 = T (so),e2 = N(so)) x, z (: e1 = T (so),e3 = B(so)) , y, z (: e2 = N(so),e3 = B(so)) .

    , x, y (: )

    (s so ,k(so)2 (s so)2

    ), , x = s so y = k(so)2 (s so)2,

    y =k(so)

    2x2,

  • 1.7. 29

    [.

    1.5(a)].

    xx

    y z

    z

    y

    0t < 0t >

    ( )a ( )b

    ( )c

    1.5

    x, z (: ) (s so ,k(so)(so)6 (s so)3

    ). x = s so z = k(so)(so)6 (s so)3

    ()

    z =k(so)(so)

    6x3

    1.5(b).

    , y, z (: )

    (k(so)

    2 (s so)2,k(so)(so)6 (s so)3), , y = k(so)2 (s so)2

    z = k(so)(so)6 (s so)3,

    z2 =2

    9.(so)

    2

    k(so)y3.

  • 30 1.

    Neil

    1.5(c).

    k(so) > 0 ( , Taylor

    ,

    ).

    .

    x

    y

    z

    a( )a

    ( )b

    ( )c

    1.6

    1.7.1 . : I R3 to I , Io = (to , to + ) to, . to + t1, to + t2 Io. A := (to), B := (to + t1) := (to + t2) , P (A,B, ). P (A,B, ), B A.

  • 1.8. 31

    P (A,B, ) A - u = ~AB = (to + t1) (to) v = ~A = (to + t2) (to). Taylor

    (to + t) = (to) + t(to) +

    t2

    2(to) +O(t

    2),

    t = t1, t2,

    u = t1(to) +

    t212(to) +O(t

    21),

    v = t2(to) +

    t222(to) +O(t

    22).

    u1 :=u

    t1= (to) +

    t12(to) +

    O(t21)

    t1,

    v1 :=v

    t2= (to) +

    t22(to) +

    O(t22)

    t2.

    w := 2v1 u1t2 t1 =

    (to) +2

    t2 t1

    (O(t22)

    t2 O(t

    21)

    t1

    ).

    u1, w u v, ,

    limB,A

    P (A,B, ) = limt1,t20

    P (u1, w) = P(limt10

    u1, limt1,t20

    w)

    = P((to),

    (to))= P (T (to), N(to)),

    , P (A,B, ) -.

    1.8

    , , G. W.

    Leibniz, Jakob Johann Bernoulli,

    L. Euler -

    .

    : J R3 so J , Jo so. s1, s2 Jo. A := (so), B := (s1)

  • 32 1.

    := (s2) , C(K, r) [ P (A,B, ) (. 1.7.1)]. C(Ko, ro) , s1, s2 so.

    K

    r

    : ( )o

    sA a=

    1( ) :s Ba =

    2: ( )saG =

    ( )oT s

    ( )oN s

    ( )oB s

    oK

    or

    1.7

    , C(K, r) - P (A,B, ), C(Ko, ro) , (so).

    : J R : s 7 (s) := (s)K2,

    (1.8.1) (s) = 2 < (s), (s) K >= 2 < T (s), (s) K >

    (1.8.2)(s) = 2 < T (s), (s) K > +2 < T (s), T (s) >

    = 2 < k(s)N(s), (s) K > +2.

    (so) = (s1) = (s2) = r2,

    Rolle s3 so s1, s4 so s2,

    (1.8.3) (s3) = (s4) = 0,

  • 1.8. 33

    (1.8.1)

    < T (s3), (s3)K > = 0 = < T (s4), (s4)K >.

    (1.8.4) (s3)K T (s3) (s4)K T (s4)., Rolle (1.8.3), s5 s3 s4

    (s5) = 0, (1.8.2)

    (1.8.5) < k(s5)N(s5), (s5)K >= 1. s1, s2 so, K Ko r ro,

    s3, s4, s5 so. (1.8.4) (so)Ko T (so),

    (so) Ko P (N(so), B(so)). , , (so)Ko - P (T (so), N(so)), ( ) N(so),

    (1.8.6) (so)Ko = N(so), R. (1.8.5) (1.8.7) < k(so)N(so), (so)Ko >= 1. (1.8.6) (1.8.7)

    < k(so)N(so), N(so) >= k(so) = 1,

    = 1k(so)

    .

    (1.8.6)

    (1.8.8) Ko = (so) +1

    k(so)N(so)

    (1.8.9) ro = (so)Ko = N(so) = || = 1k(so)

    .

    C(Ko, ro) (osculating circle) (so).

  • 34 1.

    1.8.1 . 1) (1.8.9)

    (so) ,

    .

    2) (I) -,

    N(so) =1

    k(so)T (so) =

    1

    k(so)(so),

    N(so) , .

    "" .

    , (1.8.8)

    N(so) = k(so)(Ko (so)

    )=

    1

    ro

    (Ko (so)

    ),

    N(so) , - (. 2).

    1.9

    , ,

    , -

    . ,

    , .

    (translation) c R3

    c : R3 R3 : u 7 c(u) := u+ c,

    (rotation) R3

    ,

    f : R3 R3

    ,

    < f(u), f(v) >=< u, v >; u, v R3, (

    ). , f , ( )

    f(u v) = f(u) f(v), u, v R3.

  • 1.9. 35

    -

    . : c c, ,

    .

    .

    f c = f(c) f.

    (rigid

    motion).

    1.9.1 . : J R3 , f c, .

    (s) = f((s)) + c, s J.

    , - , Frenet f .

    . k, , T, N B (. k, , T, N B ) , Frenet (. )., f , / , :

    T(s) = (s) = (f )(s) = f((s)) = f(T(s)),

    T(s) = f(T(s)) = T(s) = 1,T (s) = (f T)(s) = f(T (s)),k(s) = T (s) = f(T (s)) = T (s) = k(s),

    N(s) =T (s)

    k(s)=f(T (s))

    k(s)= f

    (T (s)k(s)

    )= f(N(s)),

    B(s) = T(s)N(s) = f(T(s)) f(N(s))= f

    (T(s)N(s)

    )= f(B(s)),

    B(s) = (f B)(s) = f(B(s)),(s) = < N(s), B(s) >= < f(N(s)), f(B(s)) >

    = < N(s), B(s) >= (s),

    .

    1.9.2 . (f )(s) = f((s)) ( ), .

  • 36 1.

    : , :

    (f )(s) = [D(f )(s)](1) = [Df((s)) Da(s)](1)= [f Da(s)](1) = f([Da(s)](1)) = f((s)).

    : M f ( R3),

    f((s)) = M (1(s), 2(s), 3(s))t, t .

    (f )(s) = M (1(s), 2(s), 3(s))t +M (1(s), 2(s), 3(s))t= M (1(s), 2(s), 3(s))t = f((s)).

    -

    1.9.3 . k(s) > 0 (s), s J = [0, a], . : J R3 k . , , .

    x

    y

    z

    0( )T s

    0( )B s

    0( )N s

    0( )T s

    0( )B s

    0( )N s

    0( )sa

    1e

    2e0

    3e

    a

    b

    1.8

  • 1.9. 37

    . (1) :

    T i = k Ni, N i = k Ti + Bi, Bi = Ni, i = 1, 2, 3,

    T1(0) = N2(0) = B3(0) = 1,

    T2(0) = T3(0) = N1(0) = N3(0) = B1(0) = B2(0) = 0.

    -

    ,

    (T1, T2, T3, N1, N2, N3, B1, B2, B3),

    .

    T :=

    3i=1

    Tiei, N :=

    3i=1

    Niei, B :=

    3i=1

    Biei.

    (T,N,B)

    T = kN

    N = kT + BB = N

    (T (0), N(0), B(0)) = (e1, e2, e3).

    (T (s), N(s), B(s)) R3, s J .

    x = 2ky,

    y = kw kx+ z,z = kp y,w = 2ky + 2p,p = kz + q w,q = 2p,

    x(0) = w(0) = q(0) = 1, y(0) = z(0) = p(0) = 0.

  • 38 1.

    x = w = q = 1, y = z = p = 0

    ,

    x = < T, T >,

    y = < T,N >,

    z = < T,B >,

    w = < N,N >,

    p = < N,B >,

    q = < B,B > .

    < T, T >=< N,N >=< B,B >= 1,

    < T,N >=< T,B >=< N,B >= 0,

    (T (s), N(s), B(s)) R3, s J . : ,

    d : J R : s 7T1(s) T2(s) T3(s)N1(s) N2(s) N3(s)B1(s) B2(s) B3(s)

    , d(0) > 0. .

    (s) :=

    s0T (u)du :=

    ( s0T1(u)du,

    s0T2(u)du,

    s0T3(u)du

    )

    C2. , = T = 1, . . T = kN , N = 1, k . , B , T N , (T,N,B) , B = T N ,

    B = (T N) + (T N ) =k(N N) + (k(T T ) + (T B)) = N,

    . , - , (0) = (0, 0, 0).

    (2) : : J = [0, a] R3 - , k ,

  • 1.9. 39

    . : {T, N, B} {T , N, B} Frenet , ,

    f : R3 R3 : xT(0) + yN(0) + zB(0) 7 xT(0) + yN(0) + zB(0). f (T(0), N(0), B(0)) (T(0), N(0), B(0)), . . c := (0). g := f + c (0) = (0, 0, 0) (0), Frenet (f ) + c 0. {Tg, Ng, Bg} Frenet g = (f )+c (. 1.9.1)

    < Tg, T > = < T g, T > + < Tg, T

    > =

    = k(< Ng, T > + < Tg, N >)

    < Ng, N > = < N g, N > + < Ng, N

    >

    = < kTg + Bg, N > + < Ng,kT + B >)= k(< Tg, N > + < Ng, T >) +

    +(< Bg, N > + < Ng, B >)

    < Bg, B > = < Bg, B > + < Bg, B

    >

    = (< Ng, B > + < Bg, N >).

    (< Tg, T > + < Ng, N > + < Bg, B >) = 0,

    < Tg, T > + < Ng, N > + < Bg, B >= .

    Tg(0) = f(T(0)) = T(0),

    Ng(0) = f(N(0)) = N(0),

    Bg(0) = f(B(0)) = B(0),

    (< Tg, T > + < Ng, N > + < Bg, B >)(0) = 3,

    (1.9.1) (< Tg, T > + < Ng, N > + < Bg, B >)(s) = 3, s J.

