© 2011 - IFP Energies nouvelles Renewable energies | Eco-friendly production | Innovative transport...

37
© 2011 - IFP Energies nouvelles Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Time Space Domain Decomposition for Reactive Transport in Porous Media Anthony MICHEL

Transcript of © 2011 - IFP Energies nouvelles Renewable energies | Eco-friendly production | Innovative transport...

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources

Time Space Domain Decomposition for

Reactive Transport in Porous Media

Anthony MICHEL

2

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Contributors

Florian Haeberlein PhD Student, IFPEN He will defend his PhD next week ( 14/11/2001)

Laurence Halpern, Paris 13, LAGA

L.Trenty, J.M.Gratien, A.Anciaux, IFPEN M.Kern, INRIA T.Parra, Geochemistry Dpt, IFPEN D.Garcia, J.Moutte, ENSMSE

3

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Outlook Part1. Motivation

CO2 geological storage modeling CO2 reactivity distribution ANR-SHPCO2 Project

Part 2. Reactive Transport Modeling Reactive chemical system Local reactive flash model Global reactive transport model

Part 3.Time Space Domain Decomposition Subdomains Non linear DD Method Reactive subdomain definition

Part 4. Case Studies Case study 1. Laboratory experiment Case study 2. SHPCO2 Use Case

4

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Motivation

Part 1

5

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

CO2 Geological Storage

Storage

6

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

CO2 Geological Storage Modelling

CO2H2O CH4

CO2

H2O

Ca++H+

Gas

Salt Water

Rock

Texture

OH-

Na+

HCO3-

Cl-

Porous Media

Geological Storage = Aquifer + Seal

10 km

100 m

Connectivity

Fe++

Mg++

Chemical System

7

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

CO2 Reactivity - Physical Distribution

( Garcia, 2008 ) CO2 Carbonatation Effects

8

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

CO2 Reactivity – Numerical Distribution

Acid Front Reactivity Local time Stepping

High Very LowTime step reduction is due to :- Strong non linearities- High species concentration ratios- What else ??

Low

9

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

SHPCO2 Project

Simulation Haute Performance du Stockage Géologique de CO2

ANR-CIS 2007 4 years project

From 2008 to 2011

10

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

SHPCO2 Project Structure

SP3

SP5

CPU-Time

Newton Krylov+ Preconditioners

SP2

SP1

SP4

Time SpaceDomain Decomposition

Parallel Computing andLoad Balancing

Real StudyTest Case

Numerical Models Integration and Coupling

11

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Real Study Test Case

( Gaumet, 1997) Carbonates Layering

12

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Real Study Test Case

( Gabalda, 2010) Dogger, Paris Basin Geological Model

13

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Reactive Transport Modeling

Part 2

14

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Reactive Chemical System

T W

c

q

I

I

Scxx

z Scz

components

primary species

secondary species 0

0

0

0

c1 c2x1

x4x3

z1 z2q1 q2

x2

q -> Skc*c + Skx*x

q <- Skc*c + Skx*x (Precip) (Dissol)Rkin

Kinetic Reactions

Equilibrium ReactionsPhases and Species

solid

fluid

15

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Local Reactive Flash Model

q

Mass Balance Equations [w c] + Scx [w x] + Scz [z z] = T [q q] = W

Equilibrium Equations

ln(x) = ln(Kx) + Sxc [ ln(c)] ( w > 0 )

ln(z) = ln(Kz) + Szc [ ln(c)] or ( z = 0 )

Closure Equations

c + x = 1

z = 1

q = 1

c

q

z

w

z

x

16

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Global Reactive Transport Model

Mass Balance Equations

Closure Equations

(X)

(X)

Constitutive Laws

(X)

C

W

T

F

RT,kin

RW,kin

17

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Fast Upwind Local Reactive Transport Model

Mass Balance Equations

Closure Equations

(X)

(X)

Constitutive Laws

(X)

+ qout * qin*Cinlocal

local

local

18

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Time Space Domain Decomposition

Part 3

19

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

T

T+t

t

x

Time Space DD – Continuous Subdomains

20

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

T

T+t

t

x

Time Space DD – Discrete Subdomains

21

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

T

T+t

t

x

B1B2 21

A1 u1 + R1(u1) = F1

B1 u1 =

= B2 21 u1

Time Space DD – Local Subdomain Problem

22

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

A1 u1 + R1(u1) = F1

B1 u1 =

= B2 21 u1

A2 u2 + R2(u2) = F2

B2 u2 =

= B1 12 u2

A u + R(u) = F

Time Space DD – Global Coupled Problem

23

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

U= 21 u1* U2*= 12 u2*

A1 u1 + R1(u1) = F1

B1 u1 =

= B1 u

A2 u2 + R2(u2) = F2

B2 u2 =

= B2 u1*

Time Space DD – Classical Nonlinear Solver

24

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Downwind Sweeping

1 k-1 k k+1 ncell

Bk(Ck) = Flux(Ck)in = Ck-1

0

t

Is Fast Upwind RT a Time Space DD Method ?

25

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

- React(cell) = |Rkin|(cell) / Max (|Rkin|(cell))

- D1 = {React (cell) > TolReact } TolReact = 0.4, 0.2

- react = D2 + NCellOverLap NCellOverLap = 4

- D2 = D1 + NCellSecurity NCellSecurity = 2

High Reactive Zone

Security Layer

OverLap

Reactive Subdomain Definition

26

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Numerical Efficiency Results

Two Species Reactive Transport

Classical / Nested / Common … Newton Iterations

27

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Link with other NL Preconditionners …

Cf Jan NordbottenTalk, Yesterday

28

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case Studies

Part 4

29

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 1 – Laboratory Experiment

Plug Boundary

External Boundary

Study Domain

Aqueous Solution Fixed pCO2

Core Cement

Reacted Cement

Reactive Front

R2R1

30

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 1 – Laboratory Experiment

Portlandite + CO2(aq) -> Calcite

Wollastonite -> CaO(aq) + Silice [CO2aq]

CaOaq + CO2aq ->Calcite

Silice -> SiO2aq [CaOaq]

Simplified Overall Reaction Scheme

31

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 1 – Laboratory Experiment

Aqueous Species

Minerals

Reactive Subdomain

Movies …

32

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 2 - SHPCO2 Use Case

Trapped Supercritical CO2

Barreers

Regional Hydrodynamics

33

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 2 - SHPCO2 Use Case

34

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 2 - Reactive Chemical System

35

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Case study 2 - SHPCO2 Use Case

Movies …

36

© 2

011

- IF

P E

nerg

ies

nouv

elle

s

Perspectives

Global Solver Efficiency and Robustness Find a robust linear solver and preconditionner Optimize local computations in the reactive flash Improve newton convergence criterias

Re-Visit the Fast Upwind Method Compare efficiency of the two methods

Improve Efficiency of our Time-Space DD Solver Define good criterias for reactive subdomains Add appropriate metrics for the nested loops

© 2

011

- IF

P E

nerg

ies

nouv

elle

s www.ifpenergiesnouvelles.com