  • 40 1.

    , u, v R3, < u, v >= u v cos u v. (1.9.1) 1,

    1,

    cos = 0, Tg(s) = T(s), Ng(s) = N(s) Bg(s) = B(s), s J . Frenet g , (g )(0) = (0) = c

    (s) =

    s0T(u)du + c =

    s0Tg(u)du+ c = (g )(s)

    s J .

    , k = k(s) > 0 = (s) (natural or intrinsic equations)

    , (

    ).

    1.10

    .

    .

    x y.

    : I R2, . = (1, 2),

    T (s) := (T1(s), T2(s)) = (1(s),

    2(s))

    T (s) = (T1(s)2 + T2(s)2)1/2 = 1. , N(s) (

    ) -

    ,

    N(s) =1

    k(s)T (s) =

    1

    k(s)lims0

    T (s+s) T (s)s

    T (s), T (s+s) . , - T (s), : (T2(s), T1(s)) (T2(s),T1(s)). N(s) (. 1.9). N(s) = (T2(s), T1(s)), (T (s), N(s))

  • 1.10. 41

    R2, N(s) = (T2(s),T1(s)), .

    N := (T2, T1),

    (T (s), N(s)).

    N = N = T

    k=

    T

    k .

    T

    1T

    *N

    *N-

    1T

    2T

    2T-

    1T-

    2T

    1.9

    k, - k,

    k := k k = k.

    ,

    N =T

    k,

    (F. 1) [. 1.3.4].

    (1.10.1) T = kN.

    (F. 2),

    1.3.4. : (T (s), N(s)) ()

  • 42 1.

    R2, N (s) a(s), b(s) R, N (s) = a(s)T (s)+b(s)N(s), s I, N = aT +bN. ,

    < N, T >= 0 < N , T > + < N, T >= 0 < aT + bN, T > + < N, kN >= 0 a+ k = 0 a = k,

    < N, N >= 1 < N N >= 0 < aT + bN, N >= 0 b = 0,

    (1.10.2) N = kT.

    (1.10.1) (1.10.2) Frenet-

    Serret .

    (1.10.1) < T , N >=< kN, N >= k,

    (1.10.2) k =< T, N > .

    T = (1 , 2 ) N = (2, 1),

    ( ) :

    (1.10.3) k = 1

    2 12.

    -

    : k > 0. k = k

    N =T

    k=T

    k= N.

    ,

    (),

    "" ,

  • 1.10. 43

    1.10.

    * 0k

    1.10

    k < 0, k = k N = N . , , ,

    "" (.

    1.10).

    ,

    ,

    .

    1.10.1 . : I R2 ( ).

    T (t) =

    (1(t)

    (t),2(t)

    (t)),(1.10.4)

    N(t) =

    (

    2(t)

    (t),1(t)

    (t)),(1.10.5)

    k(t) =1(t)

    2(t) 1(t)2(t)(t)3

    .(1.10.6)

    . = h : J R2 . (1.5.1),

    T (t) =(t)

    (t) =(

    1(t)

    (t) ,2(t)

    (t)),

    (1.10.4).

    (1.10.5) (1.10.4) N(t) [, N(s)].

  • 44 1.

    : -

    k , , (1.10.3) (iv) 1.4.1 ( k = k ),

    (1.10.7) k(t) := k (s(t)) =

    1(s(t))

    2 (s(t)) 1 (s(t))2(s(t)),

    s . i = i h (i = 1, 2),

    (1.10.8) i(s(t)) = (i h)(s(t)) = i(h(s(t))) h(s(t)) =i(t)

    s(t),

    t I (. 1.2.2).

    i s =is

    i =is h.

    (1.10.9)

    i (s(t)) =

    (is h)

    (s(t))

    =

    (is

    )(h(s(t))

    ) h(s(t))=

    (is

    )(t) 1

    s(t)

    =i (t) s(t) i(t) s(t)

    s(t)2 1s(t)

    =i (t) s(t) i(t) s(t)

    s(t)3.

    (1.10.8) (1.10.9) (1.10.7)

    k(t) =1

    s(t)4 (1(t)2(t)s(t) 1(t)2(t)s(t))

    =1

    s(t)3 (1(t)2(t) 1(t)2(t))

    =1(t)

    2(t) 1(t)2(t)(t)3 ,

    .

    .

  • 1.10. 45

    1.10.2 . : I R2 := h : J R2 . , () ,

    ,

    T (t) = T(h(t)),(1.10.10)N (t) = N (h(t)),(1.10.11)k (t) = k (h(t)).(1.10.12)

    . h , h < 0.

    T (t) =(t)

    (t) =( h)(t)( h)(t) =

    =(h(t))h(t)

    (h(t)) |h(t)| = (h(t))

    (h(t)) = T(h(t)).

    ,

    N (t) =( T 2 (t), T 1 (t)) = (T2 (h(t)),T1 (h(t))) = N (h(t)).

    , ( h)i(t) = (i h)(t), t I i = 1, 2,

    ( h)i(t) = i(h(t)) h(t); t I,( h)i = (i h) h,

    ( h)i (t) = i (h(t)) h(t)2 + i(h(t)) h(t), t I.

    , (1.10.6),

    k (t) =1(t)

    2 (t) 1 (t)2(t)(t)3

    =( h)1(t)( h)2(t) ( h)1(t)( h)2(t)

    ( h)(t)3

    =h(t)3

    h(t)3 1(h(t))

    2(h(t)) 1(h(t))2(h(t))(h(t))3

    = k (h(t)),

    .

    -

    .

  • 46 1.

    1.10.3 . : J R2 -.

    (1.10.13) k = ,

    (s) T (s) e1.

    :

    q

    1e

    T

    y

    x

    1.11

    . , s J , T (s) - , T (s) = (cos (s), sin (s)), : J R - .

    T (s) = ( sin (s) (s), cos (s) (s)),N(s) = ( sin (s), cos (s)),

    (1.10.2)

    k(s) =< T(s), N(s) >=

    < ((s) sin (s), (s) cos (s)), ( sin (s), cos (s)) >=(s) sin2 (s) + (s) cos2 (s) = (s),

    .

    , -

    . ,

    ,

    .

  • 1.10. 47

    1.10.4 . k : J = [0, a] R . : J R2, k. , : J R2 , g , g = ..

    (s) :=

    s0k(t)dt

    (s) := (1(s), 2(s)) =

    ( s0

    cos(u)du,

    s0

    sin(u)du

    ).

    - , (1.10.3),

    k.

    . T T e1, (1.10.13)

    (1.10.14) (s) =

    s0k(t)dt + o = (s) + o,

    (1.10.15)

    (cos (s), sin (s)) =(cos((s) + o), sin((s) + o)

    )=(cos o cos(s) sin o sin(s),cos o sin(s) + sin o cos(s)

    )=

    (cos o sin osin o cos o

    )(cos(s)sin(s)

    )= f(cos(s), sin (s)),

    f , - 2 2 , o,

    f(x, y) = (x cos o y sin o, x sin o + y cos o) , (x, y) R2.

    ,

    (s) = (1(s), 2(s)) = T(s) = (cos (s), sin (s))

    (s) =

    ( s0

    cos (u)du+ xo,

    s0

    sin (u)du+ yo

    ),

  • 48 1.

    xo, yo . , (1.10.15), (s)

    (s) =

    ( s0[cos o cos(u) sin o sin(u)]du, s

    0[cos o sin(u) + sin o cos(u)]du

    )+ (xo, yo) =

    =

    (cos o

    s0

    cos(u)du sin o s0

    sin(u)du,

    cos o

    s0

    sin(u)du+ sin o

    s0

    cos(u)du

    )+ (xo, yo) =

    = f

    ( s0

    cos(u)du,

    s0

    sin(u)du

    )+ (xo, yo) =

    = f((s)) + (xo, yo),

    .

    1.11

    1. : (i) , () P Q R3. (ii) . (iii) .(iv) .

    . (i) p, q P , Q, - PQ

    : [0, 1] R3 : t 7 (t) := p+ t(q p).

    (ii)

    (t) = q p 6= 0, ,

    L() =

    10(u) du =

    10q pdu = q p.

    , (t) = 0, 1.4.2 k(t) = 0, t [0, 1].(iii)

    s(t) =

    t0(u) du =

    t0q p du = q pt,

  • 1.11. 49

    s : [0, 1] [0, q p] : t 7 q pt

    h := s1 : [0, q p] [0, 1] : s 7 sq p ,

    : [0, q p] R3

    (s) := ( h)(s) = (

    s

    q p)

    = p+s

    q p(q p).

    (iv) (s) =q pq p ,

    L() =

    qp0

    (u)du = qp0

    du = q p.

    , k T (s) = (s) =

    q pq p ,

    T (s) = 0 [ (1.3.2)] k(s) = 0.

    2. (0, 0) r

    : [0, 2] R2 : t 7 (r cos t, r sin t).

    : (i) . (ii)

    . (iii)

    . (iv) - k . (v) k ;

    . (i) t , (t)

    (t) = (r sin t, r cos t).

    ,

    < (t), (t) >= r2 cos t sin t+ r2 cos t sin t = 0,

    (t) (t).(ii) (t) = (r cos t,r sin t) = (t).

  • 50 1.

    (iii) (t) = r,

    L() =

    2pi0

    (t)dt = 2pi0

    rdt = 2r.

    (iv) (t) = r 6= 0.

    s : [0, 2] R : t 7 s(t) := t0(u) du = rt.

    s : [0, 2] [0, 2r] ,

    h := s1 : [0, 2r] [0, 2] : s sr,

    : [0, 2r] R2

    (s) = ( h)(s) = (sr

    )=(r cos

    s

    r, r sin

    s

    r

    ).

    T (s) = (s) =( sin s

    r, cos

    s

    r

    ),

    T (s) =

    (1rcos

    s

    r,1

    rsin

    s

    r

    ),

    k(s) = T (s) = 1r

    , (1.10.6)

    k (t) =1

    r3(r2 sin2 t+ r2 cos2 t) =

    1

    r.

    3. y = x2

    . (t) =(t3, t6), t R;. ,

    (t) = (t, t2); t R, . ,

    (t) = (1, 2t) 6= 0, t R.

  • 1.11. 51

    (t) = (0, 2) , (1.10.6)

    k(t) = 2(1 + 4t2

    )3/2= k(t).

    , , (t) = (3t2, 6t5), t = 0 -.

    4. f : R R. - T , N k .

    . (t) = (t, f(t)), t R, f .

    (t) = (1, f (t)) (t) = (0, f (t)).

    (t) = (1 + f (t)2)1/2 6= 0; t R, , . -

    , 1.10.1, -

    :

    T (t) =1

    (t)(1(t),

    2(t)

    )=

    (1(

    1 + f (t)2)1/2 , f (t)(

    1 + f (t)2)1/2

    ),

    N(t) = (T2(t), T1(t)) =( f

    (t)(1 + f (t)2

    )1/2 , 1(1 + f (t)2

    )1/2),

    /

    k(t) =1 f (t) 0 f (t)(

    1 + f (t)2)3/2 = f (t)(

    1 + f (t)2)3/2 .

    k f (t), ( )

    .

    5. ,

    : [0, 2] R3 : t 7 ( 12cos t, sin t,

    12cos t

    ).

  • 52 1.

    .

    T (t) = (t) =

    ( 1

    2sin t, cos t, 1

    2sin t

    ),

    (t) =(1

    2sin2 t+ cos2 t+

    1

    2sin2 t

    )1/2= 1,

    ,

    L() =

    2pi0

    (t)dt = 2pi0

    1dt = 2.

    T (t) = (t) =

    ( 1

    2cos t, sin t, 1

    2cos t

    ),

    k(t) = T (t) =(1

    2cos2 t+ sin2 t+

    1

    2cos2 t

    )1/2= 1.

    B(t) = T (t)N(t) = (t) (t) = 12(e1 + e3) = c

    B(t) = 0, (t) = < N(t), B(t) >= 0,

    , , .

    6.

    (t) = (a cos t, b sin t), t [0, 2], a, b > 0. ;

    . x = a cos t y = b sin t,

    x2

    a2+y2

    b2= 1,

    .

    :

    (t) = (a sin t, b cos t) (a sin t, b cos t, 0),

  • 1.11. 53

    (t) = (a2 sin2 t+ b2 cos2 t)1/2.

    (t) = (a cos t,b sin t) (a cos t,b sin t, 0)

    (t) (t) = abe3,

    (t) (t) = ab,

    k(t) =(t) (t)

    (t)3 =ab

    (a2 sin2 t+ b2 cos2 t)3/2= k(t).

    7. ()

    : [0, 2] R3 : t 7 (r cos t, r sin t, bt); r > 0, b R.

    (circular helix),

    1.12. (i) . (ii) . (iii) - zOz . (iv) zOz .

    . (i)

    (t) = (r sin t, r cos t, b),

    (t) = (r2 + b2)1/2 =: c > 0.

    s : [0, 2] R : t 7 t0(u)du = tc

    h : [0, 2c] [0, 2] : s 7 sc.

  • 54 1.

    2 bp

    z

    x

    t

    y

    1.12

    : [0, 2c] R3 : s 7 (s) = ( h)(s) =(r cos

    s

    c, r sin

    s

    c,b

    cs).

    (ii)

    T (s) = (s) =( rcsin

    s

    c,r

    ccos

    s

    c,b

    c

    ),

    T (s) =( rc2

    coss

    c, r

    c2sin

    s

    c, 0)

    k(s) = T (s) = rc26= 0.

    , :

    N(s) =1

    k(s)T (s) =

    ( cos s

    c, sin s

    c, 0),

  • 1.11. 55

    B(s) =

    e1 e2 e3T1 T2 T3N1 N2 N3

    = (b

    csin

    s

    c, b

    ccos

    s

    c,r

    c),

    B(s) =( bc2

    coss

    c,b

    c2sin

    s

    c, 0)

    (s) = < N(s), B(s) >= bc2

    .

    (iii) ,

    cos =< (t), e3 >

    (t) e3 =b

    c.

    cos =< T (s), e3 >

    T (s) e3 =< T (s), e3 > =b

    c.

    (iv) ,

    cos =< B(s), e3 >

    B(s) e3 =< B(s), e3 > =r

    c.

    8.

    (t) :=

    (t,t2

    2

    ), 0 t 1.

    . :

    (t) = (1, t) (1, t, 0),(t) = (1 + t2)1/2 > 0,(t) = (0, 1) (0, 1, 0),

    (t) (t) =e1 e2 e31 t 00 1 0

    = e3,(t) (t) = 1.

    ,

    k(t) =(t) (t)

    (t)3 =1

    (1 + t2)3/2,

  • 56 1.

    k(t) =1(t)

    2(t) 1(t)2(t)(t)3 =

    1 1 0 t(1 + t2)3/2

    =1

    (1 + t2)3/2,

    k = k.

    9.

    : R R2 : t 7 (t2, t3). ; .

    .

    (t) = (2t, 3t2)

    (0) = (0, 0) R. (, 0) (0,+). t 6= 0

    (t) = (4t2 + 9t4)1/2,(t) = (2, 6t),

    (t) (t) =e1 e2 e32t 3t2 02 6t 0

    = 6t2e3 = (0, 0, 6t2),(t) (t) = 6t2,

    k(t) =(t) (t)

    (t)3 =6t2

    (4t2 + 9t4)3/2

    10. a(0) = (0, 1), .

    . (t) = (cos t, sin t) (0) = (1, 0).

    (t) = (cos(t + /2), sin(t + /2)) , (0) = (0, 1).

    ,

    (t) = (t) = (cos(/2 t), sin(/2 t)), (0) = (0) = (0, 1).

    11. : I R3 v R3,

    (0) v (t) v, t I.

  • 1.11. 57

    (t) v, t I.

    . < (0), v >= 0, < (t), v > , , < (t), v >= 0. ,

    < (t), v >< , v > (t) =< (t), v > + < (t), v >=

    0+ < (t), 0 >= 0.

    12.

    : R R3 : t 7 (3t, 3t2, 2t3)

    y = 0, x = z.

    . (t)

    t(s) = (t) + s(t); t R,

    (t) = (3, 6t, 6t2) ( s ). y = 0 x = z v = (1, 0, 1). ,

    cos =< (t), v >

    (t) v =3 + 6t2

    9 + 36t2 + 36t4 2 =2

    2= cos(

    4).

    13. (logarithmic spiral)

    (t) = (a exp(bt) cos t, a exp(bt) sin t); t R,

    a b a > 0, b < 0 (. 1.13).

    limt+

    (t) = limt+

    (t) = (0, 0).(i) +to

    (u) du .(ii)

  • 58 1.

    (iii) .

    x

    y

    t

    1.13

    .

    (t) = (ab exp(bt) cos t a exp(bt) sin t, ab exp(bt) sin t+ a exp(bt) cos t), ,

    (t) = a(b2 + 1)1/2 exp(bt), .

    (i) cos t, sin t limt+

    ebt = 0,

    limt+

    (t) = limt+

    (t) = (0, 0).

    (ii) t [to,+), tto

    (u) du = tto

    a(b2 + 1)1/2 exp(bu)du =a

    b(b2 + 1)1/2 exp(bu)

    tto

    =a

    b(b2 + 1)1/2(exp(tb) exp(tob)),

    +to

    (u) du = limt+

    a

    b(b2 + 1)1/2(exp(tb) exp(tob)) =

    = ab(b2 + 1)1/2 exp(tob),

  • 1.11. 59

    (ii).

    (iii) x(t) = a exp(bt) cos t, y(t) = a exp(bt) sin t, - :

    x(t) = ab exp(bt) cos t a exp(bt) sin t,y(t) = ab exp(bt) sin t+ a exp(bt) cos t,

    x(t) = a(b2 1) exp(bt) cos t 2ab exp(bt) sin t,y(t) = a(b2 1) exp(bt) sin t+ 2ab exp(bt) cos t,x(t)y(t) x(t)y(t) = a2(b2 + 1) exp(2bt),x(t)2 + y(t)2 = a2(b2 + 1) exp(2bt),

    [ (1.10.6) -

    () ]

    k(t) = |k(t)| = |x(t)y(t) x(t)y(t)|(x(t)2 + y(t)2)3/2

    =1

    a(b2 + 1)1/2 exp(bt).

    . (i) -

    , (.

    1.13). (ii)

    [to,+).

    14. r (0, 0) xOx . (i) A, (0,0). (ii) t = 0, t = t = 2.(iii) , t [0, 2].

    x

    y

    K K

    r

    A

    AA

    B

    q

    rp 2 rpO

    1.14

    .

  • 60 1.

    . (i) A, (0, 0), A = (x, y), K = (0, r) a K = (a, r). xOx

    B AB a. AKB a = r. A A A K B KK .

    x = OB AA = r r sin = r( sin ),y = OK AA = r r cos = r(1 cos ),

    () =(r( sin ), r(1 cos )).

    (ii)

    () =(r(1 cos ), r sin ),

    (0) = (0, 0), () = (2r, 0), (2) = (0, 0).

    , = 0 = 2, , =

    pi(s) = () + s()

    =(r( sin), r(1 cos )) + s(r(1 cos ), r sin)

    = (r, 2r) + s(2r, 0) = (r + 2rs, 2r).

    (iii)

    ,

    ()2 = r2(1 + cos2 2 cos + sin2 )= 2r2(1 cos ) = 2r2

    (1 cos2

    2+ sin2

    2

    )= 4r2 sin2

    2,

    () = 2r sin

    2

    = 2r sin 2, 0 2.

    ,

    L() =

    2pi0

    ()d = 2r 2pi0

    sin

    2d

    = 2r

    pi0

    2 sin d = 4r( cospi

    0

    )= 4r( cos + cos 0) = 8r.

  • 1.11. 61

    (2k, 2(k + 1)), k Z. .

    15 (s) . (i) w (: Darboux) : T = T ,N = N B = B. (ii) T T = k2.[ , , s].

    . (i) = xT + yN + zB, - x, y, z.

    T = xT T + yN T + zB T= x0 yB + zN = yB + zN

    , T = T , yB + zN = T = kN,

    y = 0 z = k. ,

    N = xT N + yN N + zB N= xB + y0 +zT = xB zT

    , N = N ,xB zT = N = kT + B

    x = z = k. , ,

    = T + kB.

    :

    B = (T + kB)B = (T B) + kB B = N + 0 = B. ( ) .

    (ii) T = kN

    T = kN + kN = kN + k(kT + B) = k2T + kN + kB.,

    T T = kN (k2T + kN + kB)= k3(N T ) + kk(N N) + k2(N B)= k3B + 0 + k2T = k2(kB + T ) = k2.

  • 62 1.

    16. : J R3 - : (s) P . .

    . (s) s(t) = (s) + t(s),

    t R. , ts R, s(ts) = p, p R3 P ,

    (s) + ts(s) = p.

    , .. (s), , - s(t) = (s) + t

    (s) ts,

    (s) + ts(s) = p,

    s J . , s J , (s) R ( ) (s) + (s)(s) = p, .

    s 7 (s) , ( ) (s)(s) = p (s)

    < (s)(s), (s) >=< p (s), (s) > (s) < T (s), T (s) >=< p (s), (s) > (s) =< p (s), (s) >.

    ( ) , s J :( ) (s) + (s)(s) + (s)(s) = 0

    (1 + (s))T (s) + (s)k(s)N(s) = 0 1 + (s) = (s)k(s) = 0 (s) = 1 (s)k(s) = 0 (s) = c s (c s)k(s) = 0 k(s) = 0,

    . c s 6= 0, (s) = 0 (). , (s) = 0 (s) = p, s J , ( ).

    17. a : J R3 . P .

  • 1.11. 63

    . (s)

    s(t) = (s) + tN(s); t R,

    [ (s) N(s)]. , , s J , (s) R

    ( * ) (s) + (s)N(s) = p,

    (: p P ). : ( )

    (s) =< (s)N(s), N(s) >=< p (s), N(s) >.

    ( ) :

    () (s) + (s)N(s) + (s)N (s) = 0 T (s) + (s)N(s) + (s)(k(s)T (s) + (s)B(s)) = 0 (1 (s)k(s))T (s) + (s)N(s) + (s)(s)B(s) = 0 1 (s)k(s) = (s) = (s)(s) = 0 = c (), k(s) = 1 (s) = 0.

    6= 0, = 0, , k(s) = 1/ = .

    : P .

    18. a : J R3 , a .

    . a (s) ( B(s))

    s(t) = (s) + tB(s), t R.

    , ,

    s J , (s) R

    ( ) (s) + (s)B(s) = p.

    (s) =< (s)B(s), B(s) >=< P (s), B(s) >,

  • 64 1.

    , ( ),

    (s) + (s)B(s) + (s)B(s) = 0,

    , ,

    T (s) (s)(s)N(s) + (s)B(s) = 0,

    1 = (s)(s) = (s) = 0,

    .

    19. : J R3 . 0 6= u R3 .. () : .() : , s J , (s) R

    ( ) (s)T (s) = u = .

    (s) =< (s)T (s), T (s) >=< u, T (s) >,

    (s) . ( ) :

    ( ) (s)T (s) + (s)T (s) = 0 (s)T (s) + (s)k(s)N(s) = 0 (s) = (s)k(s) = 0.

    (s) = 0 (s) = c. c = 0, u = c T = 0, . c 6= 0, c k(s) = 0 k = 0, .

    20. : I R3 (general or cylindrical helix) - 6= 0 (: ) u R3. , k > 0, :

    /k = .

    . . - , , u = 1. < T (s), u >

  • 1.11. 65

    = cos (.), s I, < T, u >= cos -

    < T, u > (s) = 0 < T (s), u > + < T (s), u >= 0 < T (s), u >= 0 k(s) < N(s), u >= 0 < N(s), u >= 0 u N(s),

    , u () T (s), B(s),

    ( ) u = T (s) + B(s), , R. " " T (s) B(s) (. 1.3.4)

    =< u, T (s) >= cos =< u,B(s) >= cos(2 ) = sin .

    ( ) u = cos T (s) + sin B(s),

    0 = cos T (s) + sin B(s)

    = cos k(s)N(s) sin (s)N(s)= (cos k(s) sin (s))N(s),

    cos k(s) sin (s) = 0

    ( ) (s)k(s)

    =cos

    sin = cot = c ().

    , (s)k(s)

    = c. cot

    (,+), c = cot . , ( ), :

    k(s) cos = (s) sin k(s) cos N(s) (s) sin N(s) = 0 cos T (s) + sin B(s) = 0 cos T (s) + sin B(s) = u = . R3 cos < T (s), T (s) > +sin < B(s), T (s) >=< u, T (s) >cos =< u, T (s) >= .

  • 66 1.

    : 1) , -

    , -

    1.5.2. v .2) u ,

    v = u/u, T (s).3) (iii) 7

    .

    21. .

    P .

    . , .

    k > 0. = 0. (s)

    (s) + t1T (s) + t2N(s), t1, t2 R. P , s J , (s), (s) R, ( ) (s) + (s)T (s) + (s)N(s) = p(: p P ).

    , : J R . , ( )

    (s)T (s) + (s)N(s) = p (s),

    (s) =< (s)T (s), T (s) > + < (s)N(s), T (s) >=< p (s), T (s) >,(s) =< (s)T (s), N(s) > + < (s)N(s), N(s) >=< p (s), N(s) >,

    , . ( ) :(s) + (s)T (s) + (s)T (s) + (s)N(s) + (s)N (s) = 0T (s) + (s)T (s) + (s)k(s)N(s) + (s)N(s)

    (s)k(s)T (s) + (s)(s)B(s) = 0(1 + (s) (s)k(s))T (s) + ((s)k(s) + (s))N(s) + (s)(s)B(s) = 0,

    1 + (s) (s)k(s) = 0,(s)k(s) + (s) = 0,

    (s)(s) = 0.

  • 1.11. 67

    = 0, = 0. = 0,

    1 + (s) = 0 (s)k(s) = 0,

    (s) = c s (c s)k(s) = 0, s J, k = 0, . , = 0, . [, c s 6= 0, , ( ), (s) = p, s ().]

    .

    22.

    .

    . (i) (s) . (x, y, z) R3 (so) (x, y, z) (so) N(so) B(so), T (so) =

    (so). (x, y, z) (so)

    ( ) < (x, y, z) (so), T (so) >= 0,

    , ,

    < (x, y, z) (so), (so) >= 0.(ii) (t), - . (x, y, z) (to) - ()

    < (x, y, z) (to), T (to) >= 0.

    (1.5.1),

    < (x, y, z) (to), (to)

    (to) >= 0,

    , ,

    < (x, y, z) (to), (to) >= 0.

    .

    (t) = (a sin2 t, a sin t cos t, a cos t)

    (0, 0, 0).

  • 68 1.

    . , (0, 0, 0) (t),

    < (0, 0, 0) (t), (t) >=< (t), (t) >= 0, t R.

    (t) =(2a sin t cos t, a(cos2 t sin2 t),a sin t).

    ,

    < (t), (t) >=

    < (a sin2 t, a sin t cos t, a cos t), (2a sin t cos t, a(cos2 t sin2 t),a sin t) >=2a2 sin3 t cos t+ a2 sin t cos3 t a2 sin3 t cos t a2 sin t cos t =

    a2 sin3 t cos t+ a2 sin t cos3 t a2 sin t cos t =a2 sin t cos t(sin2 t+ cos2 t) a2 sin t cos t = 0.

    23.

    .

    . (i) (s) . (x, y, z) R3 (so) (x, y, z) (so) T (so) N(so), B(so). (x, y, z) (so)

    ( ) < (x, y, z) (so), B(so) >= 0.

    B(so) = T (so)N(so) = (so) T(so)

    k(so)= (so)

    (so)

    k(so),

    ( )

    < (x, y, z) (so), (so) (so) >= 0.

    (ii) (t), - . (x, y, z) (to) ( )

    < (x, y, z) (to), B(to) >= 0.

  • 1.11. 69

    [. (1.5.3)]

    B(to) =(to) (to)(to) (to)

    < (x, y, z) (to), (to) (to)

    (to) (to) >= 0,

    , ,

    < (x, y, z) (to), (to) (to) >= 0.

    . (t) = (cos t, sin t, t), t R. () (t) (to),

    to =

    2.

    . -

    < (x, y, z) (2

    ),

    (2

    )

    (2

    )>= 0.

    :

    (2

    )=(cos

    2, sin

    2,

    2

    )=(0, 1,

    2

    )(t) = ( sin t, cos t, 1)(2

    )=( sin

    2, cos

    2, 1)= (1, 0, 1)

    (t) = ( cos t, sin t, 0)(2

    )=( cos

    2, sin

    2, 0)= (0,1, 0)

    < (x, y, z) (0, 1, 2), (1, 0, 1) (0,1, 0) >= 0

    < (x, y 1, z 2), (1, 0, 1) (0,1, 0) >= 0

    x y 1 z pi21 0 10 1 0

    = 0 x+ z =

    2.

  • 70 1.

    24. -

    .

    . (i) (s) . (x, y, z) R3 (so) - (x, y, z) (so) T (so) B(so), N(so). (x, y, z) (so)

    ( ) < (x, y, z) (so), N(so) >= 0.

    N(so) =T (so)

    k(so)=(so)

    k(so),

    ( )

    < (x, y, z) (so), (so)

    k(so)>= 0,

    , ,

    < (x, y, z) (so), (so) >= 0.(ii) (t), - . (x, y, z) (to) ( )

    < (x, y, z) (to), N(to) >= 0. [. (1.5.2)]

    N(to) =

    ((to) (to)

    ) (to)(to) (to) (to) ,

    < (x, y, z) (to),((to) (to)

    ) (to)(to) (to) (to) >= 0,

    , ,

    ( ) < (x, y, z) (to), ((to) (to)) (to) >= 0.

    . (t) =(t,t2

    2,t3

    3

    ), t R.

    (t) to = 1.

  • 1.11. 71

    . ( ),

    < (x, y, z) (1), ((1) (1)) (1) >= 0.:

    (1) =(1,

    1

    2,1

    3

    )(x, y, z) (1) = (x 1, y 1

    2, z 1

    3

    )(t) =

    (1, t, t2

    )(1) = (1, 1, 1)

    (t) = (0, 1, 2t)

    (1) = (0, 1, 2)

    (1) (1) =e1 e2 e31 1 10 1 2

    = (1,2, 1)

    < (x 1, y 1/2, z 1/3), (1,2, 1) (1, 1, 1) >=e1 e2 e31 2 11 1 1

    = 0,

    x z = 23.

    25. : J R3 , p R, . k 6= 0 , :

    p = 1kN

    (1k

    ) 1B,(I)

    R2 =(1k

    )2+

    ((1k

    ) 1

    )2,(II)

    k=

    ((1k

    ) 1

    ).(III)

  • 72 1.

    .

    p = R < p, p >= R2 < p, p > (s) = 0 2 < , p > (s) = 0 < T, p > (s) = 0 ((s) p) T (s).

    , s J , (s) p N(s), B(s) (: ), , : J R, ( ) (s) p = (s)N(s) + (s)B(s). < T, p >= 0, :

    < T, p > (s) = 0 < T (s), (s) p > + < T (s), (s) >= 0 < k(s)N(s), (s) p >= < T (s), T (s) >= 1 < k(s)N(s), (s)N(s) + (s)B(s) >= 1

    k(s)(s) < N(s), N(s) > +k(s)(s) < N(s), B(s) >= 1 k(s)(s) = 1 (s) = 1

    k(s).

    (s) ( ) ( - ) :

    () (s) p = 1k(s)

    N(s) + (s)B(s)

    (s) = ( 1k(s)

    )N(s) 1

    k(s)N (s) + (s)B(s) + (s)B(s)

    T (s) = ( 1k(s)

    )N(s) 1

    k(s)

    ( k(s)T (s) + (s)B(s))+ (s)B(s) (s)N(s)

    T (s) = T (s) +(( 1k(s)

    ) (s)(s))N(s) + ((s) (s)k(s)

    )B(s)

    (( 1k(s)

    ) (s)(s)

    )N(s) +

    ((s) (s)

    k(s)

    )B(s) = 0

    (s)(s) = ( 1k(s)

    ) (s) =

    (s)

    k(s).

  • 1.11. 73

    ( k 6= 0, )

    (s) = ( 1k(s)

    ) 1(s)

    .

    ( ) (s) (s), , (I).

    (II)

    R2 =< p, p >

    =< 1kN

    (1k

    ) 1B,1

    kN

    (1k

    ) 1B >

    =1

    k2< N,N > +2

    1

    k

    (1k

    ) 1< N,B > +

    ((1k

    ))2 12

    < B,B >

    =1

    k2+((1

    k

    ))2 12

    ,

    ( II).

    (II) :

    (II) 21k

    (1k

    )+ 2

    (1k

    )(1

    )((1

    k

    )(1

    ))= 0

    1k= 1

    ((1k

    )(1

    )),

    (III).

    26. k, 6= 0. (1k

    ) 6= 0 (1k

    )2+

    ((1k

    ) 1

    )2= ,

    .

    . (1k

    )2+

    ((1k

    ) 1

    )2= c2, (II)

    25. , (II) (III) ,

    k+

    ((1k

    ) 1

    )= 0.

    (I) ,

    p := +1

    kN +

    (1k

    ) 1B,

  • 74 1.

    p s. 1

    kN +

    (1k

    ) 1B

    ((1k

    )2+((1

    k

    ) 1

    )2)1/2= c.

    p = 0, p , p c. ,

    p = +(1k

    )N +

    (1k

    )N +

    ((1k

    ) 1

    )B +

    (1k

    ) 1B

    = T +(1k

    )N +

    1

    k(kT + B) +

    ((1k

    ) 1

    )B +

    (1k

    ) 1(N)

    = T +(1k

    )N T +

    kB +

    ((1k

    ) 1

    )B

    (1k

    )N

    = T +(1k

    )N T +

    kB +

    ((1k

    ) 1

    )B

    (1k

    )N

    = 0T + 0N +(k+((1

    k

    ) 1

    ))B = 0

    .

    . ,

    (. -

    )

    (1k

    )2+

    ((1k

    ) 1

    )2= c.

    27. : I R3 , k(s) > 0 s I, (s). (s) :=T (s), T (s) . (i) . (ii) ( so),

    (s) = k(s), s I. (iii) k .

    . (i) (s) = T (s) = k(s)N(s). , (s) =k(s) 6= 0, .(ii)

    (s) =

    sso

    (u) du,

  • 1.11. 75

    (s) = (s) = T (s) = k(s)N(s) = k(s).

    (iii) ( k = 1, ),

    1.4.2 1.4.3 .

    ( s):

    = T = kN,

    = kN + kN

    = kN + k(kT + B)= k2T + kN + kB,

    = kN (k2 + kN + kB)= k3N T + kkN N + k2N B= k2T + 0 + k3B = k2T + 0N + k3B,

    2 = k6 + k42 = k4(k2 + 2).,

    k = 3 =

    k2(k2 + 2

    )1/2k3

    =

    (k2 + 2

    )1/2k

    .

    . - , , :

    = 2kkT k2T + kN + kN + kB + k B + kB= 2kkT k3N + kN + k(kT + B) + (k + k )B + k(N)= 3kkT + (k3 + k k2)N + (2k + k )B.

    ,

    =< , > 2 =

    k3(k k)k4(k2 + 2)

    =k kk(k2 + 2)

    .

    . (spherical indi-catrix) () T .

  • 76 1.

    N B. R3 0.

    28.

    (t) =(et cos t, et sin t

    ), t R.

    (i) limt+ (t) = limt+ (t) = (0, 0). (ii) -

    to(u) du. (iii) .

    . (.

    13, a = 1 b = 1). (i) . (ii) :

    (t) =( et cos t et sin t,et sin t+ et cos t),

    (t) = ((et cos t et sin t)2 + (et sin t+ et cos t)2)1/2 = 2et, tto

    (u)du =2

    tto

    eudu =2( eu)t

    to=2(eto et).

    , to

    (u)du = limt+

    tto

    (u) du =2 eto .

    (iii)

    1(t) := et cos t , 2(t) := e

    t sin t,

    :

    1(t) = et cos t et sin t,2(t) = et sin t+ et cos t,1(t) = 2e

    t sin t,

    2(t) = 2et cos t,1(t)

    2(t) 1(t)2(t) = 2e2t,

    (t)2 = 1(t)2 + 2(t)2 = 2e2t,

    k(t) = |k(t)| = |1(t)

    2(t) 1(t)2(t)|(t)3 =

    12et.

    [,

    () 13,

    a = 1 b = 1.]

  • 1.11. 77

    29. . ( ) k = = . ;

    . > 0 6= 0. - , ,

    . 7

    (s) =(r cos

    s

    c, r sin

    s

    c,b

    cs),

    c2 = r2 + b2. ( ),

    r

    r2 + b2=

    b

    r2 + b2,

    r b -

    r =

    2 + 2 b =

    2 + 2.

    ,

    (s) =

    (

    2 + 2cos

    (s2 + 2

    ),

    2 + 2sin(s2 + 2

    ),2 + 2

    2 + 2s

    ),

    -

    k = = ( - r b). , , , .

    30. : I R2 k(s) < 1, s I.

    (s) := (s) +N(s), s I.

    ( ), N(s) . - k

    k =k

    1 k .

  • 78 1.

    . () :

    (s) = (s) +N (s) = T (s) k(s) T (s) = (1 k(s)) T (s) 6= 0.() ,

    1.4.2.

    s,

    = (1 k)T = |1 k| = 1 k = (1 k)T + (1 k)T = (1 k)T + (1 k)kN

    = (1 k)T ((1 k)T + (1 k)kN= (1 k)(1 k)T T + (1 k)2kT N= k(1 k)B

    = k(1 k)2

    k =k(1 k)2(1 k)3 =

    k

    1 k .

    31. (s) (s) 6= 0. k B(s).

    . Frenet-Serret B,

    N(s) = B(s)

    (s),

    :

    k(s) = T (s) = (N(s)B(s))

    = ( B(s)(s)

    B(s))= ( B(s)

    (s)

    ) B(s) + ( B(s)(s)

    )B(s)= B

    (s)(s) +B(s) (s)

    (s)2B(s) + 0

    =1

    (s)2( (s)B(s) (s)B(s))B(s).

    32.

    , .

  • 1.11. 79

    . , . 16-19

    21,

    (*) p = (s) + (s)(N(s) +B(s)),

    p (s) - . (*) , s,

    T + (N +B) + (kT + B N) = 0,

    , ,

    (1 k)T + ( )N + ( + )B = 0,

    1 k = 0, = 0, + = 0. = 0, = c =

    1 ck = 0, c = 0.

    c 6= 0 k = 1/c , = 0. c.

    33. (s), s J , , B(s), s J . , > 0.

    . B = N , :

    = | | N = N = B,

    N = B

    .

    = T = N B

    , T :

    =

    T + c.

  • 2

    2.0

    R3 ( ,

    ..), "" R2,

    . .

    [] , ,

    .

    . -

    .

    . ,

    -

    () ,

    , Mercator, Lambert,

    .. ,

    . ,

    ( -

    ) [8, . 116130]

    [9, . 124159]. (. . 536542)

    , .

    -

    ( 1

    ).

    L. Euler, G. Monge,

    81

  • 82 2.

    C. F. Gauss. , 1827

    Gottingen Disquisitiones

    Generales circa Superficies Curvas (" -

    "),

    . ,

    ,

    O. Bonnet, E. B. Christoffel, D. Codazzi, G. Darboux, Ch. Dupin, T. Levi-

    Civita`, J. B. Meusnier, F. Mindig, A. F. Mobius, J. Plucker, O. Rodrigues,

    H. Poincare, J. Weingarten.

    , Gauss, -

    -

    ,

    Egregium (" ")

    " ", R3. -

    -

    ,

    ( ).

    B. Riemann -

    ,

    ( ).

    2.1

    2.1.1 . (surface parametrization)

    2- (coordinate system) 2-

    (chart or patch), (parametrized

    surgace) (U, r,W ), U R2 , r : U R3 - W = r(U), :

    (1) r : U W = r(U) (2) q = (u, v) U , Dr(q) : R2 R3 11. 2.1.

    2.1.2 . 1) (1), W R3.

    2) r : U R2 R3,

    r = (x, y, z)

    x := pr1 r, y := pr2 r, z := pr3 r : U R r.

    r(u, v) =((x(u, v), y(u, v), z(u, v)

    ), (u, v) U.

  • 2.1. 83

    urvr

    ou

    ou

    UWr

    q

    x

    y

    z

    u

    v

    2.1

    r , , . , q = (uo, vo) U , Jacobi (. , .15)

    (2.1.1) Jqr =

    x

    u

    q

    x

    v

    q

    y

    u

    q

    y

    v

    q

    z

    u

    q

    z

    v

    q

    .

    , (2) 2.1.1 Jqr 2,

    (x, y)

    (u, v)

    q

    := det

    x

    u

    q

    x

    v

    q

    y

    u

    q

    y

    v

    q

    , (x, z)(u, v)

    q

    := det

    x

    u

    q

    x

    v

    q

    z

    u

    q

    z

    v

    q

    ,

    (y, z)

    (u, v)

    q

    := det

    y

    u

    q

    y

    v

    q

    z

    u

    q

    z

    v

    q

    ,

    , ,

    (2.1.2)

    (x

    u

    q

    ,y

    u

    q

    ,z

    u

    q

    )(x

    v

    q

    ,y

    v

    q

    ,z

    v

    q

    )6= 0.

  • 84 2.

    3) -

    (2.1.3) ru(q) :=r

    u

    q

    =

    (x

    u

    q

    ,y

    u

    q

    ,z

    u

    q

    )

    (2.1.4) rv(q) :=r

    v

    q

    (x

    v

    q

    ,y

    v

    q

    ,z

    v

    q

    )

    , ()

    R3, r(q) r(U) r(q). 2.6.

    4) , (2.1.2) -

    (2.1.2) ru(q) rv(q) 6= 0.

    ,

    .

    5) , r, U W . - (), -

    , , .

    2.1.3 . (U, r,W ) . :

    (1) r .

    (2) r u v.

    , r(U) , .

    . (1) r = c, Dr(q) = 0, q U , .(2) r u, ru(q) = 0, ru(q) rv(q) = 0, . v.

    (U, r,W ). - ru(q) rv(q), q U .

    qo = (uo, vo) U

    (2.1.5) : u (u) := r(u, vo) = (x(u, vo), y(u, vo), z(u, vo)) .

  • 2.1. 85

    W = r(U),

    (2.1.6) (uo) =r

    u

    qo

    = ru(qo).

    ru(qo) =ru

    qo

    , uo,

    u 7 (u) := r(u, vo). , rv(qo) =rv

    qo

    , vo,

    v 7 (v) := r(uo, v). q = (u, v) U , W = r(U)

    : u r(u, v) : v r(u, v),

    ru(q) =r

    u

    q

    rv(q) =r

    v

    q

    ,

    q = (u, v) U (. 2.1). , ( -

    ) (coordinate curves) -

    (parameter curves) (U, r,W ).

    2.1.4 . (regular surface) -

    S R3 {(Ui, ri,Wi)}iI 2- (), Wi S ( S )

    S =iI

    Wi.

    , p S, 2- (Up, rp,Wp), p Wp Wp S . 2- S (2-) .

    ( S, R3) W S S, W = A S, A R3 .

    (U, r,W ) - , S = W , . W , W = W R3.

  • 86 2.

    2.2

    1. R2.

    U R2 . i : U S = U {0} R3 : (u, v) 7 (u, v, 0)

    11 ,

    i1 : U {0} U : (u, v, 0) 7 (u, v)( )

    Jqi =

    1 00 10 0

    2, (u, v) U . (U, i, U {0}) 2- S = U {0} . U {0} , . U U {0}( i) U .

    2. R3.

    := {(x, y, z) R3 : Ax+By + Cz +D = 0}. 2- : (A,B,C) 6= (0, 0, 0), C 6= 0,

    r : R2 R3 : (u, v) 7(u, v,

    D AuBvC

    ).

    r 11, . -

    r1 : R2 : (x, y, z) 7 (x, y). r1 ,

    R3 R2 : (x, y, z) 7 (x, y)

    , r : R2 . , r -

    r = (x, y, z),

  • 2.2. 87

    x(u, v) = pr1(u, v) = u,

    y(u, v) = pr2(u, v) = v,

    z(u, v) =D AuBv

    C,

    J(u,v)r =

    1 00 1

    AC

    BC

    2. 2.1.1. -

    , .

    3. S2.

    S2 = {(x, y, z) R3 : x2 + y2 + z2 = 1}

    R3

    U R2. , , , .

    , , -

    , .

    r+z : D(0, 1) R3 : (u, v) 7(u, v,

    1 u2 v2),

    D(0, 1) :={(u, v) R2 : u2 + v2 < 1}.

    ( , )u v

    2 21( , , )u vu v - -

    (0,1)D

    S z+

    2.2

  • 88 2.

    r+z 11

    S+z :={(x, y, z) S2 : z > 0},

    S2, S+z = S2 (RR (0,+)).

    r+z

    (r+z )1 : S+z D(0, 1): (x, y, z) 7 (x, y).

    r+z (r+z )

    1 , , r+z -. (u, v) D(0, 1)

    J(u,v)r+z =

    1 00 1

    u1 u2 v2

    , v1 u2 v2

    ,

    r+z () 2 ( Jacobi 2), (u, v) D(0, 1).

    , S2

    Sz :={(x, y, z) S2 : z < 0},

    S+x :={(x, y, z) S2 : x > 0},

    Sx :={(x, y, z) S2 : x < 0},

    S+y :={(x, y, z) S2 : y > 0},

    Sy :={(x, y, z) S2 : y < 0},

    r+x : D(0, 1) S+x : (u, v) 7(

    1 u2 v2, u, v),rx : D(0, 1) Sx : (u, v) 7

    (1 u2 v2, u, v),r+y : D(0, 1) S+y : (u, v) 7

    (u,1 u2 v2, v),

    ry : D(0, 1) Sy : (u, v) 7(u,1 u2 v2, v),

    rz : D(0, 1) Sz : (u, v) 7(u, v,1 u2 v2).

    6 -

    , . -

    2.3.

  • 2.2. 89

    S+

    z

    S-

    z

    S+

    x

    S-

    x

    S+

    y

    S-

    y

    z

    x y

    2.3

    S2, - ,

    .

    .

    N E (. 2.4). P , N , NP PN E. , N , , 11

    r1N : S2 \ {N} R2 : (x, y, z) 7

    (x

    1 z ,y

    1 z),

  • 90 2.

    . -

    r1N

    rN : R2 S2 \ {N} : (u, v) 7

    (2u

    1 + u2 + v2,

    2v

    1 + u2 + v2,1 + u2 + v21 + u2 + v2

    ).

    N

    S

    x

    y

    z

    P

    NP

    E

    0

    2.4

    rN , rN : R

    2 S2 \ {N} . rN (u, v) R2

    J(u,v)rN =2

    (1 + u2 + v2)2

    1 u2 + v2 2uv2uv 1 + u2 v2

    2u 2v

    ,

    () 2, (R2, rN , S

    2\{N}) 2- () S2.

    ( -

    r1N , rN , R2.)

    . 2.1.2(4),

    J(u,v)rN (rN )u(q) (rN )v(q) : ,

    (*) (rN )u(q) (rN )v(q) = 4(1 + u2 + v2)2

    6= 0,

  • 2.2. 91

    q = (u, v) R2. .,

    rS : R2 S2 \ {S} : (u, v) 7

    (2u

    1 + u2 + v2,

    2v

    1 + u2 + v2,1 u2 v21 + u2 + v2

    )

    2- (R2, rS , S

    2 \ {S}), S := (0, 0,1) S2. rS

    r1S : S2 \ {S} R2 : (x, y, z) 7

    (x

    1 + z,

    y

    1 + z

    ),

    ( ).

    S2 ., S2 \ {N} S2 \ {S} S2 ( ),

    S2 \ {N} = S2 (R3 \ {N}), S2 \ {S} = S2 (R3 \ {S}).

    ,

    , -

    (geographical coordinates),

    7 3.

    4. C- f : U R2 R. U R2 f : U R. , f

    f :={(u, v, f(u, v)) : (u, v) U}.

    r : U f : (u, v) 7 r(u, v) := (u, v, f(u, v)). r - : x = pr1, y = pr2, z = f . r 11 ( f )

    := r1 : f U : (u, v, f(u, v)) 7 (u, v), , . r . ,

    J(u,v)f =

    1 00 1

    f

    u

    (u,v)

    f

    v

    (u,v)

    ,

  • 92 2.

    Jacobi r 2. , (U, r,f ) f , -, .

    r r(u, v) = (u, v, f(u, v)). , {(u, v, f(u, v))} f : R2 R f(x, y) = z. , g : R2 R g(x, z) = y {(u, g(u, v), v)}, r(u, v) = (u, g(u, v), v), h : R2 R h(y, z) = x {(h(u, v), u, , v)}, r(u, v) = (h(u, v), u, v).

    () Monge. -

    ( f ). .

    .

    . :

    f : V R (V R3 ),

    (2.2.1) fx(p) :=f

    x

    p

    , fy(p) :=f

    y

    p

    , fz(p) :=f

    z

    p

    ,

    p V.2.2.1 . V R3 , f : V R c f(V ) : p f1(c) f1({c}), Df(p) : R3 R . S := f1(c) .

    , ,

    Df(p). p = (x, y, z), , (2.2.1), Jacobi f p

    Jpf =(fx(p), fy(p), fz(p)

    ).

    Df(p) . t R t 6= 0, (a, b, c) R3, (2.2.2) Df(p)(a, b, c) = afx(p) + bfy(p) + cfz(p) = t 6= 0. ,

    .

    , , , fz(p) 6= 0. , t R, (0, 0, t fz(p)1) R3

    Df(p)(0, 0, t fz(p)1

    )= 0 fx(p) + 0 fy(p) + t fz(p)1 fz(p) = t.

  • 2.2. 93

    ,

    Jacobi,

    Df(p) 6= 0. ,

    Df(p) Df(p) 6= 0 (fx(p), fy(p), fz(p)) 6= 0.

    .

    . po = (xo, yo, zo) S. (fx(po), fy(po), fz(po)

    ) 6= 0. ( ) fz(po) 6= 0. f f : V R2 R R,

    Uo R2 Ao R (xo, yo) zo , Uo Ao V , g : Uo Ao, g(xo, yo) = zo f(x, y, g(x, y)) = c, (x, y) Uo. , :{

    (x, y) Uoz = g(x, y) Ao

    } (x, y, z) (Uo A) f1(c).

    ro : Uo R3 : (u, v) 7 (u, v, g(u, v)).

    Wo := ro(Uo) = (Uo Ao) f1(c) = (Uo Ao) S, S (. 2.1.4). , Wo g, Wo =g. (Uo, ro,Wo) Monge S po Wo. p S, S (Monge), S (, , W ).

    5 ( 2.2.1).

    (i) S2:

    f : R3 R : (x, y, z) 7 x2 + y2 + z2.

  • 94 2.

    S2 = f1(1). po = (xo, yo, zo) f1(1).

    Jpof =

    (f

    x

    po

    ,f

    y

    po

    ,f

    z

    po

    )= 2(xo, yo, zo) 6= (0, 0, 0),

    2.2.1, S2 .

    (ii) , -

    [ abc 6= 0]:

    x2

    a2+y2

    b2+z2

    c2= 1 ()()

    x2

    a2+y2

    b2 z

    2

    c2= 1 ( )()

    x2

    a2 y

    2

    b2 z

    2

    c2= 1 ( )()

    x2

    a2+y2

    b2 z = 0 ( )()

    x2

    a2 y

    2

    b2 z = 0 ( )()

    x2

    a2+y2

    b2 z

    2

    c2= 0, (x, y, z) 6= (0, 0, 0) ( )()

    2.5()2.5() -

    . : ellipsoid,

    hyperboloid (of one sheet), hyperboloid (of two sheets), elliptic paraboloid,

    hyperbolic paraboloid, quadratic cone.

    x

    y

    z

    2.5()

  • 2.2. 95

    z

    x

    y

    2.5()

    z

    x

    y

    2.5()

  • 96 2.

    x

    y

    z

    2.5()

    x

    y

    z

    2.5()

  • 2.3. 97

    x

    y

    z

    2.5()

    2.3

    () Monge

    .

    2.3.1 . S . po S Wo po S, Wo - f : Vo R2 R. , , () Monge

    .

    . S , (U, r, r(U)) po r(U) r(U) S . , 2.1.2,

    (x, y)

    (u, v)

    q

    ,(x, z)

    (u, v)

    q

    ,(y, z)

    (u, v)

    q

    , q U . po = (xo, yo, zo), qo := r1(po) , ,

    (x, y)

    (u, v)

    qo

    6= 0.

  • 98 2.

    ( 1 2 )

    : R3 R2 : (a, b, c) 7 (a, b)

    r,

    r : U R2 : (u, v) 7 (x(u, v), y(u, v)).

    R2 U r - S R3

    R2

    ?

    r-

    2.1

    Jacobi r qo

    det (Jqo( r)) =x

    u

    qo

    x

    v

    qo

    y

    u

    qo

    y

    v

    qo

    =(x, y)

    (u, v)

    qo

    6= 0,

    ( , , D( r)(qo) ). , ,

    r qo, Uo U qo Vo ( r)(U) R2 ( r)(qo) = (xo, yo),

    r|Uo : Uo Vo . Wo := r(Uo). Wo - S, r Uo .

    Wo = f , f . (. 2.6)

    f := z ( r|Uo)1 : Vo R

    ( z = pr3 r). Wo = f . ,

    p Wo = r(Uo) p = r(u, v), (u, v) Uo.

    (u, v) Uo (a, b) Vo (a, b) = ( r|Uo)(u, v) = ( r)(u, v),

  • 2.3. 99

    ( )r UU

    oW

    r

    1( )oU

    f z rp-

    = o o

    zor

    p

    S

    1( )oU

    rp-

    o

    oUrp o

    oU

    oq

    op

    ( , )o o

    x y

    2

    2

    ( ( ))r Up

    oV

    2.6

    Wo p = r(u, v) = (x(u, v), y(u, v), z(u, v))= (( r)(u, v), z(u, v)) = (a, b, z ( r|Uo)1(a, b))=(a, b, f(a, b)

    ) f . (. 4 2.2), (Vo, ro,Wo), ro(a, b) = (a, b, f(a, b)), (a, b) Vo, Monge po Wo. ro r1o = |Wo .2.3.2 . S . U R2 - r : U R3 11 , r(U) S Dr(q) 11, q U . r1 : r(U) U , r (U, r, r(U)) S.

    . qo U po = r(qo) r(U). , ,

    (x,y)(u,v)

    qo6= 0. -

    , r|Uo : Uo Vo,

  • 100 2.

    , , . qo Uo,Uo U Wo = r(Uo), Monge (Vo, ro,Wo) |Wo = r1o (, , ro -).

    r|Uo =(ro |Wo

    ) r|Uo = ro ( r|Uo), r|Uo . - r qo, qo. , r , , -

    .

    ,

    S , (U, r,W ) S, r .

    2.3.3 . S (Ui, ri, ri(Ui)), i = 1, 2, S. W := r1(U1) r2(U2) 6= , - (change of coordinates)

    () (transition map)

    U1 r11 (W )h:=r1

    2r1 r12 (W ) U2

    (. 2.7).

    . q1 r11 (W ) q2 := h(q1) r12 (W ). h q1.

    (U2, r2, r2(U2)) , -

    , , (x2,y2)(u,v)

    q26= 0.

    Monge (Vo, ro,Wo) - 2.3.1. Wo = f , f : Vo R

    r1o = |Wo : Wo Vo : (x, y, z) 7 (x, y).

    , Uo U2 q2 Uo

    r2|Uo : Uo Vo

    .

  • 2.3. 101

    2

    2

    W

    1 1( )r U 2 2( )r U

    1U 2U

    1r 11r-

    12r-

    2r

    11 2r r-

    o

    12 1r r-

    o

    S

    2.7

    r12 r1 r11 (Wo), (r12 r1)|r1

    1(Wo)

    = r12 ro r1o r1|r11

    (Wo)

    = r12 (|f )1 |f r1|r11

    (Wo)

    = ( r2|Uo)1 r1|r11

    (Wo)

    .

    .

    2.3.4 . (U, r, r(U)) 2- A U . (A, r|A, r(A)) 2- . 22.3.5 .

    .

    . A S p A . (U, r,W = r(U)) S p W ., , (U, r,W ),

    W := W A, U := r1(W ), r := r|U , A p. . A A, .

  • 102 2.

    2.4

    R3 : I (I R ), C = (I) . , C.

    , C - S R3 (surface ofrevolution). C (profile curve) (generating curve) (axis) S.

    C, , , - S (parallels of S), C ( )

    (meridians) S.

    xOz zOz. , C zOz, , .. x > 0. (v) =(x(v), z(v)), v I. 2.8.

    vo I po = (vo) = (x(vo), z(vo)) (x(vo), 0, z(vo)). , xOz z, po x(vo) xOy, z(vo). (x(vo) cos u, x(vo) sinu, z(vo)), u [0, 2).

    z

    y

    x

    ( )o

    z v

    ( )o

    x v

    ( )o o

    v pa =

    c

    2.8

  • 2.4. 103

    S

    S ={(x(v) cos u, x(v) sin u, z(v)) : (u, v) [0, 2) I}.

    .

    [

    () , , -

    ]:

    vo Io I, vo Io (Io) g : Io R, (Io) = g ., , (vo) = (x

    (vo), z(vo)) 6= 0,

    .

    x(vo) 6= 0. , , Io I Jo R, vo Io x|Io : Io Jo .

    g : = z (x|Io)1 : Jo R.

    p = (x(v), z(v)) (Io), v Io, t Jo x(v) = t. ,

    (Io) p = (x(v), z(v)) =(t, (z x|Io

    )(t) = (t, gt)) g

    .

    ,

    z(v) = g(t) = g(x(v)), . z = g(x).

    z = g(x) f(x, z) = c () Df(x, z) 6= 0.

    , z = g(x) f(x, z) := g(x) z, f(x, z) = 0 Df(x, z) J(x,z)f = (g(x), 1) 6= 0 (. 2.2.1). :

    f(x, z) = c Df(x, z) 6= 0, (fx, fz) 6= 0. , , fz 6= 0, , ,z = g(x) .

    , ( -

    ) C f(x, z) = c, Df(x, z) 6= 0, (x, z) C. - , ,

    , v I,

  • 104 2.

    , Io, . ,

    (x, y, z) S x2 + y2 = x(v)2 z = z(v) , v I f(x2 + y2, z) = c.

    h : R R R R : (x, y, z) 7 f(x2 + y2, z).

    S = g1(c).

    2.2.1, S - : p = (x, y, z) h1(c), Dh(p) ( Dh(p) 6= 0), Df(x, z) 6= 0.

    , h = f , (x, y, z) =(x2 + y2, z

    ). , (a, b) = (p), -

    Jacobi,

    Dh(p) Jph =(J(a,b)f

    ) (Jp)=(g(a), 1

    ) (x(x2 + y2) 12 y(x2 + y2) 12 00 0 1

    )

    =(g(a)x(x2 + y2)

    1

    2 , g(a)y(x2 + y2)1

    2 , 1)6= 0.

    S , .

    (U, r,W ), U = (0, 2) I, r

    r : U R3 : (u, v) 7 (x(v) cos u, x(v) sin u, z(v))

    W = r(U). U R2 r ( ).

    r 11: r(u1, v1) = r(u2, v2), z(v1) = z(v2) x(v1)

    2 = x(v2)2. x > 0,

    x(v1) = x(v2),

    (v1) = (x(v1), z(v1)) = (x(v2), z(v2)) = (v2).

    C , 11, v1 = v2 = v, , r(u1, v) = r(u2, v), u1, u2 (0, 2) sin cos, u1 = u2.

  • 2.4. 105

    Dr(q) 11, q = (u, v) U . ,

    ru(q) = (x(v) sin u, x(v) cos u, 0),rv(q) = (x

    (v) cos u, x(v) sin u, z(v)),

    ru(q) rv(q) = e1 e2 e3x(v) sin u x(v) cos u 0

    x(v) cos u x(v) sin u z(v)

    = (x(v)z(v) cos u, x(v)z(v) sin u, x(v)x(v))= x(v)(z(v) cos u, z(v) sin u, x(v)),

    ru(q) rv(q) = x(v) (x(v)2 + z(v)2

    )1/2.

    x(v) > 0, ru(q) rv(q) = 0 (v) = (x(v)2+ z(v)2)1/2 = 0, v, , C . ru(q)rv(q) 6= 0 Dr(q) 11.

    W = r(U) S, W S . (U, r,W ) 2.3.2, S. u , , v ().

    u, .. U =(, ) I r(u, v) = (x(v) cos u, x(v) sin u, z(v)), S, S.

    , -

    (

    ),

    z ( , ), -

    . ,

    ,

    . -

    , .

    , .

  • 106 2.

    : ( - torus) T .

    z ( xOz) (a, 0, 0) , 0 < < a.

    (v) = (x(v), z(v)) = (a+ cos v, sin v) (a+ cos v, 0, sin v).

    T ={(

    (a+ cos v) cos u, (a+ cos v) sin u, sin v) (u, v) [0, 2) [0, 2)}.

    x

    y

    z

    a

    r

    2.9

    r(u, v) =((a+ cos v) cos u, (a+ cos v) sin u, sin v

    ),

    (u, v) (0, 2) (0, 2), T , "" () "" (). T,

    , , (, ) (, ).

    2.5

    -

    .

  • 2.5. 107

    , 2- (),

    R3.

    .

    2.5.1 . S f : S Rm. f p S (differentiable at p ), - (U, r,W ) S, p W

    (2.5.1) F := f r : U Rm

    S W f- Rm

    R2 U

    r

    6

    F

    -

    2.2

    r1(p). f (differentiable), p S.2.5.2 . f : S Rm p S - .

    . (U, r,W ) S, p W F = f r : U Rm r1(p). (U, r,W ) S p W , F := f r r1(p). , Wo := W W S ( W ),

    Uo := r1(Wo) U

    -

    . F Uo

    F |Uo = f r|Uo = (f r) (r1 r).

    r1(p), r1 r (: ) r1(p) F = f r ( ).

    , -

    , -

    , .

  • 108 2.

    2.5.3 . f : S Rm p S, p.

    . F = f r f |W = F r1. r F r1(p) ( ), f |W p, .

    , , r .

    , r1,

    2.5.4 . (U, r,W ), r1 : W U R2 .

    . W (U, r,W )., ,

    r1 r = idU : U U, .

    ,

    , -

    .

    2.5.5 . A R3 , F : A Rm S S A. f := F |S : S Rm .

    . p S. (U, r,W ) S p W , f r = F r : U Rm. F r ( ) f r U , r1(p). f p, S.

    2.5.6 . f : S Rm F : A Rm, A R3 S A.

    S1, S2 f : S1 S2. - f R3, .

    f () -, S2. ,

  • 2.5. 109

    , -

    ,

    ( 2.5.9

    ). , ,

    .

    2.5.7 . S1, S2, f : S1 S2. f p S1 ( 2.5.1, f : S R3) (Ui, ri,Wi) (i = 1, 2) Si , : p W1, f(W1) W2

    (2.5.2) F := r12 f r1 : U1 U2 r11 (p).

    F (local representation) f (Ui, ri,Wi), i = 1, 2. (2.5.2) .

    W1f - W2

    R2 U1

    r1

    6

    F- U2

    r12

    ? R2

    2.3

    . f : S1 S2 p S1 f : S R3. Monge(U2, r2,W2) S2 f(p) W2. f : S1 R3 p, ( ) f : S1 S2 ( S2 ). , W2 S2, A p S1 f(A) W2. (U, r,W ) S1 p W . 2.3.4, (

    U1 := r1(W A), r1 := r|U1 , W1 := W A

    ) S1 p. (Ui, ri,Wi) (i =1, 2) p W1 f(W1) W2, - f

    F = r12 f r1 : U1 U2.

  • 110 2.

    ( Monge) r12 = |W2, : R3 R2 : (x, y, z) (x, y),

    F = |W2 f r1 : U1 U2. r11 (p), |W2(. 2.5.5) r11 (p) f r1 ( f p). .

    , (2.5.2) r11 (p). r2 ( ),

    r2 F = f r1 : U1 R3

    r11 (p), . f : S R3 p.2.5.8 . 1) , 2.5.7

    . , f : S1 S2 p S1 (Ui, ri,Wi) (i =1, 2) Si , : p W1, f(W1) W2 (2.5.2) r11 (p).

    2) 2.5.2, -

    f -. , (U i, ri,W i) (i = 1, 2) Si, : p W 1, f(W 1) W 2, (2.5.2) F := r12 f r1 : U1 U2 r11 (p).

    3) f : S1 S2 (diffeomorphism) f f1 . , - (U, r,W ), U [. 2.2(1)], 2.5.4 :

    r . , R2.

    .

    .

    2.5.9 . Si, i = 1, 2, 3 , f : S1 S2 p S1 g : S2 S3 f(p) S2, g f : S1 S3 p.

  • 2.5. 111

    . g f(p), (Ui, ri,Wi) Si, i = 2, 3, f(p) W2, g(W2) W3

    G := r13 g r2 : U2 U3 r12 (f(p)). f p ( ), A p S1, f(A) W2. (U, r,W ) S1 p W . - W A S1, p, (

    U1 := r1(W A), r1 := r|U1 ,W1 := W A

    ) S1 (. 2.3.4). p W1 f(W1) W2, f

    F := r12 f r1 : U1 U2,

    r11 (p) [. 2.5.7 2.5.8(2)]. p W1 (g f)(W1) W3, - (U1, r1,W1) (U3, r3,W3) g f

    r13 (g f) r1 = (r13 g r2) (r12 f r1) = G F.

    r11 (p), - F r11 (p), G r12 (f(p)) = F (r

    11 (p)).

    2.5.10 . S , I : I R3 (I) S. to I po :=(to) S. , (U, r,W ) S po, J I to J , : J U R2,

    |J = r . 2.10.

    . Monge S po ( 2.3.1 ).

    (Uo, ro,Wo) ro(u, v) = (u, v, g(u, v)). ,

    : R3 R2 : (x, y, z) 7 (x, y)( r1o ) |Wo =r1o . : I R3 ( )

  • 112 2.

    : I S ( S ), Jo :=

    1(Wo) Jo I to Jo.

    o := : Jo Uo R2,

    . r1o = |Wo , , , ro o = |Jo .

    (U, r,W ) S po W . - Monge (Uo, ro,Wo) . W Wo S po. J :=

    1(W Wo) J Jo I to J .

    := r1 |J .

    S

    ot

    ab

    ( )Jb

    J

    r

    op ( )Ia

    I

    UW

    2.10

    = r1 |J = (r1 ro) ( )|J = (r1 ro) o|J ,

    , r1 ro ( - . 2.3.3) o|J . , r = |J .

  • 2.6. 113

    2.5.11 . , -

    = r1|J , J . , , . ( R R3), r1 (. 2.5.1). , -

    (

    ), -

    (. 2.5.9).

    , -

    , .

    2.6

    S , p S (U, r,W ) 2- S p W . , q := r1(p) U , ru(q) rv(q) (. 2.1.2), 2- R3,

    S p (tangent space of S at p) TpS. ,

    TpS :={ru(q) + rv(q) | , R

    }.

    {ru(q), rv(q)} TpS. TpS S p (tangent vectors of S at p).

    2.6.1 .

    (2.6.1) TpS = [Dr(q)](R2).

    . TpS ru(q) + rv(q), (, ) R2, Dr(q)(R2) , ,Dr(q)(a, b), (a, b) R2.

    Dr(q)(a, b) = Dr(q)(ae1 + be2) = aDr(q)(e1) + bDr(q)(e2)

    = ar

    u

    q

    + br

    v

    q

    = aru(q) + brv(q),

    .

    . Dr(q) (a, b)

  • 114 2.

    Jacobi :

    Dr(q)(a, b) = (Jqr) (a, b)t =

    x

    u

    q

    x

    v

    q

    y

    u

    q

    y

    v

    q

    z

    u

    q

    z

    v

    q

    (ab

    )

    =

    (ax

    u

    q

    + bx

    v

    q

    , ay

    u

    q

    + by

    v

    q

    , az

    u

    q

    + bz

    v

    q

    )

    = a

    (x

    u

    q

    ,y

    u

    q

    ,z

    u

    q

    )+ b

    (x

    v

    q

    ,y

    v

    q

    ,z

    v

    q

    )

    = aru(q) + brv(q).

    2.6.2 . Dr(q) : R2 TpS -

    . , Dr(q) : R2 R3 11 ( ) TpS = [Dr(q)](R

    2).

    p S C(S, p)

    : J R3, :

    0 J, (J) S, (0) = p,

    p - S.

    Ep :={(0) | C(S, p)}.

    2.6.3 .

    (2.6.2) TpS = Ep,

    TpS (: -), p, p S.

  • 2.6. 115

    . w TpS. w = Dr(q)(h), h R2.

    : R R2 : t 7 (t) := th+ q.

    (0) = q U U R2, > 0 ((, )) U .

    := r (,)

    : (, ) R3,

    , ((, )) S,(0) = r(q) = p

    (0) = (r )(0) = [D(r )(0)](1)= [Dr(q) D(0)](1) = [Dr(q)]((0))= [Dr(q)](h) = w.

    TpS Ep., w = (0) Ep, : J S R3 -

    (0) = p. 2.5.8,

    : (, ) J U R2,

    (0) = q |(,) = r .

    w = (0) = [D(0)](1) = [D(r )(0)](1)= [Dr((0)) D(0)](1) = [Dr(q)]((0)).

    (0) R2, w = [Dr(q)]((0)) TpS, Ep TpS, .

    2.6.4 . S p S .

    2.6.5 . Ep p S - ru rv S p (tangent plane). TpS p, Ep(S) , , Ep.

  • 116 2.

    Ep p S. , p, rU rV .

    N

    P

    vr

    ur

    p pE T S

    2.11

    2.7

    , ,

    . , -

    .

    .

    2.7.1 . S1, S2 f : S1 S2 . : I S1 , f : I S2 .

    . f : I S2 t I. to I po = (to). (U, r,W ) S1 po W . : J U , |J = r (. 2.5.8).

    f |J = f (r ) = (f r) ,

    , f r f (. 2.5.1 2.5.2) .

  • 2.7. 117

    2.7.2 . S1, S2 f : S1 S2 - p S1, () f p(differential of f at p)

    dpf Tpf : TpS1 Tf(p)S2 : w 7 dpf(w) := (f )(0), : (, ) S1 (0) = p (0) = w.2.7.3 . ,

    .

    .